
Complex Correspondences for Query Patterns
Rewriting

Pascal Gillet, Cassia Trojahn, Ollivier Haemmerlé, and Camille Pradel

IRIT & Université de Toulouse 2, Toulouse, France
pascalgillet@ymail.com,{cassia.trojahn,ollivier.haemmerle,camille.pradel}@irit.fr

Abstract. This paper discusses the use of complex alignments in the
task of automatic query patterns rewriting. We apply this approach
in SWIP, a system that allows for querying RDF data from natural
language-based queries, hiding the complexity of SPARQL. SWIP is
based on the use of query patterns that characterise families of queries
and that are instantiated with respect to the initial user query expressed
in natural language. However, these patterns are specific to the vocabu-
lary used to describe the data source to be queried. For rewriting query
patterns, we experiment ontology matching approaches in order to find
complex correspondences between two ontologies describing data sources.
From the alignments and initial query patterns, we rewrite these patterns
in order to be able to query the data described using the target ontology.
These experiments have been carried out on an ontology on the music
domain and DBpedia ontology.

1 Introduction

Despite the fact that SPARQL is the standard de facto language for querying
RDF data, its complexity may restrict its use at a large scale, specially for non-
expert RDF users. Translating natural language queries into SPARQL ones is
the object of researches in both Natural Language Processing and Semantic Web
fields. Within the SWIP system [11], users express queries in natural language
sentences and pre-written query patterns are instantiated with respect to a syn-
tactic analysis of the initial query. Several possible interpretations of the queries
are shown to the user which selects the query he/she is interested in. Unlike other
proposals, such as the one in [5, 4], where user queries are limited to keywords,
or in [16], where users can express their queries using a visual query language,
the originality of SWIP is related to the use of query patterns.

The main principle behind query patterns states that, in real applications,
the submitted queries are variations of few typical query families (i.e., the family
of queries asking for the actors playing in movies or the queries asking for the
members of a musical band, or the albums of a musical artist). On the one hand,
the use of patterns avoids exploring the whole ontology to link the semantic
entities identified from the keywords since the potential relations are already
expressed in the patterns. The process thus benefits from the pre-established
families of frequently expressed queries for which real information needs exist.



A query pattern can also be seen as the projection of a subgraph of the under-
lying knowledge base, used as a mediator for the translation between the query
expressed in natural language and the corresponding SPARQL query. On the
other hand, one of the main limitations of the query pattern-based approach is
that reusing patterns across different data sources can be done in a very limited
extent. For each data source to be queried, the corresponding query patterns
have to be (manually) built. Rewriting query patterns based on a vocabulary to
query patterns based on another vocabulary is a task that can be carried out
with the help of ontology alignments.

This paper discusses the use of complex correspondences for automatic query
patterns rewriting. While the usefulness of simple correspondences has long been
recognised, query rewriting requires more expressive links between ontology en-
tities expressing the true relationships between them. At a lower level of abstrac-
tion, ontology alignments have been used to support the task of SPARQL query
rewriting [2, 9, 8]. However, query patterns and SPARQL refer to different lev-
els of expressivity in their representations, where query patterns are articulated
as a set of subpatterns and rely solely on the T Box of ontologies. Hence, we
experiment ontology matching approaches in order to find complex correspon-
dences between two ontologies describing two different data collections. From
the complex alignments and source query patterns, we rewrite these patterns in
order to be able to query the data collection described using the target ontology.
Experiments have been carried out on an ontology on the music domain and
DBpedia ontology. As a main outcoming, we have a set of manually validated
complex correspondences, from which query patterns can be reused across the
data sets described using those ontologies.

The rest of the paper is organised as follows. First, we introduce complex
correspondences and query patterns (§2). Then, we present the approach for
query pattern rewriting that is based on the use of complex correspondences
(§3). Next, the experiments are discussed (§4). Finally, we discuss related work
(§5) and conclude the paper (§6).

2 Foundations

2.1 Complex correspondences

Matching two ontologies is the process of generating an alignment between them
[6]. An alignment A is directional and refers to a source ontology O and a target
ontology O′, denoted AO→O′ :

Definition 1 (Alignment). An alignment AO→O′ between two ontologies O
and O′ is a set of correspondences AO→O′ = {c1, c2, ..., cn}, where each ci is a
triple 〈ei, e′i, r〉, where:

– whether the correspondence is simple, then it relates one and only one entity
(i.e., a class or a property) ei of O to one and only one entity e′i of O′ (1:1);



– or the correspondence is complex, and it involves one or more entities in
a logical formulation (1:n,m:1,m:n), where ei refers to a subset of elements
∈ O, and e′i refers to a subset of elements ∈ O′, and these elements are
related using the constructors of a formal language (First-Order Logic or
Description Logics);

– r is a relation, e.g., equivalence (≡), more general(w), more specific (v),
holding between ei and e′i;

– additionally, a value n (typically in [0,1]) is assigned to ci indicating the
degree of confidence that the relation r holds between the e and e′.

The correspondence 〈ei, e′i, r〉 is unique in AO→O′ . On the other hand, ei or
e′i may be present in more than one correspondence ci. The alignment AO→O′

is said complex if it contains at least one complex correspondence. In the rest of
this paper, a correspondence ci, which is a triple 〈ei, e′i, r〉 (suffix notation), will
be noted ei r e′i. For example, Film v Work is a simple correspondence and
asserts that Film in O is more specific than Work in O′. On the other hand,
we can have the following two complex correspondences :

∀x, Short F ilm(x) ≡ Film(x) ∧ duration(x, y) ∧ y ≤ 59 (1)

∀x,Biopic(x) ≡ Film(x) ∧ Celebrity(y) ∧ topic(x, y) (2)

(1) asserts that a Short F ilm in O is equivalent to a Film in O′ whose dura-
tion is less than 59 minutes, and (2) asserts that a Biopic (or biographical film)
in O is equivalent to a Film in O′ whose the topic is about a famous person. We
can either use First-Order Logic (FOL) or the constructors of Description Logics
(DL) for expressing the complex correspondences. In FOL, a class corresponds
to a unary predicate with one variable, a property to a binary predicate with two
variables, and an instance to a constant. In DL, a class corresponds to a (atomic)
concept, a property to a role, and an instance to an individual. We can equally
transpose logical statements from DL to FOL, and conversely, as long as the DL
fragment is always respected. In particular, we take advantage of the expressiv-
ity allowed by SHOIN , describing the following DL operators: ¬C (negation
of concepts), C u C (intersection or conjunction of concepts), C t C (union or
disjunction of concepts), ∃R.C (existential restriction), ∀R.C (universal restric-
tion), ≤ nR (at most restriction), ≥ nR (at least restriction). For instance, the
formula (1) becomes (3) and the formula (2) becomes (4) :

Short F ilm ≡ Film u ∃duration. ≤ 59 (3)

Biopic ≡ Film u ∃topic.Celebrity (4)

In a (complex) correspondence formula expressed in FOL, a variable may occur
in several entities in left and right operands. Intuitively, two classes referring
to the same single variable are bound and are first connected by a simple cor-
respondence (with a subsumption relation, otherwise there is no need for an
additional complex correspondence to characterise the entities involved). For in-
stance, the formulas (1) and (2) are consistent only if Court metrage v Film
and Biopic v Film, respectively. The use of DL in (4) requires to explicitly as-
sert the simple correspondence Biopic v Film first, as we do not know if Biopic
is a specialisation or rather a generalisation of Film or Celebrity otherwise.



2.2 Query patterns

A pattern pO targetting an ontology O is composed of an RDF graph which
is the prototype of a relevant family of queries. A pattern can be composed
of several subpatterns spi, such as pO = {sp1, sp2, ..., spn}. Subpatterns are
assigned minimal and maximal cardinalities, making these subgraphs optional or
repeatable when generating the final SPARQL query. Formally, a query pattern
can be defined as follows [12]:

Definition 2 (Query pattern). Let G be a graph and v a vertex of the graph,
we denote by G\v the graph deprived of the vertex v and all the arcs incident to
the vertex. A query pattern p is a triple (G,Q, SP ) such as :

– G is a RDF connected graph that describes the general structure of the pattern
and represents a family of requests;

– Q is a subset of elements in G, called qualifier elements; these are typical
of the pattern and will be taken into account during the association of the
user request to the pattern in question. A qualifier element is either a vertex
(class or data type), or an arc (object or data property) in G;

– SP is the set of subpatterns sp in p such that ∀sp = (SG, v, cardmin, cardmax) ∈
SP , we have:
• SG is a subgraph of G and v is a vertex of SG (and thus of G), such

as G\v is not connected (v is a joint vertex in G, also called junction
vertex) and admits SG\v as a connected component (i.e. all the vertices
in this connected component belong to the subpattern subpattern’s graph);

• At least one vertex or an arc of SG is a qualifier element;
• cardmin, cardmax ∈ N et 0 ≤ cardmin ≤ cardmax ; are respectively the

minimum and maximum cardinality of sp that define the optional and
repeatable characteristics of sp.

Figure 2.2 shows an example of a query pattern which deals with the events,
and the performers involved, where musical works have been performed (or con-
versely) with the corresponding artist(s) and release date. The pattern is com-
posed of three subpatterns named live, artist and date. All of them are optional,
and only the subpatterns live and artist are repeatable: it is considered that a
musical work can have only one release date, but a musical work may be the
work of several artists and can be performed many times.

3 Patterns rewriting approach

The rewriting approach takes as input a complex alignment AO→O′ and a set
P={pO1 ,...,pOn } of query patterns pOi , and outputs a set P ′={pO′

1 ,...,pO
′

n } of query

patterns pO
′

j . The intuition is that every subgraph from the input patterns has
potentially a (complex) correspondence associating its entities to entities in the
target ontology. We consider that the subpattern is the relevant unit of semantic
information constituting the patterns. Each subpattern is ideally replaced with



Fig. 1. Query pattern asking for events and their performers, where musical works
have been performed (or conversely), with the corresponding artist(s) and release date.

an equivalent subgraph corresponding to a logical statement relating concepts
and properties of the target ontology. This statement is the target part of the
correspondence, if any in the alignment, in which the source part matches the
initial subpattern. But the subpatterns and the correspondences in the alignment
may not have the same granularity (correspondences can be either simple or can
relate smaller subgraphs). Thus, we define an algorithm that is similar to a
Depth-First Search algorithm (DFS) for traversing and searching graph data
structures in the input query patterns. It starts at the largest subgraph, i.e. the
subpattern, and recursively explores its subgraphs (i.e. subpattern > RDF triples
> classes and properties), until a correspondence is found for the considered
subgraph (in which case, the target graph is written to the subpattern being
outputted) or a class or property is reached. If at the end of this process, there are
entities that have not been translated, the whole subpattern will be discarded1.
The operation is repeated for each subpattern in the input patterns.

The approach is inherently limited by the use of ontology alignment, which
is itself an incomplete process. The subpattern is the indivisible expression of a
need for information: it can be rewritten by chunks but if it is not fully rewritten
at the end of the process, it is discarded. Thus, the conservation of the semantics
of original patterns directly depends on the completeness of the input alignment
(coverage of the source ontology, quality of correspondences, etc.). We consider
that some loss of (semantic) information is acceptable, and that it can be filled
with other techniques (for instance, by interacting with the user). However,
it is out of the scope of this paper. Figure 3 illustrates the rewriting of the
pattern depicted in Figure 2.2 (with the input alignment given later in §4.3,
Table 1). The subpattern named live is rewritten to live’, following the complex
correspondence #6 in the alignment. The subpattern named artist is rewritten to
artist’, following the complex correspondence #2 in the alignment (in this case,
only the first term of the disjunction artist t author t creator t musicComposer
appears in the resulting subpattern, for the sake of simplicity and readability).

1In this case, the pattern is still connected, i.e. there is a chain connecting each pair
of vertices.



Finally, the subpattern named date could not be directly rewritten since there
is no correspondence for this subgraph. Instead, the property release date is
rewritten to releaseDate, following a simple correspondence, and the data type
xsd:date remains xsd:date.

Fig. 2. Example of query pattern rewriting.

4 Experiments and discussion

4.1 Data sets

SWIP provides two sets of query patterns, one for the MusicBrainz collection
described in terms of the Music ontology2 (containing 249 T Box entities), and
another for querying the ABox of the Cinema IRIT3 ontology (containing 300
T Box entities). We have carried out our experiments using the Music ontology
and DBpedia 3.84 ontology (containing 2213 entities), in order to rewrite query
patterns targeting MusicBrainz collection into patterns targeting DBpedia. The
music set of patterns is composed of 5 query patterns and 19 subpatterns.

4.2 Preliminary experiments

In a first series of experiments, we used a set of simple correspondences for rewrit-
ing patterns. These correspondences come from a merge of alignments generated

2http://musicontology.com/
3http://ontologies.alwaysdata.net/cinema
4http://wiki.dbpedia.org/Ontology?v=181z



by OAEI 2012 matching systems (the reader can refer to [7] for details). Over-
all, 67% of the entities in the Music ontology were covered in the alignment.
25 out of 60 entities in the query patterns for this ontology could be replaced
by a target entity (coverage of 41%). In terms of subpatterns, only 2 out of the
19 subpatterns could be fully rewritten using the alignment. Although we have
found a handmade (reference) alignment between Music and DBpedia ontolo-
gies5, we could not use it because it is mostly composed by correspondences
linking classes only, using subsumption relations, and few equivalences could be
inferred from them. Despite the fact that the quality of the alignment from the
matchers was not measured, these first experiments highlighted the limitations
in replacing individually the entities in the patterns. Nevertheless, we needed to
accurately assess this deficiency and to know to what extent we could rewrite
query patterns. It turned out that simple correspondences are not sufficient to
capture all the meaningful relations between entities of two related ontologies.

4.3 Complex correspondences

Very few systems are able to find complex correspondences. First, we tried the
tool described in [14], which finds complex correspondences using a set of pre-
defined patterns. Besides the two ontologies to align, this tool takes an alignment
as input. We used the tool on the pair Music-DBpedia, with (i) the handmade
alignment between Music and DBpedia ontologies, and (ii) the merged alignment
from the matchers used in the preliminary experiments (§4.2). In both cases, few
correct correspondences could be identified. We tried then the successor of this
tool described in [15], which benefits of natural language processing techniques
instead of requiring an input alignment, and we obtained similar results.

Hence, we manually created a set of 28 complex correspondences (along 11
simple ones) for the pair Music-DBpedia, guided by the query patterns for Mu-
sic6. A subset of them is presented in Table 1. The idea behind using complex
correspondences is that every subgraph pattern has potentially a (complex) cor-
respondence in the target ontology. Given that the subpattern is the relevant unit
of semantic information constituting the patterns, we isolated them, and for each
of them, we tried to find an equivalent logical statement relating concepts and
properties of the target ontology. For constructing the complex correspondence
set, we used as basis a set of simple correspondences (the left operand refers to an
entity of the Music ontology, and the right operand refers to an entity of the DB-
pedia ontology): MusicalManifestationvMusicalWork, MusicalWork≡Musical-
Work*, MusicArtist ≡ MusicalArtist*, Performance v Event, Performer ≡ Mu-
sicalArtist, foaf:Group A Band, MusicGroup ≡ Band*, SoloMusicArtist v Mu-
sicalArtist, Track v MusicalWork, Track ≡ Song, and Record v MusicalWork7.

For each correspondence, we identified the complex correspondence pat-
terns that characterise it, from the patterns proposed in the literature: Class

5http://knoesis.org/projects/BLOOMS/#Resources_for_Download
6The resulting alignment do not cover all possible correspondences between Music-

DBpedia, but a subset of them where entities appear in the query patterns.
7Correspondences with an asterisk were discovered using OAEI matchers.



#1 CAV
MusicalManifestation u ∃release type.album ≡ Album

#2 CAT ≡ OR
MusicManifestation u ∃foaf:maker.MusicArtist ≡
MusicalWork u (∃artist.owl:Thing t∃author.Person t ∃creator.Person t
∃musicComposer.MusicalArtist)

#3 CAV v CAT
MusicalManifestation u ∃release type.live v
MusicalWork u ∃recordedIn.PopulatedPlace

#4 CAV + CAT A CAT
MusicalManifestation u ∃release type.soundtrack u ∃composer.foaf:Agent A
Film u ∃musicComposer.MusicalArtist

#5 PC ≡ OR
MusicGroup u ∃bio:event(bio:Birth u ∃bio:date.xsd:dateTime) ≡
Band u (∃formationDate.xsd:date t ∃formationYear.xsd:gYear t
∃activeYearsStartYear.xsd:gYear)

#6 PC ≡ CAT(OR)
MusicalWork u ∃performed in(Performance u ∃performer.foaf:Agent) ≡
MusicalWork u ∃event(Event u (∃associatedMusicalArtist.MusicalArtist
t ∃associatedBand.Band))

#7 CAT ≡ CAT
Track u ∃duration.xsd:decimal ≡ MusicalWork u ∃runtime.Time

#8 CAT ≡ OR + CAT-1
foaf:Agent u ∃member of.foaf:Group ≡
Person u (∃bandMember.Band t ∃formerBandMember.Band)

#9 AND + PC ≡ AND(CAT-1)
Membership u (∃event:agent.foaf:Agent u ∃group.foaf:Group u ∃event:time.(event:
TemporalEntity u (∃tl:start.xsd:date u ∀ tl:end.¬xsd:date)) ≡
Person u (∃bandMember.Band u ∀ formerBandMember.¬Band)

#10 AND(PC) ≡ AND
Membership u ∃event:agent.foaf:Agent u ∃event:time.(event:TemporalEntity u
∃tl:start.xsd:date) ≡
Event u (∃pastMember.Person u ∃startDate.xsd:date)

#11 PC ≡ CAT
SoloMusicArtist u ∃bio:event(bio:Birth u ∃bio:date.xsd:dateTime) ≡
MusicalArtist u ∃birthDate.xsd:date

#12 CAT ≡ OR(CAT)
foaf:Agent u ∃collaborated with.foaf:Agent ≡
(Artist u ∃associatedAct.Artist) t (Person u ∃partner.Person)

Table 1. 12 out of 28 handmade complex correspondences between Music and DBpedia ontologies.

by Attribute Type [14] (CAT), Class by Inverse Attribute Type [14] (CAT-1),
Class by Attribute Value [14] (CAV), Attribute Value Restriction [18] (AVR),
equivalent to CAV, Property Chain [14] (PC), Aggregation [18] (AGR), equiv-
alent to PC, Inverse Property [15] (IP), Union [18] (OR), and Intersection
[18] (AND). Although no new pattern was discovered, stating that, for our
case, the patterns proposed in the literature cover all types of generated cor-
respondences, several of our correspondences are in fact compositions of them
(Table 1). For instance, the left operand in the correspondence #4 is an as-
sembly of the patterns CAV and CAT. In the scope of this paper, however,
we do not define any algebra which would describe how patterns can be com-
posed or associated to represent the structure of complex correspondences (def-
inition of basic properties and laws such as associativity, commutativity and
distributivity). We have also manually generated 52 multilingual complex cor-
respondences (along 13 simple correspondences) for the Cinema and DBpedia
ontologies. For instance, the correspondence expressing the relation between the
artists that are awarded the Cesar Award in Cinema (source ontology) and
DBpedia (target ontology) : Artiste u ∃estRecompenseA.CesarDuCinema ≡
Artist u ∃cesarAward(Award u ∃event.F ilmFestival).



4.4 Rewriting SPARQL queries and query patterns

From the set of complex correspondences for the pair Music-DBpedia and the
query patterns for Music, we applied our approach (§3) for rewriting Music pat-
terns in terms of the DBpedia vocabulary. Before rewriting patterns, we evalu-
ated the use of these correspondences for rewriting SPARQL queries. For doing
so, we defined a set of rules for translating a complex correspondence pattern
into RDF graph patterns (Table 2). These rules are intended to be used for
guiding the process of SPARQL rewriting. Following these rules, we managed to
rewrite the 25 first SPARQL queries from the benchmark training data in QALD
20138. The training data include 100 natural language questions for MusicBrainz
with the corresponding SPARQL queries, as well as the answers these queries
retrieve. The queries have been rewritten in order to interrogate DBpedia.

ID Formal pattern SPARQL rewriting rule

CAT A ≡ ∃R.B ?x a A → { ?x R B }
CAT-1 A ≡ B u ∃R-.T ?x a A → { ?x a B . ?y R ?x }
CAV A ≡ ∃R.{...} ?x a A → { ?x R ”...”ˆˆex:dataType }
AVR A ≡ B u ∃R.{...} ?x a A → { ?x a B . ?x R SomeValue . }
PC R ≡ P.(A u ∃Q) ?x R ?y → { ?x P A . A Q ?y }
IP R- v P ?x R ?y → ?y P ?x
OR A ≡ B u (∃R.T t ∃Q.T) ?x a A → {?x a B . {B R ?y} UNION {B Q ?z}}
AND A ≡ B u (∃R.T u ∃Q.T) ?x a A → {?x a B . ?x R ?y ; Q ?z .}

Table 2. Complex correspondence patterns and SPARQL rewriting rules.

As an example, consider the query in Table 3 asking if there are members of the
Ramones who are not named Ramone (question #25) over MusicBrainz, and the
same query rewritten for DBpedia. The MusicBrainz result answers false, while
the DBpedia result asserts the opposite. The DBpedia request is not less correct:
if we return the actual query solutions (SELECT) instead of testing whether or
not the query pattern has a solution (ASK), we find that Clem Burke in DB-
pedia was a member of The Ramones under the name “Elvis Ramone”, while
the MusicBrainz data set directly refers to him with this alias. In fact, both
sets of instances do not fully intersect and they are not necessarily/correctly
interlinked9. From this point of view, 18 of the 25 rewritten queries are cor-
rect and consistent with the queries for MusicBrainz: they do not necessarily
give the same results, but they do answer the same question. 3 of these 18 re-
sults give the same number of solutions with exactly the same literals. 5 out of
the 7 remaining results give no solution at all (no instance). And finally, the 2
last results are not fully correct since the complex correspondences ahead are not
correct themselves. For instance, MusicalManifestationu∃release type.live v
MusicalWork u ∃recordedIn.PopulatedP lace turns out to be erroneous since
the albums which have been recorded in a recording studio are equally selectable

8Open challenge on Multilingual Question Answering over Linked Data: http://
greententacle.techfak.uni-bielefeld.de/~cunger/qald/index.php?x=task1&q=3

9http://wiki.dbpedia.org/Interlinking?v=vn



within the property recordedIn: we wrongly thought it was reserved for live
performances only. Thus, these results allowed us to validate our complex cor-
respondences and remove those that prove to be incorrect.

ASK ASK
WHERE { WHERE {
?band foaf:name ‘Ramones’ . ?band foaf:name ‘Ramones’@en .
?artist foaf:name ?artistname . ?artist foaf:name ?artistname .
?artist mo:member of ?band . {?band dbo:bandMember ?artist}

UNION
{?band dbo:formerBandMember ?artist} .

FILTER (NOT regex(?artistname,“Ramone”)) FILTER (NOT regex(?artistname,“Ramone”))
} }
Table 3. DBpedia rewritten query (right) from MusicBrainz query (left). Namespace
prefix bindings were ommitted (dbo refers to dbpedia and mo to music).

Next, we rewrote the Music query patterns in terms of the DBpedia vocabu-
lary. Using the 11 simple correspondences and the 28 complex correspondences,
we achieved a rewriting percentage of 90% of the Music patterns: on the 19
subgraphs (subpatterns) identified in the patterns for Music, we were able to
transform 17 of them. For the Cinema patterns, we were able to rewrite 45 out
of 51 subpatterns from the Cinema IRIT query patterns. Then, the patterns
rewritten from Music were injected in the SWIP system along the DBpedia data
set, in order to demonstrate the relevance of rewriting query patterns in the whole
process. We managed to run five queries from QALD and originally intended to
MusicBrainz. The generated SPARQL queries are (semantically) correct as long
as (i) the correspondences involved do not apply any disjunction of terms, which
is not currently supported in SWIP (in this case, only the most likely term is
kept), and (ii) the source and target in the correspondences involved have the
same information level (basically, equivalence).

5 Related work

Rewriting query patterns using complex correspondences is the novel aspect of
this paper. With respect to complex correspondence generation, different ap-
proaches have emerged in the literature in the last years. A common approach is
based on complex correspondence patterns [18, 17, 14, 15] (§4.3). Walshe [19] pro-
poses refining elementary correspondences by identifying which correspondence
pattern best represents a given correspondence. Following a different strategy,
Qin et al. [13] propose an iterative process that combines terminological, struc-
tural, and instance-based matching approaches for mining frequent queries, from
which complex matching rules (represented in FOL) are generated. Nunes et al.
[10] present a two-phase instance-based technique for complex datatype property
matching, where the first phase identifies simple property matches and the second
one uses a genetic programming approach to detect complex matches. Recently,
Arnold [1] uses state-of-the-art matchers for generating initial correspondences



that are further (semi-automatically) enriched by using linguistic, structural
and background knowledge-based strategies. Although different strategies have
been proposed, very few matchers for generating complex correspondences are
available or use EDOAL, an expressive alignment language [3], for representing
them. With respect to query patterns rewriting, the problem can be seen, at a
lower level of abstraction, as a problem of SPARQL rewriting. Correndo et al.
[2] propose a set of SPARQL rewriting rules exploiting both (complex) ontology
alignments and entity co-reference resolution. Zheng et al. [20] propose to rewrite
SPARQL queries from different contexts, where context mappings provide the
articulation of the data semantics for the sources and receivers. Makris et al.
[9, 8] present the SPARQL-RW rewriting framework that applies a set of prede-
fined (complex) correspondences. They define a set of correspondence types that
are used as basis for the rewriting process (i.e., Class Expression, Object Prop-
erty Expression, Datatype Property, and Individual). However, the way the set
of complex correspondences is established is not described. Our naive approach
for rewriting query patterns is close to these SPARQL rewriting proposals in
the sense of using complex correspondences. One of the difficulties is the lack
of established ways for automatically identifying them. Although m:n complex
correspondences are proposed at conceptual level, few concrete examples are
available in the literature. Most of our correspondences are n:m. As most pro-
posals, we start from a set of (automatically) discovered simple correspondences.
Finally, our method is applied in an applicative context of rewriting patterns for
a question answering system over RDF data.

6 Conclusions and future work

This paper has discussed the use of complex correspondences for rewriting query
patterns, aiming at reusing query families across data sets that overlap. Although
we could not fully evaluate the rewriting process mainly due to the fact that
SWIP does not treat pattern disjunctions, we were able to validate our approach
on a subset of manually validated complex correspondences. This opens several
opportunities for future work. First, the structure of query patterns in SWIP
could evolve so that they match the structure of the complex correspondences
we have established. In particular, SWIP would benefit from the disjunction of
subpatterns or specification of instances in patterns. Second, we plan to represent
our complex correspondences using EDOAL. Third, we plan to formalise the
composition of complex correspondence patterns, which are thereby the building
blocks to obtain richer correspondences, following a grammar defining a set of
rules for rewriting logical statements in FOL or DL. The grammar must define
the properties of pattern precedence, transitivity, associativity, commutativity,
and distributivity. Finally, we plan to propose an approach for (multilingual)
complex correspondence generation, exploiting specially the ABox of ontologies.



References

1. P. Arnold. Semantic enrichment of ontology mappings: Detecting relation types
and complex correspondences. In 25th GI-Workshop on Foundations of Databases,
2013.

2. G. Correndo, M. Salvadores, I. Millard, H. Glaser, and N. Shadbolt. SPARQL
Query Rewriting for Implementing Data Integration over Linked Data. In 1st
International Workshop on Data Semantics (DataSem 2010), March 2010.

3. J. David, J. Euzenat, F. Scharffe, and C. Trojahn. The Alignment API 4.0. Se-
mantic Web, 2(1):3–10, 2011.

4. S. Elbassuoni and R. Blanco. Keyword search over rdf graphs. In Proceedings of the
20th ACM International Conference on Information and Knowledge Management,
CIKM ’11, pages 237–242. ACM, 2011.

5. S. Elbassuoni, M. Ramanath, R. Schenkel, and G. Weikum. Searching RDF Graphs
with SPARQL and Keywords. IEEE Data Eng. Bull., 33(1):16–24, 2010.

6. J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag, Berlin, Heidelberg,
2007.

7. P. Gillet, C. Trojahn, and O. Haemmerlé. Réécriture de patrons de requêtes à
l’aide d’alignements d’ontologies. In Atelier Qualité et Robustesse dans le Web de
Données, IC, 2013.

8. K. Makris, N. Bikakis, N. Gioldasis, and S. Christodoulakis. SPARQL-RW: trans-
parent query access over mapped RDF data sources. In 15th International Con-
ference on Extending Database Technology, pages 610–613. ACM, 2012.

9. K. Makris, N. Gioldasis, N. Bikakis, and S. Christodoulakis. Ontology mapping and
SPARQL rewriting for querying federated RDF data sources. In 2010 Conference
on On the Move to Meaningful Internet Systems, pages 1108–1117, 2010.

10. B. Nunes, A. Mera, M. Casanova, K. Breitman, and L. A. Leme. Complex Matching
of RDF Datatype Properties. In 6th Workshop on Ontology Matching, 2011.

11. C. Pradel, O. Haemmerlé, and N. Hernandez. A Semantic Web Interface Using
Patterns: The SWIP System. In Graph Structures for Knowledge Representation
and Reasoning, LNCS, pages 172–187. Springer Berlin Heidelberg, 2012.

12. C. Pradel, O. Haemmerlé, N. Hernandez, et al. Des patrons modulaires de requêtes
sparql dans le système swip. 23es Journées d’Ingénierie des Connaissances, 2012.

13. H. Qin, D. Dou, and P. LePendu. Discovering executable semantic mappings be-
tween ontologies. In OTM International Conference, pages 832–849, 2007.

14. D. Ritze, C. Meilicke, O. Sváb-Zamazal, and H. Stuckenschmidt. A pattern-based
ontology matching approach for detecting complex correspondences. In 4th Work-
shop on Ontology Matching, 2009.

15. D. Ritze, J. Völker, C. Meilicke, and O. Sváb-Zamazal. Linguistic analysis for
complex ontology matching. In 5th Workshop on Ontology Matching, 2010.

16. A. Russell and P. R. Smart. Nitelight: A graphical editor for sparql queries. In
Poster and Demo Session at the 7th International Semantic Web Conference, 2008.

17. F. Scharffe. Correspondence Patterns Representation. PhD thesis, University of
Innsbruck, Innsbruck, 2009.

18. F. Scharffe and D. Fensel. Correspondence patterns for ontology alignment. In
Knowledge Engineering: Practice and Patterns, pages 83–92. Springer, 2008.

19. B. Walshe. Identifying complex semantic matches. In 9th International Conference
on The Semantic Web: Research and Applications, pages 849–853, 2012.

20. X. Zheng, S. E. Madnick, and X. Li. SPARQL Query Mediation over RDF Data
Sources with Disparate Contexts. In WWW Workshop on Linked Data on the
Web, 2012.


