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Abstract. We think of match as an operator that takes two graph-like structures 
(e.g., database schemas or ontologies) and produces a mapping between ele-
ments of the two graphs that correspond semantically to each other. The goal of 
this paper is to propose a new approach to matching, called semantic matching. 
As from its name, in semantic matching the key intuition is to exploit the 
model-theoretic information, which is codified in the nodes and the structure of 
graphs. The contributions of this paper are (i) a rational reconstruction of the 
major matching problems and their articulation in terms of the more generic 
problem of matching graphs; (ii) the identification of semantic matching as a 
new approach for performing generic matching; and (iii) a proposal of imple-
menting semantic matching by testing propositional satisfiability. 

1   Introduction 

The progress of information and communication technologies has made accessible a 
large amount of information stored in different application-specific databases and 
web sites. The number of different information resources is rapidly increasing, and 
the problem of semantic heterogeneity is becoming more and more severe, see for 
instance [12], [20], [10], [11], [3]. One proposed solution is matching. Match is an 
operator that takes two graph-like structures (e.g., database schemas or ontologies) 
and produces a mapping between elements of the two graphs that correspond seman-
tically to each other. So far, with the noticeable exception of [19], the key intuition 
underlying all the approaches to matching has been to map labels (of nodes) and to 
look for similarity (between labels) using syntax driven techniques and syntactic 
similarity measures; see for instance [9], [14]. Thus for example, some of the most 
used techniques look for common substrings (e.g., ″phone″ and ″telephone″) or for 
strings with similar soundex (e.g., ″4U″ and ″for you″) or expand abbreviations (e.g., 
″P.O″ and ″Post Office″). We say that all these approaches are different variations of 
syntactic matching. In syntactic matching semantics are not analyzed directly, but 
semantic correspondences are searched for only on the basis of syntactic features.  

In this paper we propose a novel approach, called semantic matching, with the fol-
lowing main features: 
• We search for semantic correspondences by mapping meanings (concepts), and not 

labels, as in syntactic matching. As the rest of the paper makes clearer, when map-
ping concepts, it is not sufficient to consider the meanings of labels of the nodes, 
but also the positions that the nodes have in the graph. 



• We use semantic similarity relations between elements (concepts) instead of syn-
tactic similarity relations. In particular, we consider relations, which relate the ex-
tensions of the concepts under consideration (for instance, more/less general rela-
tions). 

The contributions of this paper are (i) a rational reconstruction of the major match-
ing problems and their articulation in terms of the more generic problem of matching 
graphs; (ii) the identification of semantic matching as a new approach for performing 
generic matching; and (iii) a proposal of using a decider for propositional satisfiabil-
ity (SAT) as a possible way of implementing semantic matching. The algorithm pro-
posed works only on Directed Acyclic Graphs (DAG’s) and is-a links. It is important 
to notice that SAT deciders are correct and complete decision procedures for proposi-
tional logics. Using SAT allows us to find only and all possible mappings between 
elements. This is another major advantage over syntactic matching approaches, which 
are based on heuristics. The SAT-based algorithm discussed in this paper is a minor 
modification/extension of the work described in [19]. 

The rest of the paper is organized as follows. Section 2 introduces some well-
known matching problems and shows how they can be stated in terms of the generic 
problem of matching graphs. Section 3 defines the notion of matching and discusses 
the essence of semantic matching. Section 4 provides guidelines to the implementa-
tion of semantic matching. Section 5 overviews the related work. Section 6 reports 
some conclusions. 

2   Matching Problems  

Major data and conceptual models representing information sources across the WWW 
are database schemas, XML schemas, and ontologies. Let us discuss them in detail. 

2.1 Relational DB schemas 

Let us consider the hypothetical relational database (RDB) BANK presented in Figure 
1, storing information about the location of branches and of the staff that works at the 
BANK.  
 

BRANCH 
BN Street City Zip 
B8 Piazza Venezia Trento 38100 
B2 Piazza Cordusio Milano 20123 

STAFF 
SN F_Name L_Name Position Salary BN 
S31 John Dow CFO 170 B2 
S27 Eric  O’Neill CTO 130 B8 

Fig. 1. RDB BANK 



We can represent the schema and data instances of the above database as a graph in 
two possible ways. In the first case, starting from the name (root), the schema is parti-
tioned into relations and further down into attributes and data instances. See Figure 2. 
Arcs of Level 1 encode relations; arcs of Level 2 stand for attributes, and arcs of 
Level 3 specify data instances. Blank nodes stand for primary keys. Blank nodes with 
dashed circles stand for foreign keys. Notice that we know in advance that the maxi-
mum height of the tree is 3. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Tree representation 1 of the RDB BANK 

In the second approach, as from [5], starting from the root, a database is parti-
tioned into relations, then into tuples, and finally into attributes and data instances. 
See Figure 3. For lack of space not all attributes and their identifiers are presented in 
the diagram. Notice that the maximum height of the tree is 4.  

The information about the structure of the database resides only at arcs’  labels. 
Dashed arcs stand for primary keys. R1 and R2 denote relations of the database 
BANK. ROOT.RI.TJ.AK is a path to the K-th attribute of the J-th tuple of the I-th 
relation from the root of the tree. Data instances are presented as arcs at Level 4. 
Thus, the instances of the element BRANCH are represented by tuples: (″B8″, ″Pi-
azza Venezia″, ″Trento″, ″38100″) and (″B2″, ″Piazza Cordusio″, ″Milano″, 
″20123″). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Tree representation 2 of the RDB BANK 
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Which of the two representations is more preferable depends on the concrete task, 
but its worth to note that it is always possible to transform one model into another. 

Database schemas are seldom trees. If referential constraints are taken into ac-
count, schemas become DAGs. If we further consider recursive references we have 
cycles, see for example Figure 4. Referential constraints are shown as dashed arrows. 
Bold arrows represent recursive references, which appear if, for instance, we add to 
the relation STAFF the attribute Manager that expresses administrative relationships 
between employees. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Graph representation of the RDB BANK 

2.2 OODB schemas 

Let us rebuild the relational database BANK example in terms of an object-oriented 
approach. Now, BANK consists of the three classes, expressing the same data as 
above: 

BRANCH(Street, City, Zip) 
PERSON(F_Name, L_Name) 
STAFF:PERSON(Position, Salary, Manager). 

A graph representation of the given OODB schema is shown in Figure 5. Arcs with 
blank arrows stand for the use case generalization; dashed arrows play notationally 
the same role as associations in UML. 
 

 
 
 
 
 
 
 
 

Fig. 5. Digraph representation of the OODB BANK 

The object-oriented data model captures more semantics than the relational data 
model. It explicitly expresses subsumption relations between elements, and admits 
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special types of arcs for part/whole relationships in terms of aggregation and compo-
sition.  

2.3 XML schemas  

Neither the OO data model, nor the relational data model captures all the features of 
semistructured or unstructured data [6]. Semistructured data don’ t possess regular 
structure; the structure could be partial or even implicit. Missing or duplicated fields 
are allowed. Semistructured data could be schemaless, or have a schema that poses 
only loose constraints on data. Typical examples are markup languages, e.g. HTML 
or XML.  

XML schemas can be represented as DAGs. The graph in Figure 2 could also be 
obtained from an XML schema. Often, XML schemas represent hierarchical data 
models. In this case the only relationships between the elements are {is-a}. A DAG is 
obtained through the ID/IDREF mechanism. Attributes in XML are used to represent 
extra information about data. There are no strict rules telling us when data should be 
represented as elements, or as attributes. 

2.4 Concept Hierarchies 

A concept hierarchy is a way of defining a conceptualization of an application do-
main in terms of concepts and relationships expressed in a formal language. Concept 
hierarchies usually support {is-a} relations. Traditional examples of concept hierar-
chies are classifications, for instance, Yahoo and Google electronic catalogs. Figure 6 
presents a part of Google web directory devoted to business. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Google web directory 

The concept hierarchy shown in Figure 6 consists of 11 concepts, and 10 subsump-
tion relations, one per arc. 

2.5 Ontologies  

By an ontology we mean here a way of defining a conceptualization of an application 
domain in terms of concepts, attributes, and relations expressed in a formal language. 
Relations can be defined by the user, but there are some pre-defined relationships 
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with known semantics, i.e., {is-a; part-of; instance-of}. A concept hierarchy is an 
ontology without attributes and only with {is-a} relations between elements.  

One example of ontology can be constructed by complicating the concept hierar-
chy shown in Figure 6, by adding attributes to the concept Association, see Figure 7. 
Attributes of the concept Associations are BN, City, Street, Zip, while data instances 
are B8 and B2. Data instances have fixed attributes values: instance B8 has BN=″B8″, 
City=″Trento″, Street=″Piazza Venezia″, etc.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Example of ontology Business 

3 Matching 

All the data and conceptual models discussed in the previous section can be repre-
sented as graphs. Therefore, the problem of matching heterogeneous and autonomous 
information resources can be decomposed in two steps:  

1. extract graphs from the data or conceptual models,  
2. match the resulting graphs.  

Notice that this allows for the statement and solution of a more generic matching 
problem, very much along the lines of what done in Cupid [14], and COMA [9]. 
However, as already discussed in some detail in Section 2, each of the five matching 
problems presented there, has different properties and it is still an open problem 
whether we will be able to develop a general purpose matcher, and exploit most 
(all?) the problem and domain dependent analysis in step (1). 

Let us define the notion of matching graphs more precisely. Mapping element is a 
4-tuple < mID, Ni

1, Nj
2, R >, i=1...h; j=1..k; where mID is a unique identifier of the 

given mapping element; Ni
1 is the i-th node of the first graph, h is the number of 

nodes in the first graph; Nj
2 is the j-th node of the second graph, k is the number of 
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nodes in the second graph; and R specifies a similarity relation of the given nodes. A 
Mapping is a set of mapping elements. Matching is the process of discovering map-
pings between two graphs through the application of a matching algorithm. There 
exist two approaches to graph matching, namely exact matching and inexact or ap-
proximate matching, see for instance [21]. Both of them can be stated as subgraph 
matching problems: find all occurrences of a pattern graph P of m nodes as a sub-
graph of a graph G of n nodes, m≤ n. In the case of exact matching we look for sub-
graphs S of G that are identical to P. In inexact matching some errors are acceptable. 
For obvious reasons we are interested in inexact matching.  

We classify matching into syntactic and semantic matching depending on how 
matching elements are computed and on the kind of similarity relation R used. 
• In syntactic matching the key intuition is to map labels (of nodes) and to look for 

the similarity using syntax driven techniques and syntactic similarity measures. 
Thus, in the case of syntactic matching, mapping elements are computed as 4-
tuples < mID, Li

1, L
j
2, R >, where Li

1 is the label at the i-th node of the first graph; 
Lj

2 is the label at the j-th node of the second graph; and R specifies a similarity re-
lation in the form of a coefficient, which measures the similarity between the la-
bels of the given nodes. Typical examples of R are coefficients in [0,1], for in-
stance, similarity coefficients [14]. Similarity coefficients usually measure the 
closeness between the two elements linguistically and structurally. For instance, 
based on linguistic analysis, the similarity coefficient between elements "tele-
phone" and "phone" from the two hypothetical schemas could be 0,7. 

• As from its name, in semantic matching the key intuition is to map meanings (con-
cepts). Thus, in the case of semantic matching, mapping elements are computed as 
4-tuples < mID, Ci

1, C
j
2, R >, where Ci

1 is the concept of the i-th node of the first 
graph; Cj

2 is the concept of the j-th node of the second graph; and R specifies a 
similarity relation in the form of a semantic relation between the extensions of 
concepts at the given nodes. Possible R’ s between nodes are equality (=), overlap-
ping (∩), mismatch (⊥), or more general/specific (⊆, ⊇).  

 
 
 
 
 
 
 

Fig. 8. Matching problems 
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These ideas are schematically represented in Figure 8. It is important to notice that 
all past approaches to matching we are aware of, with the exception of [19], perform 
syntactic matching.  

One of the key differences between syntactic and semantic matching is that in syn-
tactic matching, when we match two nodes, the meaning that we (implicitly) attach to 
them depends only on their labels, independently of their position in the graph. In 
semantic matching, instead, when we match two nodes, the concepts we analyse de-
pend not only on the concept attached to the node (the concept denoted by the label of 
the node), but also on the position of the node in the graph. Let us consider the exam-
ple in Figure 9. Numbers in circles are the unique identifiers of the nodes under con-
sideration. A stands for the label at a node; CA stands for the concept denoted by A; Ci 
stands for the concept at the node i (in the following we sometimes confuse concepts 
with their extensions). 
 

 
 
 
 
 

Fig. 9. Syntactic vs. semantic matching 

Let us consider for instance, the analysis carried out when the node numbered 5 is 
submitted to matching (against a node in another graph). In syntactic matching the 
matcher tries to match the label at node 5, namely C. In semantic matching, instead, 
the matcher tries to match the concept at node 5, namely C5, which is that subset of 
the extension of CA that is also in the extension of CC. Thus, C5 = CA ∩ CC. A seman-
tic matcher will therefore try to match CA ∩ CC and not (!) C.  

Let us consider some more examples, which make the consequences of the obser-
vation described in the previous paragraph clearer. For any example we also report 
the results produced by the state of the art matcher, Cupid [14], which exploits very 
sophisticated syntactic matching techniques. Notationally, in order to keep track of 
the graph we refer to we index nodes, labels, concepts and their extensions with the 
graph number (which is “1”  for the graph on the left and “2”  for the graph on the 
right). Thus we have, for instance, A1, 51, CA1, C51. 

Analysis of siblings. Let us consider Figure 10. Structurally the graphs shown in 
Figure 10 differ in the order of siblings. Suppose that we want to match node 51 with 
node 22.  
 
 
 
 
 

Fig. 10. Analysis of siblings. Case 1 
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Cupid correctly processes this situation, and as a result, the similarity coefficient 
between labels at the given nodes equals to 0,8. This is because A1=A2, C1=C2 and we 
have the same structures on both sides. A semantic matching approach compares 
concepts CA1 ∩ CC1 with CA1 ∩ CC1 and produces C51 = C22. 

Analysis of ancestors. Let us consider Figure 11. Suppose that we want to match 
nodes 51 and 12. 
 
 
 
 
 
 

Fig. 11. Analysis of ancestors. Case 1 

Cupid does not find a similarity coefficient between the nodes under consideration, 
due to the significant differences in structure of the given graphs. In semantic match-
ing, the concept denoted by the label at node 51 is CC1, while the concept at node 51 is 
C51= CA1 ∩ CC1. The concept at the node 12 is C12 = CC2. By comparing the concepts de-
noted by the labels at nodes 51 and 12 we have that, being identical, they denote the 
same concept, namely CC1=CC2. Thus, the concept at node 51 is a subset of the concept 
at node 12, namely C51 ⊆ C12. 

Let us complicate the example shown in Figure 11 by allowing for an arbitrary dis-
tance between ancestors, see Figure 12. The asterisk means that an arbitrary number 
of nodes are allowed between nodes 12 and 52. Suppose that we want to match nodes 
51 and 52. 

 
 
 
 
 
 
 
 
 

Fig. 12. Analysis of ancestors. Case 2 

Cupid finds out that the similarity coefficient between labels C1 and C2 is 0,86. 
This is because of the identity of labels (A1=A2, C1=C2), and due to the fact that nodes 
51 and 52 are leaves. Notice how Cupid treats very differently the two situations repre-
sented here and in the example above, even if, from a semantic point of view, they are 
similar. Following semantic matching, the concept at node 51 is C51 = CA1 ∩CC1; while 
the concept at node 52 is C52 = CA2 ∩*∩ CC2. Since we have that CA1= CA2 and CC1= CC2, 
then C52 ⊆ C51. 

Enriched analysis of siblings. Suppose that we want to match nodes 21 and 22, see 
Figure 13. 
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Fig. 13. Analysis of siblings. Case 2. 

Cupid without thesaurus doesn’ t find a match; with the use of thesaurus it finds out 
that the similarity coefficient between nodes with labels Benelux1 and Belgium2 is 
0,68. This is mainly because of the entry in the thesaurus specifying Belgium as a part 
of Benelux, and due to the fact that the nodes with labels Benelux1 and Belgium2 are 
leaves. Following semantic matching, both concepts CBenelux1 and CBelgium2 are subsets of 
the concept CWorld1,2. Let us suppose that an oracle, for instance WordNet, states that 
Benelux is a name standing for Belgium, Netherlands and Luxembourg. Therefore, we 
treat C21 in Figure 13 as CBenelux1 ∩ CNetherlands1 ∩ CLuxembourg1 =CBelgium1. Thus, C21 = C22.  

Analysis of attributes. Let us consider Figure 14. On the left we have a graph, which 
represents an ontology World, where State and Square are attributes of the concept 
Europe. State has two sets of items corresponding to Italy and Belgium. On the right 
we have a graph, which represents the concept hierarchy World, where the concept 
Italy is populated with a set of items about Italy. Attributes can be matched with at-
tributes, but also with concepts. Suppose that we want to match nodes 71 and 42. 

 
 
 

 
 
 
 
 
 
 
 

 

 

 

Fig. 14. Analysis of attributes 

Cupid does not find a match, due to the significant differences in structure of the 
given graphs. Following semantic matching, in our case, we can notice that we can 
substitute the path Europe1:State1:Italy1 with Italy1 (by taking the proper subset of 
items relating to Italy) and matching it with Italy2. In this case we obtain C71 = C42 
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4 Implementing Semantic Matching 

There are two levels of granularity while performing semantic (and also syntactic 
matching) matching: element-level and structure-level. Element-level matching tech-
niques compute mapping elements between individual labels/concepts at nodes; struc-
ture-level techniques compute mapping elements between subgraphs. 

4.1 Element-level Semantic Matching 

Element-level semantic techniques analyze individual labels/concepts at nodes. At the 
element-level we can exploit all the techniques discussed in the literature, see for 
instance [9], [15], [18]. The main difference here is that, instead of a syntactic simi-
larity measure, these techniques must be modified to return a semantic relation R, as 
defined in Section 3.  

We distinguish between weak semantics and strong semantics element-level tech-
niques. Weak semantics techniques are syntax driven techniques: examples are tech-
niques, which consider labels as strings, or analyze data types, or soundex of schema 
elements. Let us consider some examples. 

Analysis of strings. String analysis looks for common prefixes or suffixes and calcu-
lates the distance between two strings. For example, the fact that the string "phone" is 
a substring of the string "telephone" can be used to infer that "phone" and "telephone" 
are synonyms. Before analyzing strings, a matcher could perform some preliminary 
parsing, e.g., extract tokens, expand abbreviations, delete articles and then match 
tokens. The analysis of strings discovers only equality between concepts. 

Analysis of data types. These techniques analyze the data types of the elements to be 
compared and are usually performed in combination with string analysis. For exam-
ple, the elements "phone" and "telephone" are supposed to have the same data type, 
namely "string" and therefore can be found equal. However, "phone" could also be 
specified as an "integer" data type. In this case a mismatch is found. As another ex-
ample the integer "Quantity" is found to be a subset of the real "Qty". This kind of 
analysis can produce any kind of semantic relation. 

Analysis of soundex. These techniques analyze elements’  names from how they 
sound. For example, elements "for you" and "4 U" are different in spelling, but simi-
lar in soundex. This analysis can discover only equality between concepts. 

Strong semantics techniques exploit, at the element- level, the semantics of labels. 
These techniques are based on the use of tools, which explicitly codify semantic in-
formation, e.g. thesauruses [14], WordNet [17] or combinations of them [7]. Notice 
that these techniques are also used in syntactic matching. In this latter case, however, 
the semantic information is lost before moving to structure-level matching and ap-
proximately codified in syntactic relations. 

Precompiled thesaurus. A precompiled thesaurus usually stores entries with syno-
nym and hypernym relations. For example, the elements "e-mail" and "email" are 
treated as synonyms from the thesaurus look up: syn key - "e-mail:email = syn". Pre-
compiled thesauruses (most of them) identify equivalence and more general/specific 
relations. In some cases domain ontologies are used as precompiled thesauruses [16]. 



WordNet. WordNet is an electronic lexical database for English (and other lan-
guages), where various senses (namely, possible meanings of a word or expression) 
of words are put together into sets of synonyms (synsets). Synsets in turn are organ-
ized as hierarchy. Following [19] we can define the semantic relations in terms of 
senses. Equality: one concept is equal to another if there is at least one sense of the 
first concept, which is a synonym of the second. Overlapping: one concept is over-
lapped with the other if there are some senses in common. Mismatch: two concepts 
are mismatched if they have no sense in common. More general / specific: One con-
cept is more general than the other iff there exists at least one sense of the first con-
cept that has a sense of the other as a hyponym or as a meronym. One concept is less 
general than the other iff there exists at least one sense of the first concept that has a 
sense of the other concept as a hypernym or as a holonym. For example, according to 
WordNet, the concept "hat" is a holonym for the concept "brim", which means that 
"brim" is less general than "hat". 

4.2. Structure-level Semantic Matching 

The approach we propose is to translate the matching problem, namely the two 
graphs and our mapping queries into a propositional formula and then to check it for 
its validity. By mapping query we mean here the pair of nodes that we think will 
match and the semantic relation between them. In the following we show how, lim-
ited to the case of DAG’s and is-a hierarchies, we can check validity by using SAT. 
Notice that SAT deciders are correct and complete decision procedures for proposi-
tional satisfiability and therefore will exhaustively check for all possible mappings. 
Being complete, they automatically implement all the examples described in the pre-
vious section, and more. This is another advantage over syntactic matching, whose 
existing implementations are based only on heuristics. 

Our SAT based approach to semantic matching incorporates six steps. We describe 
below its intended behavior by running these six steps on the example shown in Fig-
ure 11 and by matching nodes 51 and 12 (steps 2-5 are taken from [19]). 
1. Extract the two graphs. Notice that during this step, in the case of DB, XML or 

OODB schemas, it is necessary to extract useful semantic information, for instance 
in the form of ontologies. There are various techniques for doing this, see for in-
stance [16]. The result is the graph in Figure 11. 

2. Compute element-level semantic matching. For each node, compute semantic 
relations holding among all the concepts denoted by labels at nodes under consid-
eration. In this case CA1 has no semantic relation with CC2 while we have that CC1 = 
CC2. 

3. Compute concepts at nodes. Starting from the root of the graph, attach to each 
node the concepts of all the nodes above it. Thus, we attach C11 = CA1 to node 11; C51 

= CA1∩CC1 to node 51; C12 = CC2 to node 12 in the is-a hierarchy. As it turns out we 
have that C51 ⊆ C12. 

4. Construct the propositional formula, representing the matching problem. In this 
step we translate all the semantic relations computed in step 2 into propositional 
formulas. This is done according to the following transition rules:  



Subset translates into implication; equality into equivalence; disjointness into the 
negation of conjunction. In the case of Figure 11 we have that CC1 ≡ CC2 is an 
axiom. Furthermore, since we want to prove that C51 ⊆ C12, our goal is to prove that 
((CA1 ∧ CC1) → CC2). Thus, our target formula is ((CC1 ≡ CC2) → (CA1 ∧ CC1) → CC2)). 

5. Run SAT. In order to prove that ((CC1 ≡ CC2) → (CA1 ∧ CC1) → CC2)) is valid, we 
prove that its negation is unsatisfiabile, namely that a SAT solver run on the fol-
lowing formula ((CC1 ≡ CC2) ∧¬ (CA1 ∧ CC1) → CC2)) fails. A quick analysis shows 
that SAT will return FALSE. 

6. Iterations. Iterations are performed re-running SAT. We need iterations, for in-
stance, when matching results are not good enough, for instance no matching is 
found or a form of matching is found, which is too weak, and so on1. The idea is to 
exploit the results obtained during the previous run of SAT to tune the matching 
and improve the quality of the final outcome. Let us consider Figure 15.  

 

 

 

 

 

Fig. 15. Not good enough answer 

Suppose that we have found out that C21 ∩ C22 ≠ ∅, and that we want to improve 
this result. Suppose that an oracle tells us that CA1 = CF2 ∪ CG2. In this case the graph on 
the left in Figure 15 can be transformed into the two graphs in Figure 16.  

 

 

 

 
 

Fig. 16. Extraction of additional semantic information 

After this additional analysis we can infer that C21 = C22. As a particular interesting 
case, consider the following situation, see Figure 16.1. 

 
 
 
 

                                                           
1 [11] provides a long discussion about the importance of dealing with the notion of "good 

enough answer" in information coordination in peer-to-peer systems. 

CA1 ⊇ CA2 �  CA2 → CA1 

CA1 ⊆ CA2 �  CA1 → CA2 

CA1 = CA2 �  CA1 ≡ CA2 

CA1 ⊥ CA2 �  ¬( CA1 ∧ CA2) 
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Fig. 16.1. Extraction of additional semantic information. Example 

In this case the concept Brussels in the graph on the left (after the sign “=” ) be-
comes inconsistent (empty intersection) and can be omitted; and the same for the 
concepts at nodes Amsterdam and Tilburg in the graph on the right. The resulting 
situation is as follows: 

 
 
 
 
 
 
 

Fig. 16.2. Extraction of additional semantic information. Example 

Another motivation for multiple iterations is to use the result of a previous match 
in order to speed up the search of new matches. Consider the following example. 

 

 

 

 

 

 

 

Fig. 17. Iterations 

Having found that C21 ⊆ C22, we can automatically infer that C51 ⊆ C52, without re-
running SAT, for obvious reasons, and the same for C41 and C42. As a particular case 
consider the following situation: 

 
 
 
 
 
 
 
 
 
 

Fig. 17.1. Iterations. Example 
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Our algorithm allows us to find that C51 ⊆ C52, while, being Tuscany in Italy we ac-
tually have C51 = C52. This is an acceptable result as long as we are not looking for the 
strongest possible relation holding between two nodes. 

5 Related Work 

From a technical point of view the matcher we have proposed in this paper is a func-
tion Match_Nodes_R(G1,G2, n1, n2, R) which takes two graphs, two nodes, and a rela-
tion and returns a Yes/No answer. Most matchers proposed in the literature are a 
function Match(G1, G2) which takes two graphs and returns a set of mappings (n1, n2, 
R). However, it is easy to see how we can build an analogous function. The naive 
approach being to triple loop on the nodes of the graphs and on the set of proposed 
relations and, at each loop, call Match_Nodes_R.  

At present, there exists a line of semi-automated schema matching and ontology 
integration systems, see for instance [14], [9], [13], [7], [1], [16], [8], etc. Most of 
them implement syntactic matching. A good survey, up to 2001, is provided in [18]. 
The classification given in this survey distinguishes between individual implementa-
tions of match and combinations of matchers. Individual matchers comprise instance- 
and schema-level, element- and structure-level, linguistic- and constrained-based 
matching techniques. Individual matchers can be used in different ways, e.g. 
simultaneously (hybrid matchers), see [13], [7], [14] or in series (composite 
matchers), see for instance [8], [9].  

The idea of generic (syntactic) matching was first proposed by Phil Bernstein and 
implemented in the Cupid system [14]. Cupid implements a complicated hybrid 
match algorithm comprising linguistic and structural schema matching techniques, 
and computes normalized similarity coefficients with the assistance of a precompiled 
thesaurus. COMA [9] is a generic schema matching tool, which implements more 
recent composite generic matchers. With respect to Cupid, the main innovation seems 
to be a more flexible architecture. COMA provides an extensible library of matching 
algorithms; a framework for combining obtained results, and a platform for the 
evaluation of the effectiveness of the different matchers.  

A lot of state of the art syntactic matching techniques exploiting weak semantic 
element-level matching techniques have been implemented. For instance, in COMA, 
schemas are internally encoded as DAGs, where the elements are the paths, which are 
analyzed using string comparison techniques. Similar ideas are exploited in Similarity 
Flooding (SF) [15]. SF is a hybrid matching algorithm based on the ideas of similarity 
propagation. Schemas are presented as directed labeled graphs; the algorithm manipu-
lates them in an iterative fix-point computation to produce mappings between the 
nodes of the input graphs. The technique uses a syntactic string comparison mecha-
nism of the vertices’  names to obtain an initial mapping, which is further refined 
within the fix-point computation.  

Some work has also been done in strong semantics element-level matching. For 
example, [7] utilizes a common thesaurus, while [14] has a precompiled thesaurus. In 
MOMIS [7], [2] element-level matching using a common thesaurus is carried out 
through a calculation of the name, structural and global affinity coefficients. The 



thesaurus presents a set of intensional and extensional relations, which depict intra- 
and inter-schema knowledge about classes, and attributes of the input schemas. The 
common thesaurus is built using WordNet and ODB-Tools [4]. All these systems 
implement syntactic matching and, when moving from element-level to structure-
level matching, don’ t exploit the semantic information residing in the graph structure, 
and just translate the element-level semantic information into affinity levels. 

As far as we know the only example where element-level and a simplified version 
of structure- level strong semantics matching have been applied is CTXmatch [19]. In 
this work SAT is used as the basic inference engine for structure-level matching. The 
main problem of CTXmatch is that its rather limited in scope (it applies only to con-
cept hierarchies), and it is hard to see the general lessons behind this work. For in-
stance, the authors have made no attempt to do a thorough comparison of their ap-
proach with the other matching techniques, or to highlight its strengths and weak-
nesses. This paper provides the basics for a better understanding of the work on 
CTXmatch. 

6 Conclusions 

In this paper we have stated and analyzed the major matching problems e.g., match-
ing database schemas, XML schemas, conceptual hierarchies and ontologies and 
shown how all these problems can be defined as a more generic problem of matching 
graphs. We have identified semantic matching as a new approach for performing 
generic matching, and discussed some of its key properties. Finally, we have identi-
fied SAT as a possible way of implementing semantic matching, and proposed an 
iterative semantic matching approach based on SAT. 

This is only very preliminary work, some of the main issues we need to work on 
are: develop an efficient implementation of the system, do a thorough testing of the 
system, also against the other state of the art matching systems, study how to take into 
account attributes and instances, analyze how to extract semantics from schemas (also 
taking into account integrity constraints), and so on. 
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