
EXSMAL: EDI/XML semi-automatic Schema Matching ALgorithm

Uddam CHUKMOL
*
, Rami RIFAIEH

+
, Nabila Aicha BENHARKAT

+

*
Département Informatique - Institut de Technologie du Cambodge, Phnom Penh, Cambodia

+
LIRIS-CNRS, National Institute of Applied Science of Lyon, Lyon, France

E-mail: uddam.chukmol@itc.edu.kh, rami.rifaieh@insa-lyon.fr, nabila.benharkat@insa-lyon.fr

Abstract

We describe a schema matching algorithm

EXSMAL that automates the semantic correspondence

discovery between the EDI (Electronic Data

Interchange) messages of various standards

(EDIFACT, SWIFT…) by using XML Schema as the

pivot format. This algorithm takes two schemata of

EDI messages as the input, computes the basic

similarity between each pair of elements by comparing

their textual description and data type. Then, it

computes the structural similarity value basing on the

structural neighbors of each element (ancestor,

sibling, immediate children and leaf elements) with an

aggregation function. The basic similarity and

structural similarity values are used in the pair wise

element similarity computing which is the final

similarity value between two elements.

1. Introduction

EDI is characterized by the possibility of

sending/treating messages between information

systems without any human intervention. With

growing business, many companies have to treat

different type of messages and standards. Therefore, a

large number of translations are needed in order to

enable the communication between an enterprise and

its suppliers and clients [6]. Although the use of XML

has simplified the task of data exchange, the problem

of data heterogeneity remains largely unresolved. For

the same kind of data, independent developers often

design XML syntaxes (i.e. messages) that have very

little in common in terms of employed vocabulary and

presentation. In order to simply manage this

representation incompatibility, we suggest automating

the similarity findings. We explore in this paper the

development of an EDI/XML semi-automatic Schema

Matching Algorithm. The algorithm uses XML

Schema, as the pivot format, to represent the schemas

of EDI messages.

2. Related Work

We are only interested in similarity matching that

helps to identify the semantic correspondence between

elements of the input schema or the branching diagram

of the messages. In the literature, we can find three

types of matching algorithm: instance based matching,

representation based or schema matching and usage

based or ontology matching. In all these approaches,

we are only interested by representation based

matching since EDI branching diagrams, i.e. usage

guide, are very likely to schemas. In the schema

matching, some prototypes have been developed such

as [1], [3], and [4]. Nonetheless, they are not suitable

to the matching of EDI messages [5], [7] and [2].

Indeed, EDI messages do not have significant field

names (e.g.: NAD represents the Address in EDIFACT

and 32A represents the amount of the transfer with

SWIFT). Though, an element of an EDI message is

defined with: textual description (a short text

describing the element’s role in the message), data

type, constraints (condition depending on the instance

value of the element and can influence the value

restriction of another element in the message), status

(an information indicating if the element’s existence in

the message is mandatory, optional…), cardinality (the

possible occurrence number of an element within

another element in a message). Another important fact

concerns the meaning variation of an element due to its

location in the message (structural influence).

Therefore, we have to identify a new similarity

algorithm, which takes into consideration the specific

characteristics of EDI message's branching diagram

Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05)

1530-1354/05 $20.00 © 2005 IEEE

expressed with XML Schema. Our choice for the XML

schema is motivated by its potential to define the

structure and semantics of an EDI message.

3. Our Approach

In this section we describe EXSMAL (EDI/XML

semi-automatic Schema Matching ALgorithm)

proposed as a solution for the EDI message’s schema

matching. The criteria for matching will include data-

type, structure, and elements descriptions. Other

information related to an element (constraints, status,

cardinality) will be taken into account for the future

extension of this work. The algorithm is briefly

described in Figure.1.

Input: S, T: two XML Schemata
Output: set of triplets <Si, Tj, Vsim>
With Si: an element of S
 Tj: an element of T
 Vsim: the similarity value between Si and Tj

Matching(S, T) {
Convert S and T to tree
For each pair of elements <Si, Tj>, compute {
 Basic similarity value.
 Structural similarity value.
 Pair-wise element similarity value. }
Filter: eliminate the element pairs having their Vsim

below an acceptation threshold value. }

Figure.1: Short description of EXSMAL

3.1. Basic Similarity

This similarity is the weighted sum of the textual

description and data type similarity. We calculate the

basic similarity between a pair of elements, each of

which comes from the input schema. In effect, we deal

with a subset of element criteria; an element has a

strong basic similar value with another if their textual

description and data type are strongly similar.

We can compute the basic similarity of two

elements s and t by using the following formula:

basicSim(s,t) = descSim(s,t)*coeff_desc +

 coeff_type*dataTypeSim(s,t)

where coeff_desc + coeff_type = 1

0 coeff_desc 1 and 0 coeff_type 1.

3.1.1. Textual Description Similarity. We choose to

use the textual description associated with each

element instead of element name. In effect, element

names are not useful for comparing EDI message

elements because they are neither significant nor

readable. This similarity indicates how much two

elements are similar according to their textual

description. We use the information retrieval technique

to solve this problem. From each description to

compare, we extract a terms vector containing every

term with their associated term frequency in the

description. We, then, compute the cosine of the two

terms vectors to evaluate a part of the pair wise

description similarity. This option is not sufficient to

determine the textual description similarity because it

takes into account only the term frequency in both

descriptions. Therefore, we add another computing to

this description comparison by supposing that all the

textual description associated with every element of

the target schema forms a corpus, which will be

indexed. With every single description extracted from

a source element, a query which considers the terms

order in the description is formulated to query the

above index in order to get a set of scores indicating

how much it is relevant to the descriptions in the

corpus. The score and the description affinity resulted

from the vectors cosine computing will be finally used

to calculate the description affinity between two given

elements.

3.1.2. Data Type Similarity. We used a static matrix

defining the XML schema primitive data type affinity.

The values given as the data type affinity between two

elements is obtained from the empirical study on those

data type format and value boundary. These similarity

values help to obtain the basic affinity degree of two

comparing elements’ types.

3.2. Structural Similarity
The structural similarity is computed by using two

modules: the structural neighbors computing and the

aggregation function agg. This computing is based on

the fact that two elements are structurally similar if

theirs structural neighbors are similar.

3.2.1. Structural Neighbors. The structural neighbors

of an element e is a quadruplet <ancestor(e),

sibling(e), immediateChild(e), leaf(e)> in which:

Item[1](e)=ancestor(e): the set of parent elements

from the root until the direct parent of e

Item[2](e)=sibling(e): the set of sibling elements

that share the same direct parent element as e

Item[3](e)=immediateChild(e): the set of direct

descendants of e

Item[4](e)=leaf(e): the set of leaf elements of the

sub-tree rooted at e.

The choice of the structural neighbors of an

element is related to many structural observations that

we can summarize as follows:

Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05)

1530-1354/05 $20.00 © 2005 IEEE

Ancestor elements influence their descendants

meaning, however, they do not define the entire

structural semantic of a given element.

Moreover, two elements can perfectly share the

same ancestral structure but differ by the influence

from their siblings.

To reinforce the exact semantic of an element, we

choose to ponder the immediate children because

they define the basic structure of the parent

element and the choice of the last level descendant

will help us to go through the finest-grained

content or intentional detail of an element.

8.1.1. Structural Similarity Value Computing. Let s

and t, two elements to match and C(s), C(t) the

structural neighbors of s and t respectively.

C(s)=<ancestor(s), sibling(s), immediateChild(s),

leaf(s)> the structural neighbors of s

C(t)=<ancestor(t), sibling(t), immediateChild(t),

leaf(t)> the structural neighbors of t

Let:

ancSim(s,t): ancestor item similarity (between

ancestor(s) and ancestor(t))

sibSim(s,t): sibling item similarity (between

sibling(s) and sibling(t))

immCSim(s,t): immediate child item similarity

(between immediateChild(s) and

immediateChild(t))

leafSim(s,t): leaf item similarity (between leaf(s)

and leaf(t))

The structural similarity value of two elements s

and t depends on the similarity value resulting from the

comparison of each pair of structural neighbors items

(ancSim(s, t), sibSim(s, t), immCSim(s, t) and

leafSim(s, t)). Therefore, the structural similarity value

is computed in function of the ancestor item, sibling

item, immediate child item and leaf item’s similarity.

The similarity value of each structural neighbors items’

pair is computed by using the function agg(M, thr)

which take a matrix M and a threshold value thr [0,

100] as input. It returns the aggregated value of the

input matrix M (see Figure.2).

Let M be a Matrix.
Input thr the threshold value defined by the user.
For Item[x](E1i) Item[x](e1) {
For Item[x](E2j) Item[x](e2) {
 M[Item[x](E1i)][Item[x](E2j)] =
 sim_base(Item[x](E1i), Item[x](E2j)); } }
sim_Item[x](e1, e2) = agg(M, thr);

Figure.2: Structural neighbors item’s pair

similarity

The function agg uses the arithmetic mean (avg)

and the standard deviation (sd) measures of the

descriptive probability to compute the variation

coefficient (vc) of all the values in M. Thus, M forms a

population that contains only the basic similarity

values. We use the standard deviation of the arithmetic

mean as dispersion measure because it is sharply more

exact than others dispersion measures (inter-quartile

range, variance, etc). We compute the arithmetic mean

avg and standard deviation sd of M respectively with:

avg =

| ()| | ()|

1 1

| () | | () |

i j

ancestor s ancestor t

i j

s t

ancestor s ancestor t

M

 and

sd =

2

| ()| | ()|

1 1

| () | | () |

i j

ancestor s ancestor t

i j

s t avgM

ancestor s ancestor t

We compute the variation coefficient vc of M by:

vc= 100
sd

avg

By comparing the calculated variation coefficient

with the thr value given by a user, agg decides if the

arithmetic mean of M will be the aggregated value of

M or not. Wishing that we get the small dispersion of

all the values in M around its arithmetic mean, the

main target of this agg function is to get a descriptive

value from a set of values. With the value thr given by

the user we can adjust the aggregated value of the

matrix M by eliminating some low values interfering in

the arithmetic mean computing.

If the user gives thr vc, then agg returns avg as the

aggregated value of M. If the user gives thr<vc, we

will eliminate all the values from M

below: 1
100

thr
avg interfering in the arithmetic

mean computing. We obtain a subset of values in M

and apply again the aggregation function. We apply

this computing to all the structural neighbors’ items

similarity (ancSim(s,t), sibSim(s, t), immCSim(s, t) and

leafSim(s, t)).

Therefore, the structural similarity value

between two elements s and t, structSim(s, t), is

computed with the following formula:

structSim(s,t)=ancSim(s,t)*coeff_anc

 + sibSim(s,t)*coeff_sib

 +immCSim(s,t)*coeff_immC

 +leafSim(s,t)*coeff_leaf

Where 0 coeff_anc 1, 0 coeff_sib 1,

 0 coeff_immC 1 , 0 coeff_leaf 1,

Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05)

1530-1354/05 $20.00 © 2005 IEEE

And

coeff_anc+coeff_sib+coeff_immC+coeff_leaf=1

However, to make our structural processing

flexible and complete, we observe the structural

neighbors of each pair of elements before deciding

which value to use (e.g. matching two neighbors

without sibling elements will have to make the

coeff_sib value available for other coefficients values).

Thus, we equally dispatch the value of coeff_sib over

other three coefficients. Finally the value of the

remained three coefficients will be the sum of its initial

value with a part of value from the coeff_sib.

To sum up, depending on the thr value, we will

have the different aggregated value of the same matrix.

The rest of the structural neighbor’s item similarity

(sibSim(s, t), immCSim(s, t) and leafSim(s, t)) will be

calculated the same way as ancSim(s, t) with help from

the function agg.

3.3. Pair-Wise Element Similarity

The pair-wise element similarity value is computed

as the weighted sum of the basic similarity value and

the structural similarity value. It’s proposed as the final

similarity value for a pair of elements in our approach.

Let s and t, two elements to match. The pair wise

element similarity of s and t is computed by the

following formula:

similarity(s,t)= basicSim(s, t)*coeff_base

 + structSim(s, t)*coeff_struct

Where 0 coeff_base 1,

0 coeff_struct 1,

And coeff_base + coeff_struct = 1

3.4. Filtering

This is the last step in our algorithm consisting of

eliminating all the pairs of elements with the pair wise

element similarity value below the value thraccept given

by the user (0 thraccept 1).

As we are using many coefficients in our

algorithm, we suggest a method to calculate the best

value of each coefficient. We provide the possibility

for the user the run the performance batch which helps

them to determine the good set of coefficients to use a

process of matching.

9. Conclusion

This algorithm can be classified among the schema

based approaches that combines the structural

similarity and the textual description similarity. It can

differentiate from other approaches with the following

particularities:

It treats the textual description of the elements,

which is richer than other approaches treating only

the elements names. In effect, this choice was

directed by the particularity of EDI branching

diagram. We used some known techniques in

Information Retrieval techniques to find the

similarity of two elements’ descriptions.

It fully treats the structure of an element by

covering the structural neighbors’ items:

ancestors, siblings, immediate children, and

leaves.

We developed a prototype implementing EXMAL and

some more tools helping the users to find out the best

set of coefficients to use. Our prototype can be

improved by allowing user’s intervention after the

matching process in order to define the mapping

expression between the matched elements (i.e.

applying the next step after schema matching).

As future works, we consider using all the elements of

EDI’s branching diagram (e.g. constraint, status,

cardinality, etc.). We envisage enlarging our

performance test with a larger number of real-world

EDI message schemata.

10. References

[1] Hong-Hai Do and E. Rahm. “COMA - A system for

flexible combination of Schema Matching approaches”. In

Proceeding of the 28th VLDB Conference, August, 2002,

Hong Kong, China. pp. 610-621.

[2] Hong-Hai Do, S. Melnik and E. Rahm. “Comparison of

Schema Matching Evaluations”. In Proceedings of the GI

Workshop “Web and Database”, October, 2002, Erfurt. pp.

221-237.

[3] J. Madhavan, P. A. Bernstein and E. Rahm. “Generic

Schema Matching with Cupid”. In Proceedings of the 27th

VLDB Conference, 2001, Rome, Italy. pp. 49-58.

[4] S. Melnik, H. Garcia-Molina and E. Rahm. “Similarity

Flooding: A Versatile Graph Matching Algorithm and its

Application to Schema Matching”. In Proceedings of the 18th

International Conference on Data Engineering (ICDE), 2002,

San Jose, California, USA.

[5] E. Rahm and P.A. Bernstein. “On Matching Schema

Automatically”. Technical Report 1/2001, Department of

Computer Science, University of Leipzig, Germany,

[6] R. Rifaieh and N. A. Benharkat. “An Analysis of EDI

Message Translation and Message Integration Problem”. In

Proceedings of the CSITeA-03, June, 2003, Rio De Janeiro,

Brazil, 8 pages.

[7] M. Yatskevitch. “Preliminary Evaluation of Schema

Matching Systems”. Technical Report, DIT-03-028,

November, 2003, Department of Information and

Communication Technology, University of Trento, Italy.

Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05)

1530-1354/05 $20.00 © 2005 IEEE

