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Abstract. AgreementMakerLight (AML) is an automated ontology matching
framework based on element-level matching and the use of external resources
as background knowledge. This paper describes the configuration of AML for
the OAEI 2014 competition and discusses its results.
Our goal this year was broadening the scope of AML by delving into aspects such
as translation and structural matching, while reinforcing the key aspects behind
its success last year (i.e., element-level matching, the use of background knowl-
edge, and alignment repair).
AML’s participation in the OAEI 2014 was very successful, as it obtained the
highest F-measure in 6 of the 8 ontology matching tracks.

1 Presentation of the system

1.1 State, purpose, general statement

AgreementMakerLight (AML) is an automated ontology matching system derived from
AgreementMaker [1, 2] and developed to handle large ontology matching problems. It
combines the design principles of AgreementMaker (flexibility and extensibility) with a
strong focus on efficiency [6]. Furthermore, it draws on the knowledge accumulated in
AgreementMaker by reusing and adapting several of its components, but also includes
a growing number of novel components.
AML is primarily based on lexical matching techniques, with an emphasis on the use of
external resources as background knowledge. It also emphasizes alignment coherence,
featuring an improved alignment repair module.
While initially AML was mainly focused on the biomedical domain, we have striven
to expand its scope throughout the last year, and it is now a general-purpose ontol-
ogy matching system. We have also moved towards full automation by employing a
general-purpose core matching strategy complemented with an automated background
knowledge selection algorithm [5].

1.2 Specific techniques used

The AML workflow for the OAEI 2014 comprises nine different steps, as shown in
Figure 1: ontology loading and profiling, translation, baseline matching, background



knowledge matching, word and string matching, structural matching , property match-
ing, selection, and repair. The key differences from last year’s workflow are the intro-
duction of the translation and structural matching steps.
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Fig. 1. The AgreementMakerLight matching workflow for the OAEI 2014.
Steps in dark gray are conditional.

Ontology Loading & Profiling AML employs the OWL API [7] to read the input on-
tologies then retrieve the necessary information to populate its own data structures [6]:

– Class localNames, labels and synonym annotations are normalized and stored into
the Lexicon of the corresponding ontology. AML automatically derives new syn-
onyms for each name by removing leading and trailing stop words [12], and by
removing name sections within parenthesis.

– Property names, types, domains, and ranges are stored in the PropertyList of the
corresponding ontology.

– Relations between classes (including disjointness) and between properties are stored
in a global RelationshipMap.

Note that AML currently does not store or use comments, definitions, or instances.
After loading, the matching problem is profiled taking into account the size of the on-
tologies, their language(s), and the property/class ratio.

Translation AML features an automatic translation module based on Microsoftr
Translator. When there is no significant overlap between the language(s) of the input
ontologies, AML employs this module to translate the names of all classes and prop-
erties from the language(s) of the first ontology to those of the second and vice-versa.
The translation is done by querying Microsoft Translator for the full name (rather than
word-by-word). To improve performance, AML stores locally all translation results in
dictionary files, and queries the Translator only when no stored translation is found.



Baseline Matching AML employs an efficient weighted string-equivalence algorithm,
the Lexical Matcher [6], to obtain a baseline class alignment between the input ontolo-
gies. The Lexical Matcher has been updated to handle multi-language ontologies, by
matching only class names in the same language.

Background Knowledge Matching AML has available four sources of background
knowledge which can be used as mediators between the input ontologies: the Uber
Anatomy Ontology (Uberon) [9], the Human Disease Ontology (DOID) [14], the Med-
ical Subject Headings (MeSH) [10], and the WordNet [8].
The WordNet is only used for small English language ontologies, as it is prone to pro-
duce erroneous mappings in other settings. It is used through the JAWS API 1 and with
the Lexical Matcher. The remaining three background knowledge sources are tested
in all non-small single-language problems, by measuring their mapping gain over the
baseline alignment [5]. When their mapping gain is very high (≥20%), they are used to
extend the Lexicons of the input ontologies [12]; otherwise, when it is above the mini-
mum threshold (2%) their alignment is merged with the baseline alignment.
Uberon and DOID are both used in OWL format, and each has an additional table of
pre-processed cross-references (in a text file). They can be used directly through the
cross-references or with the Lexical Matcher. MeSH is used as a stored Lexicon file,
which was produced by parsing the MeSH XML file, and is used only with the Lexical
Matcher.

Word & String Matching To further extend the alignment, AML employs a word-
based similarity algorithm (the Word Matcher) and a string similarity algorithm (the
Parametric String Matcher) [6]. The former is not used for very large ontologies, be-
cause it is error prone. The latter is used globally for small ontologies, but only locally
for larger ones as it is time-intensive.
For small ontologies, AML also employs the new Multi-Word Matcher, which matches
closely related multi-word names that have matching words and/or words with common
WordNet synonyms or close hypernyms.

Structural Matching For small and medium-sized ontologies, AML also employs a
structural matching algorithm, called Neighbor Similarity Matcher, that is analogous to
AgreementMaker’s Descendants Similarity Inheritance algorithm [4]. This algorithm
computes similarity between two classes by propagating the similarity of their matched
ancestors and descendants, using a weighting factor to account for distance.

Property Matching When the input ontologies have a high property/class ratio, AML
also employs the PropertyMatcher. This algorithm first ensures that properties have the
same type and corresponding/matching domains and ranges. If they do, it compares the
properties’ names by doing a full-name match and computing word similarity, string
similarity, and WordNet similarity.

1 http://lyle.smu.edu/ tspell/jaws/



Selection AML employs a greedy selection algorithm, the Ranked Selector [6], to re-
duce the cardinality of the alignment. Depending on the size of the input ontologies, one
of three selection strategies is used: strict, permissive, or hybrid. In strict selection, no
concurrent mappings (i.e., different mappings for the same class/property) are allowed
and a strict 1-to-1 alignment is produced; in permissive selection, concurrent mappings
are allowed if their similarity score is exactly the same; in hybrid selection, up to two
mappings per class are allowed above 75% similarity, and permissive selection is ap-
plied below this threshold.
For very large ontologies, AML employs a selection variant that consists on combining
the (lexical) similarity between the classes with their structural similarity, prior to per-
forming ranked selection. This strategy enables AML to select mappings that “fit in”
structurally over those that are outliers but have a high lexical similarity.
In the interactive matching track, AML employs an interactive selection algorithm
which asks the user for feedback about mappings which are below a high similarity
threshold (70%) and have a significant variance (with regard to similarity) between
matching algorithms. The algorithm stops when a given threshold of negative answers
is reached. This algorithm is based on AgreementMaker’s user feedback module [3].

Repair AML employs a heuristic repair algorithm to ensure that the final alignment is
coherent [13].
For the interactive matching track, AML employs an interactive variant of this algo-
rithm, wherein the user is asked for feedback about the mappings selected for removal.

1.3 Adaptations made for the evaluation

The only adaptations made for the evaluation were the preprocessing of cross-references
from Uberon and DOID for use in the Anatomy and Large Biomedical Ontologies
tracks (due to namespace differences), and the precomputing of translations for the
Multifarm track (due to Microsoftr Translator’s query limit).

1.4 Link to the system and parameters file

AML is an open source ontology matching system and is available through GitHub
(https://github.com/AgreementMakerLight).

1.5 Link to the set of provided alignments

The alignments generated by AML for the OAEI 2014 are available at the SOMER
project page (http://somer.fc.ul.pt/).

2 Results

2.1 Anatomy

AML had the highest F-measure and recall this year (and all time) in this track, reg-
istering a slight improvement over last year’s result (of 0.2%). This improvement was



Table 1. AgreementMakerLight global results on all the OAEI 2014 tracks.

Track Precision Recall F-Measure Run Time
Anatomy 95.6% 93.2% 94.4% 28 sec
Interactive Matching 91.3% 73.5% 80.1% 19 sec

Benchmark
biblio 92% 39% 55% 49 sec
cose 46% 46% 46% 140 sec
dog 98% 58% 73% 1506 sec

Conference
Reference 1 85% 64% 73%

14 sec
Reference 2 80% 58% 67%

Large Biomedical Ontologies
Average 90.6% 75.2% 81.9% 307 sec
FMA-NCI small 96.0% 89.9% 92.8% 27 sec
FMA-SNOMED small 92.6% 74.2% 82.4% 126 sec
SNOMED-NCI small 91.7% 72.4% 80.9% 831 sec
FMA-NCI whole 83.2% 85.6% 84.4% 112 sec
FMA-SNOMED whole 89.1% 64.7% 74.9% 251 sec
SNOMED-NCI whole 91.2% 64.5% 75.6% 497 sec

Library
New OWL 82.4% 77.8% 80.0% 68 sec
Old OWL 71.6% 74.8% 73.1% 71 sec

Multifarm
Different Ontologies 57% 53% 54%

8 min
Same Ontologies 95% 48% 62%

Ontology Alignment for Query Answering
Original Reference 72.2% 69.4% 70.4%

N/A
Repaired Reference 70.1% 69.4% 69.1%

mainly due to the addition of MeSH as a background knowledge source.

2.2 Benchmark

AML had a good performance in dog, ranking third in F-measure, but average perfor-
mances in the other two test suites. This difference is due to the fact that AML does not
handle ontology instances, which are present in the other two test suites, but not in dog.

2.3 Conference

AML ranked first in F-measure and recall, and second in precision this year, with a
considerable improvement (3% F-measure) over last year’s results. This improvement
is due to the refinements in the Word and String Matching step.



2.4 Interactive Matching

AML ranked first in F-measure, recall, and precision this year, with a considerable im-
provement (7.2% F-measure) over last year’s result. This improvement is partially due
to the (non-interactive) refinements in the Word and String Matching step, but mainly
due to the refinement of the interactive selection algorithm. The latter is evidenced by
the fact that the difference between AML’s interactive and non-interactive performance
increased since last year (from 3 to 7.1% in F-measure) while the number of user inter-
actions was approximately the same.

2.5 Large Biomedical Ontologies

AML had the highest F-measure in all six tasks this year, and the highest F-measure of
all time in four of them. It improved substantially in all tasks, thanks to the addition of
new background knowledge sources (MeSH and DOID) and the refined selection step.

2.6 Library

AML ranked first in F-measure, precision and recall in this track, having the highest
F-measure of all time when using the new OWL conversion of the Library thesauri.
AML’s F-measure using the old OWL conversion was approximately the same as last
year, but it had a higher precision and a lower recall due to a more stringent selection
step. The improvement when using the new OWL conversion is due to the conversion’s
differentiation of skos:altLabel and skos:prefLabel. This effectively enables AML’s lex-
ical weighting scheme, which greatly improves its ability to score and select mappings.

2.7 Multifarm

AML had the highest F-measure and recall in both modalities of this track this year
(and the highest F-measure of all time) and also the highest precision in matching same
ontologies. These results show that, while simple, AML’s new translation module is ef-
fective. The improvement over last year was dramatic, as last year AML did not perform
translation.

2.8 Ontology Alignment for Query Answering

AML ranked second and third in F-measure in this new track, when evaluated on the
original and repaired reference alignment respectively. While good, these results do
not reflect the fact that AML produced the best set of alignments for the Conference
ontologies used in this track, as the number of queries performed was too small to be
representative.



3 General comments

3.1 Comments on the results

AML was very successful in this year’s evaluation, ranking first in F-measure in 6 of the
8 ontology matching tasks. Furthermore, AML improved substantially over last year’s
evaluation, overcoming several of its limitations. Throughout the past year, we have
striven to make AML a more complete ontology matching system while maintaining a
strong emphasis on efficiency, which is accurately depicted in the results.

3.2 Discussions on the way to improve the proposed system

The one key feature still missing from AML is handling (and matching) ontology in-
stances, so this is the aspect where it could improve the most. We are also interested in
enabling AML to read SKOS thesauri, to broaden its applicability.

3.3 Comments on the OAEI test cases

This year’s Large Biomedical Ontologies reference alignments marks a significant im-
provement over previous years, as the use of a ‘soft’ repair (where mappings are flagged
rather than removed) makes the evaluation less biased [11].
Currently, our main concern about the evaluation is the (in)completeness of some of the
reference alignments, particularly in the Large Biomedical Ontologies and (to a lesser
degree) Anatomy tracks. Upon analyzing the alignment produced by AML for these
tracks, we observed that many of the false positives were in fact correct mappings that
were absent from the reference alignment. Incomplete reference alignments undermine
OAEI’s evaluation effort, so albeit cumbersome, completing them is paramount. On our
part, we will share with the track organizers the false positive mappings found by AML
that we deem to be true positives, upon a more extensive analysis.
We would also like to comment on the fact that the Conference track’s reference align-
ment 1 includes many mappings that are apparently erroneous (as they were removed
upon creating reference alignment 2). This is evidenced by the considerable drop in
precision between references 1 and 2 observed for all systems. While we see the merit
in a blind evaluation, we would expect that, if a partial reference alignment is provided
to systems, it be fully correct. This is especially relevant given that the reference align-
ment 1 is used in several other OAEI tracks.
Finally, while we recognize the importance of evaluating ontology alignment applica-
tions, as per the new Query Answering track, we hope that in subsequent OAEI editions
this evaluation be more representative of the underlying alignments.

4 Conclusion

AML’s OAEI 2014 participation was a success, as it ranked first in F-measure in 6 of the
8 ontology matching tracks. This success reflects the effort put into the development of
AML throughout the last year, which focused on increasing efficiency and automation,
and particularly on expanding AML’s scope.
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