
Rapid Execution of Weighted Edit Distances

Tommaso Soru and Axel-Cyrille Ngonga Ngomo

Department of Computer Science
University of Leipzig

Augustusplatz 10, 04109 Leipzig
{tsoru|ngonga}@informatik.uni-leipzig.de

Abstract. The comparison of large numbers of strings plays a central
role in ontology matching, record linkage and link discovery. While sev-
eral standard string distance and similarity measures have been devel-
oped with these explicit goals in mind, similarities and distances learned
out of the data have been shown to often perform better with respect
to the F-measure that they can achieve. Still, the practical use of data-
specific measures is often hindered by one major factor: their runtime.
While time-efficient algorithms that allow scaling to millions of strings
have been developed for standard metrics over the last years, data-
specific versions of these measures are usually slow to run and require
significantly more time for the same task. In this paper, we present an
approach for the time-efficient execution of weighted edit distances. Our
approach is based on a sequence of efficient filters that allow reducing
the number of candidate pairs for which the weighted edit distance has
to be computed. We also show how existing time-efficient deduplication
approaches based on the edit distance can be extended to deal with
weighted edit distances. We compare our approach with such an exten-
sion of PassJoin on benchmark data and show that we outperform it by
more than one order of magnitude.

1 Introduction

The computation of string similarities plays a central role in manifold disciplines,
especially in ontology matching and link discovery on the Web of Data1 [20].
Over the last decades, manifold domain-specific string similarities have been
developed for improving the accuracy of automatic techniques that rely on them.
For example, the Jaro-Winkler similarity was developed especially to perform
well on person names [22]. Still, newer works in machine learning have shown
that learning string similarities directly from data can lead to algorithms with a
performance superior to that of those which rely on standard similarity measures.
Especially, work on link discovery on the Web of Data has shown that data-
specific weighted edit distances can lead to higher F-measures [21].

One main problem has yet plagued the approaches which rely on string simi-
larity measures learned from data: their runtime. While dedicated algorithms for

1 Throughout this paper, we use the expression “link discovery” to mean the discovery
of typed relations that link instances from knowledge bases on the Web of Data.

the time-efficient comparison of large volumes of data have been developed over
the last years (e.g., PPJoin+ [24], EDJoin [23], PassJoin [12] and TrieJoin [6]),
the time-efficient computation of data-specific string similarities has been paid
little attention to. Thus, running the data-specific counterparts of standard sim-
ilarity measures is often orders of magnitude slower. Previous work have circum-
vented this problem in manifold ways, including the execution of approximations
of the data-specific similarity measure. For example, weighted edit distances
are sometimes approximated by first computing the edit distance between two
strings A and B and only subsequently applying the weight of each of the edit
operations [10]. Other approximations can be found in [3, 2].

In this paper, we address the problem of the time-efficient computation of
weighted edit distances by presenting a novel approach, REEDED. Our approach
uses weight bounds on the input cost matrix to efficiently discard similarity
computations that would lead to dissimilar pairs. By these means, REEDED can
outperform state-of-the-art approaches for the computation of edit distances by
more than one order of magnitude on real datasets. We explain our approach
by using an example from link discovery based on the data shown in Table 1.
Here, the task is to detect possible pairs (s, t) ∈ S×T such that s owl:sameAs t,
where S is a set of source resources and T is a set of target resources.

This paper is structured as follows: In Section 2, we present preliminaries to
our work. Thereafter, we present the REEDED approach for the time-efficient
computation of weighted edit distances (Section 3). In Section 4, we evaluate
our approach on four datasets and show that we outperform a weighted version
of the state-of-the-art approach PassJoin by more than one order of magnitude.
Finally, we conclude with Section 6 after giving a brief overview of related work
in Section 5.

2 Preliminaries

2.1 Notation and Problem Statement

Let Σ be an alphabet and Σ∗ be the set all sequences that can be generated by
using elements of Σ. We call the elements of Σ characters and assume that Σ
contains the empty character ε. The edit distance – or Levenshtein distance –
of two strings A ∈ Σ∗ and B ∈ Σ∗ is the minimum number of edit operations
that must be performed to transform A into B [11]. An edit operation can be
the insertion or the deletion of a character, or the substitution of a character
with another one. In a plain edit distance environment, all edit operations have
a cost of 1. Thus, the distance between the strings “Generalized” and “Gener-
alised” is the same as the distance between “Diabetes Type I” and “Diabetes
Type II”. Yet, while the first pair of strings is clearly semantically equivalent
for most applications, the elements of the second pair bears related yet signif-
icantly different semantics (especially for medical applications). To account for
the higher probability of edit operations on certain characters bearing a higher
semantic difference, weighted edit distances were developed. In a weighted edit
distance environment, a cost function cost : Σ × Σ → [0, 1] assigned to each of

the possible edit operations. The totality all of costs can be encoded in a cost
matrix M . The cost matrix is quadratic and of dimensions |Σ| × |Σ| for which
the following holds:

∀i ∈ {1, . . . , |Σ|} mii = 0 (1)

The entry mij is the cost for substituting the ith character ci of Σ with the jth

character cj of the same set. Note that if ci = ε, mij encode the insertion of cj .
On the other hand, if cj = ε, mij encode the deletion of ci.

In most applications which require comparing large sets of strings, string
similarities are used to address the following problem: Given a set S of source
strings and a set T of target strings, find the setR(S, T, δp, θ) of all pairs (A,B) ∈
S × T such that

δp(A,B) ≤ θ (2)

where θ is a distance threshold and δp is the plain edit distance. Several scal-
able approaches have been developed to tackle this problem for plain edit dis-
tances [12, 24, 23]. Still, to the best of our knowledge, no scalable approach has
been proposed for finding all (A,B) ∈ S × T such that δ(A,B) ≤ θ for weighted
edit distances δ. In this paper we address exactly this problem by presenting
REEDED. This approach assumes that the computation of weighted edit dis-
tances can be carried out by using an extension of the dynamic programming
approach used for the plain edit distance.

2.2 Extension of Non-Weighted Approaches

All of the approaches developed to address the problem at hand with the plain
edit distance can be easily extended to deal with weighted edit distances for
which the dynamic programming approach underlying the computation of the
plain edit distance still holds. Such an extension can be carried out in the fol-
lowing fashion: Let

µ = min
1≤i,j≤|Σ|∧i 6=j

mij . (3)

Then, if the weighted edit distance between two strings A and B is d, then at
most d/µ edit operations were carried out to transform A into B. By using this
insight, we can postulate that for any weighted edit distance δ with cost matrix
M , the following holds

∀A ∈ Σ∗ ∀B ∈ Σ∗ δ(A,B) ≤ θ → δp(A,B) ≤ θ

µ
. (4)

Thus, we can reduce the task of finding the set R(S, T, δ, θ) to that of first
finding R(S, T, δp, θ/µ) and subsequently filtering R(S, T, δp, θ/µ) by using the
condition δ(A,B) ≤ θ. To the best of our knowledge, PassJoin [12] is currently
the fastest approach for computing R(S, T, δp, θ) with plain edit distances. We
thus extended it to deal with weighted edit distances and compared it with our
approach. Our results show that we outperform the extension of PassJoin by
more than one order of magnitude.

3 The REEDED Approach

3.1 Overview

Our approach REEDED (Rapid Execution of Weighted Edit Distances) aims to
compute similar strings using weighted edit distance within a practicable amount
of time. The REEDED approach is basically composed of three nested filters as
shown in Figure 1, where each filter takes a set of pairs as input and yields
a subset of the input set according to a predefined rule. In the initial step of
REEDED, the input data is loaded from S, a source data set, and T , a target
data set. Their Cartesian product S × T is the input of the first length-aware
filter. The output of the first filter L is the input of the second character-aware
filter. The weighted edit distance will be calculated only for the pairs that pass
through the second filter, i.e. set N . The final result A is the set of pairs whose
weighted edit distance is less or equal than a threshold θ. Note that pairs are
processed one by one. This ensures that our algorithm performs well with respect
to its space complexity.

Fig. 1. Flowchart of the REEDED approach.

Table 1. Example data sets.

Sources (S) Targets (T)

id name id name
s1 Basal cell carcinoma t1 Basal Cell Carcinoma
s2 Blepharophimosi t2 Blepharophimosis
s3 Blepharospasm t3 Blepharospasm
s4 Brachydactyly type A1 t4 Brachydactyly Type A1
s5 Brachydactyly type A2 t5 Brachydactyly Type A2

3.2 Key Assumption

Similarly to the extensions of plain edit distances for weighted edit distances,
REEDED assumes the dynamic programming approach commonly used for com-
puting plain edit distances can be used for computing the weighted edit distance
described by the cost matrix M . With respect to M , this assumption translates
to the weights in the matrix being such that there is no sequence of two edit
operations mij and mi′j′ that is equivalent to a third edit operation mi′′j′′ with

mi′′j′′ > mij +mi′j′ . (5)

for (i 6= j) ∧ (i′ 6= j′) ∧ (i′′ 6= j′′). Formally, we can enforce this condition of the
cost matrix M by ensuring that

∃k > 0 ∀mij : k < mij ≤ 2k. (6)

Given that the entries in cost matrices are usually bound to have a maximal
value of 1, we will assume without restriction of generality that

∀i ∈ {1, . . . , |Σ|}∀j ∈ {1, . . . , |Σ|} i 6= j → 0.5 < mij ≤ 1. (7)

Thus, in the following, we will assume that ∀mij : mij > 0.5.

3.3 Length-aware Filter

The length-aware filter is the first filter of REEDED. Once the data sets have
been loaded, the Cartesian product

S × T = {〈s, t〉 : s ∈ S, t ∈ T} (8)

is computed, which in our example corresponds to {〈s1, t1〉, 〈s1, t2〉, . . . , 〈s5, t5〉}.
The basic insight behind the first filter is that given two strings s and t with
lengths |s| resp. |t|, we need at least ||s|− |t|| edit operations to transform s into
t. Now given that each edit operation costs at least µ, the cost of transforming
s to t will be at least µ||s| − |t||. Consequently, the rule which the filter relies on
is the following:

〈s, t〉 ∈ L ⇒ 〈s, t〉 ∈ S × T ∧ ||s| − |t|| ≤ θ/µ. (9)

In the following, we will set τ = θ/µ, where µ is as defined in Equation (3).

In our example, let us assume θ = 1 and mij ∈ (0.5, 1.0]. Then, τ = 2. If we
assume that S.name has been mapped to T.name, then at the end of this step,
13 of the 25 initial pairs in S × T are dismissed. The remaining 8 pairs are:

L = {〈s1, t1〉, 〈s2, t2〉, 〈s3, t3〉, 〈s4, t4〉, 〈s5, t5〉, 〈s2, t3〉, 〈s4, t5〉, 〈s5, t4〉} . (10)

3.4 Character-aware Filter

The second filter is the character-aware filter which only selects the pairs of
strings that do not differ by more than a given number of characters. The intu-
ition behind the filter is that given two strings s and t, if |C| is the number of
characters that do not belong to both strings, we need at least d|C|/2e opera-
tions to transform s into t. As above, the cost of transforming s to t will be at
least µd|C|/2e. The characters of each string are collected into two sets, respec-
tively Cs for the source string and Ct for the target string. Since s and t may
contain more than one occurrence of a single character, characters in Cs and Ct
are enumerated. Then, the algorithm computes their exclusive disjunction C:

C = Cs ⊕ Ct. (11)

Finally, the filter performs the selection by applying the rule:

〈s, t〉 ∈ N ⇐⇒ 〈s, t〉 ∈ L ∧
⌈
|C|
2

⌉
≤ τ. (12)

In our example, a further pair can be dismissed by these means, leading to the
set of remaining pairs being as follows:

N = {〈s1, t1〉, 〈s2, t2〉, 〈s3, t3〉, 〈s4, t4〉, 〈s5, t5〉, 〈s4, t5〉, 〈s5, t4〉}

The pair that is rejected is 〈s2, t3〉, for which C = {h1, i1, o1, i2, a1, s1}, which
leads to the rule not being satisfied.

3.5 Verification

For all the pairs left in N , the weighted edit distance among is calculated. After
that, the third filter selects the pairs whose distance is less or equal than θ.

〈s, t〉 ∈ A ⇐⇒ 〈s, t〉 ∈ N ∧ δ (s, t) ≤ θ (13)

In our example data sets, the set

A = {〈s1, t1〉, 〈s2, t2〉, 〈s3, t3〉, 〈s4, t4〉, 〈s5, t5〉} (14)

is the final result of the selection. Note that the pairs 〈s4, t5〉 and 〈s5, t4〉 are
discarded, because their distance (1.2) is greater than the threshold (1.0). 2

4 Evaluation

The goal of our evaluation was to quantify how well REEDED performs in com-
parison to the state of the art. We thus compared REEDED with the extension
of PassJoin as proposed in [12]. We chose PassJoin because it was shown to out-
perform other approaches for the efficient computation of edit distances, incl.
EDJoin [23] and TrieJoin [6]. Note that we did run an implementation of EdJoin
on the DBLP dataset presented below and it required approximately twice the
runtime of PassJoin.
2 A proof of the correctness of REEDED can be found in the extended version of this

paper at http://svn.aksw.org/papers/2013/OM_Reeded/public.pdf.

4.1 Experimental Setup

We compared the approaches across several distance thresholds on four differ-
ent datasets that were extracted from real data (see Fig. 2).3 The first two of
these data sets contained publication data from the datasets DBLP and ACM.
The third and fourth dataset contained product labels from the product cata-
logs Google Products and ABT [9]. We chose these datasets because they were
extracted from real data sources and because of the different string length dis-
tribution across them. By running our experiments on these data sets, we could
thus ensure that our results are not only valid on certain string length distribu-
tions. As weight matrix we used a confusion matrix built upon the frequency of
typographical errors presented in [8]. The original confusion matrices report the
number of occurrences f for each error:

ΦS = {fij : substitution of i (incorrect) for j (correct)} (15)

ΦI = {fij : insertion of j after i} (16)

ΦD = {fij : deletion of j after i} (17)

For insertion and deletion, we calculate the total frequency:

ωIj =
∑
i

ΦIij (18)

ωDj =
∑
i

ΦDij (19)

The weights of our weight matrix are thus defined as:

mij =


1− ΦS

ij

2max(ΦS)
: i 6= ε ∧ j 6= ε

1− ωI
j−min(ωI)

2(max(ωI)−min(ωI))
: i = ε ∧ j 6= ε

1− ωD
i −min(ωD)

2(max(ωD)−min(ωD))
: i 6= ε ∧ j = ε

(20)

In other words, the higher the probability of an error encoded in mij , the lower
its weight.

All experiments were carried out on a 64-bit server running Ubuntu 10.0.4
with 4 GB of RAM and a 2.5 GHz XEON CPU. Each experiment was run 5
times.

4.2 Results

In Figure 2 we show the string length distribution in the data sets. The results of
our experiments are shown in Table 2. Our results show clearly that REEDED

3 The data used for the evaluation is publicly available at http://dbs.uni-leipzig.
de/en/research/projects/object_matching/fever/benchmark_datasets\

_for_entity_resolution.

0 50 100 150 200 250

String Length

0

50

100

150

200

250

300

Fr
e
q
u
e
n
cy

(a) Data set DBLP.title

0 100 200 300 400

String Length

0

50

100

150

200

250

Fr
e
q
u
e
n
cy

(b) Data set ACM.authors

0 50 100 150 200 250

String Length

0

50

100

150

200

250

300

Fr
e
q
u
e
n
cy

(c) Data set GoogleProducts.name

0 100 200 300 400 500 600

String Length

0

10

20

30

40

50

60

Fr
e
q
u
e
n
cy

(d) Data set ABT.description

Fig. 2. Distribution of string lengths.

outperforms PassJoin in all experimental settings. On the DBLP dataset (aver-
age string length = 56.36), REEDED is already 2 times faster than PassJoin for
the threshold 2. For θ = 4, we reach an order of magnitude in difference with
runtimes of 25.91 (REEDED) and 246.93 (PassJoin). The runtime of REEDED
seems to grow quasi-linearly with increasing values of θ. The results on ACM
corroborate the results for the two algorithms. Here, we are 2.16 times faster
than PassJoin for θ = 2 and 6.57 times faster for θ = 5. We achieve similar
results on the Google Products dataset and are an order of magnitude faster
than PassJoin for θ = 4 already. The results we achieve the ABT dataset allow
deriving further characteristics of REEDED. Here, the algorithm scales best and
requires for θ = 5 solely 1.58 times the runtime it required for θ = 1. This is
clearly due to the considerably longer strings contained in this dataset.

We analyzed the results on each of the filters in our approach and measure
the reduction ratio (given by 1− |N |/|S×T |) achieved by the length-aware and
character-aware filters. Table 3 shows the set sizes at each filtering step. Both
the first and the second filter reduce the number of selected pairs by one or two
orders of magnitude for all the datasets. As expected, the length-aware filter is
most effective on datasets with large average string lengths. For example, only
1.9% of the Cartesian product of the ABT dataset makes it through the first
filter for θ = 1 while the filter allows 6.8% of the DBLP Cartesian product
through for θ = 1. One interesting characteristic of the approach is that the
size of the L grows quasi linearly with the value of θ. The character-aware filter

Table 2. Runtime results in seconds.

PassJoin REEDED
Dataset θ average st.dev. average st.dev.

1 10.75 ± 0.92 10.38 ± 0.35
2 30.74 ± 5.00 15.27 ± 0.76

DBLP.title 3 89.60 ± 1.16 19.84 ± 0.14
4 246.93 ± 3.08 25.91 ± 0.29
5 585.08 ± 5.47 37.59 ± 0.43

1 9.07 ± 1.05 6.16 ± 0.07
2 18.53 ± 0.22 8.54 ± 0.29

ACM.authors 3 42.97 ± 1.02 12.43 ± 0.47
4 98.86 ± 1.98 20.44 ± 0.27
5 231.11 ± 2.03 35.13 ± 0.35

1 17.86 ± 0.22 15.08 ± 2.50
2 62.31 ± 6.30 20.43 ± 0.10

GoogleProducts.name 3 172.93 ± 1.59 27.99 ± 0.19
4 475.97 ± 5.34 42.46 ± 0.32
5 914.60 ± 10.47 83.71 ± 0.97

1 74.41 ± 1.80 24.48 ± 0.41
2 140.73 ± 1.40 27.71 ± 0.29

ABT.description 3 217.55 ± 7.72 30.61 ± 0.34
4 305.08 ± 4.78 34.13 ± 0.30
5 410.72 ± 3.36 38.73 ± 0.44

seems to have the opposite behavior to the length-aware filter and can discard
more string pair on data with small average string lengths. For example, less
than 1% of L makes it through the filter for θ = 1 on the DBLP dataset while
5.1% of L makes it through the same filter for θ = 1 on ABT.

We also measured the runtime improvement as well as the precision and re-
call we achieved by combining REEDED with the ACIDS approach and applying
this combination to the datasets reported in [21]. The results are shown in Ta-
ble 4. For the datasets on which the edit distance can be used, the approach
achieves a superior precision and recall than state-of-the-art approaches (such
as MARLIN [4] and Febrl [5]) which do not rely on data-specific measures. Yet,
on more noisy datasets, the approach leads to poorer results. In particular, the
edit distance has been shown not to be a good measure when the strings to be
compared are too long. Also, the words contained in the source string may be
completely different from the words contained in the target string, yet referring
to the same meaning. A notable shortcoming of the ACIDS approach is the run-
time, wherein the learning system iterated for at least 7 hours to find the weight
configuration of the weighted edit distance and optimize the classification [21].
As shown in Table 4, REEDED enhances the execution time of ACIDS reduc-
ing the total runtime by 3 orders of magnitude on the DBLP–ACM and the
ABT–Buy dataset.

Table 3. Numbers of pairs (s, t) returned by each filter. RR stands for the reduction
ratio achieved by the combination of length-aware and character-aware filters.

DBLP.title θ = 1 θ = 2 θ = 3 θ = 4 θ = 5
|S × T | 6,843,456 6,843,456 6,843,456 6,843,456 6,843,456
|L| 465,506 832,076 1,196,638 1,551,602 1,901,704
|N | 4,320 4,428 5,726 11,382 30,324
|A| 4,315 4,328 4,344 4,352 4,426

RR(%) 99.94 99.94 99.92 99.83 99.56

ACM.authors θ = 1 θ = 2 θ = 3 θ = 4 θ = 5
|S × T | 5,262,436 5,262,436 5,262,436 5,262,436 5,262,436
|L| 370,538 646,114 901,264 1,139,574 1,374,482
|N | 3,820 5,070 24,926 104,482 218,226
|A| 3,640 3,708 3,732 3,754 3,946

RR(%) 99.93 99.90 99.53 98.01 95.85

GooglePr.name θ = 1 θ = 2 θ = 3 θ = 4 θ = 5
|S × T | 10,407,076 10,407,076 10,407,076 10,407,076 10,407,076
|L| 616,968 1,104,644 1,583,148 2,054,284 2,513,802
|N | 4,196 4,720 9,278 38,728 153,402
|A| 4,092 4,153 4,215 4,331 4,495

RR(%) 99.96 99.95 99.91 99.63 95.53

ABT.description θ = 1 θ = 2 θ = 3 θ = 4 θ = 5
|S × T | 1,168,561 1,168,561 1,168,561 1,168,561 1,168,561
|L| 22,145 38,879 55,297 72,031 88,299
|N | 1,131 1,193 1,247 1,319 1,457
|A| 1,087 1,125 1,135 1,173 1,189

RR(%) 99.90 99.90 99.89 99.88 99.87

5 Related Work

Our work is mostly related to the rapid execution of similarity functions and
link discovery. Time-efficient string comparison algorithms such as PPJoin+ [24],
EDJoin [23], PassJoin [12] and TrieJoin [6] were developed for the purpose of
entity resolution and were integrated into frameworks such as LIMES [15]. In
addition to time-efficient string similarity computation approaches for entity res-
olution, approaches for the efficient computation string and numeric similarities
were developed in the area of link discovery. For example, [16] presents an ap-
proach based on the Cauchy-Schwarz inequality. The approaches HYPPO [13]
and HR3 [14] rely on space tiling in spaces with measures that can be split into
independent measures across the dimensions of the problem at hand. Especially,
HR3 was shown to be the first approach that can achieve a relative reduction
ratio r′ less or equal to any given relative reduction ratio r > 1. Another way to
go about computing R(S, T, δ, θ) lies in the use of lossless blocking approaches
such MultiBlock [7].

Manifold approaches have been developed on string similarity learning (see,
e.g., [19, 4, 3, 2]). [4] for example learns edit distances by employing batch learn-

Table 4. Results for the combination of ACIDS and REEDED. The runtimes in the 2
rows at the bottom are in seconds.

DBLP–ACM DBLP–Scholar ABT–Buy

Labeled examples 20 40 20 40 20 40
F-score (%) 88.98 97.92 70.22 87.85 0.40 0.60
Precision (%) 96.71 96.87 64.73 91.88 0.20 0.30
Recall (%) 82.40 99.00 76.72 84.16 100.00 100.00
Without REEDED 27,108 26,316 30,420 30,096 44,172 43,236
With REEDED 14.25 14.24 668.62 668.62 13.03 65.21

ing and SVMs to record deduplication and points out that domain-specific simi-
larities can improve the quality of classifiers. [3, 2] rely on a theory for good edit
distances developed by [1] to determine classifiers based on edit distances that
are guaranteed to remain under a given classification error. Yet, to the best of
our knowledge, REEDED is the first approach for the time-efficient execution of
weighted edit distances.

6 Conclusion

In this paper we presented REEDED, an approach for the time-efficient com-
parison of sets using weighted distances. After presenting the intuitions behind
our approach, we proved that it is both correct and complete. We compared our
approach with an extension of PassJoin for weighted edit distances and showed
that we are more than an order of magnitude faster on 4 different data sets.
REEDED is the cornerstone of a larger research agenda. As it enable to now
run weighted edit distances on large datasets within acceptable times, it is also
the key to developing active learning systems for link discovery that do not only
learn link specifications but also similarity measures directly out of the data.
As shown in [21], this combination promises to outperform the state of the art,
which has relied on standard measures so far. In future work, we will thus com-
bine REEDED with specification learning approaches such as EAGLE [18] and
RAVEN [17] and study the effect of weighted edit distances on these approaches.

References

1. Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. Improved guarantees for
learning via similarity functions. In COLT, pages 287–298, 2008.

2. Aurélien Bellet, Amaury Habrard, and Marc Sebban. Good edit similarity learning
by loss minimization. Machine Learning, 89(1-2):5–35, 2012.

3. Aurlien Bellet, Amaury Habrard, and Marc Sebban. Learning good edit similarities
with generalization guarantees. In Proceedings of the ECML/PKDD 2011, 2011.

4. Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection using
learnable string similarity measures. In KDD, pages 39–48, 2003.

5. Peter Christen. Febrl: a freely available record linkage system with a graphical
user interface. In Proceedings of the second Australasian workshop on Health data
and knowledge management - Volume 80, HDKM ’08, pages 17–25, Darlinghurst,
Australia, Australia, 2008. Australian Computer Society, Inc.

6. Jianhua Feng, Jiannan Wang, and Guoliang Li. Trie-join: a trie-based method for
efficient string similarity joins. The VLDB Journal, 21(4):437–461, August 2012.

7. Robert Isele, Anja Jentzsch, and Christian Bizer. Efficient Multidimensional Block-
ing for Link Discovery without losing Recall. In WebDB, 2011.

8. Mark D. Kernighan, Kenneth Ward Church, and William A. Gale. A spelling
correction program based on a noisy channel model. In COLING, pages 205–210,
1990.

9. Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution
approaches on real-world match problems. PVLDB, 3(1):484–493, 2010.

10. S. Kurtz. Approximate string searching under weighted edit distance. In Proc.
WSP, volume 96, pages 156–170. Citeseer, 1996.

11. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Doklady Akademii Nauk SSSR 163 (4), pages 845–848, 1965.

12. Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. Pass-join: a partition-
based method for similarity joins. Proc. VLDB Endow., 5(3):253–264, November
2011.

13. Axel-Cyrille Ngonga Ngomo. A Time-Efficient Hybrid Approach to Link Discovery.
In OM, 2011.

14. Axel-Cyrille Ngonga Ngomo. Link Discovery with Guaranteed Reduction Ratio in
Affine Spaces with Minkowski Measures. In ISWC, pages 378–393, 2012.

15. Axel-Cyrille Ngonga Ngomo. On Link Discovery using a Hybrid Approach. Journal
on Data Semantics, 1:203 – 217, 2012.

16. Axel-Cyrille Ngonga Ngomo and Sören Auer. LIMES - A Time-Efficient Approach
for Large-Scale Link Discovery on the Web of Data. In IJCAI, pages 2312–2317,
2011.

17. Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Sören Auer, and Konrad Höffner.
RAVEN – Active Learning of Link Specifications. In Sixth International Ontology
Matching Workshop, 2011.

18. Axel-Cyrille Ngonga Ngomo and Klaus Lyko. Eagle: Efficient active learning of
link specifications using genetic programming. In Proceedings of ESWC, 2012.

19. E. S. Ristad and P. N. Yianilos. Learning string-edit distance. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 20(5):522–532, 1998.

20. Pavel Shvaiko and Jérôme Euzenat. Ontology matching: State of the art and future
challenges. IEEE Trans. Knowl. Data Eng., 25(1):158–176, 2013.

21. Tommaso Soru and Axel-Cyrille Ngonga Ngomo. Active learning of domain-specific
distances for link discovery. In Proceedings of JIST, 2012.

22. William E. Winkler. Overview of record linkage and current research directions.
Technical report, BUREAU OF THE CENSUS, 2006.

23. Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-Join: an efficient algorithm for
similarity joins with edit distance constraints. PVLDB, 1(1):933–944, 2008.

24. Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity joins
for near duplicate detection. In WWW, pages 131–140, 2008.

