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Abstract

We describe a schema matching algorithm 

EXSMAL that automates the semantic correspondence 

discovery between the EDI (Electronic Data 

Interchange) messages of various standards 

(EDIFACT, SWIFT…) by using XML Schema as the 

pivot format. This algorithm takes two schemata of 

EDI messages as the input, computes the basic 

similarity between each pair of elements by comparing 

their textual description and data type. Then, it 

computes the structural similarity value basing on the 

structural neighbors of each element (ancestor, 

sibling, immediate children and leaf elements) with an 

aggregation function. The basic similarity and 

structural similarity values are used in the pair wise 

element similarity computing which is the final 

similarity value between two elements.  

1. Introduction 

EDI is characterized by the possibility of 

sending/treating messages between information 

systems without any human intervention. With 

growing business, many companies have to treat 

different type of messages and standards. Therefore, a 

large number of translations are needed in order to 

enable the communication between an enterprise and 

its suppliers and clients [6]. Although the use of XML 

has simplified the task of data exchange, the problem 

of data heterogeneity remains largely unresolved. For 

the same kind of data, independent developers often 

design XML syntaxes (i.e. messages) that have very 

little in common in terms of employed vocabulary and 

presentation. In order to simply manage this 

representation incompatibility, we suggest automating 

the similarity findings. We explore in this paper the 

development of an EDI/XML semi-automatic Schema 

Matching Algorithm. The algorithm uses XML 

Schema, as the pivot format, to represent the schemas 

of EDI messages.  

2. Related Work 

We are only interested in similarity matching that 

helps to identify the semantic correspondence between 

elements of the input schema or the branching diagram 

of the messages. In the literature, we can find three 

types of matching algorithm: instance based matching, 

representation based or schema matching and usage 

based or ontology matching. In all these approaches, 

we are only interested by representation based 

matching since EDI branching diagrams, i.e. usage 

guide, are very likely to schemas. In the schema 

matching, some prototypes have been developed such 

as [1], [3], and [4]. Nonetheless, they are not suitable 

to the matching of EDI messages [5], [7] and [2]. 

Indeed, EDI messages do not have significant field 

names (e.g.: NAD represents the Address in EDIFACT 

and 32A represents the amount of the transfer with 

SWIFT). Though, an element of an EDI message is 

defined with: textual description (a short text 

describing the element’s role in the message), data 

type, constraints (condition depending on the instance 

value of the element and can influence the value 

restriction of another element in the message), status 

(an information indicating if the element’s existence in 

the message is mandatory, optional…), cardinality (the 

possible occurrence number of an element within 

another element in a message). Another important fact 

concerns the meaning variation of an element due to its 

location in the message (structural influence).  

Therefore, we have to identify a new similarity 

algorithm, which takes into consideration the specific 

characteristics of EDI message's branching diagram 
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expressed with XML Schema. Our choice for the XML 

schema is motivated by its potential to define the 

structure and semantics of an EDI message. 

3. Our Approach 

In this section we describe EXSMAL (EDI/XML 

semi-automatic Schema Matching ALgorithm) 

proposed as a solution for the EDI message’s schema 

matching.  The criteria for matching will include data-

type, structure, and elements descriptions. Other 

information related to an element (constraints, status, 

cardinality) will be taken into account for the future 

extension of this work. The algorithm is briefly 

described in Figure.1.

Input: S, T: two XML Schemata 
Output: set of triplets <Si, Tj, Vsim>
With   Si: an element of S 
         Tj: an element of T 
           Vsim: the similarity value between Si and Tj

Matching(S, T) { 
Convert S and T to tree 
For each pair of elements <Si, Tj>, compute { 
    Basic similarity value. 
  Structural similarity value. 
     Pair-wise element similarity value. } 
Filter: eliminate the element pairs having their Vsim

below an acceptation threshold value. } 

Figure.1: Short description of EXSMAL 

3.1. Basic Similarity 

This similarity is the weighted sum of the textual 

description and data type similarity. We calculate the 

basic similarity between a pair of elements, each of 

which comes from the input schema. In effect, we deal 

with a subset of element criteria; an element has a 

strong basic similar value with another if their textual 

description and data type are strongly similar.  

We can compute the basic similarity of two 

elements s and t by using the following formula: 

basicSim(s,t) = descSim(s,t)*coeff_desc + 

                   coeff_type*dataTypeSim(s,t)

where coeff_desc + coeff_type = 1 

0 coeff_desc 1 and 0 coeff_type  1.

3.1.1. Textual Description Similarity. We choose to 

use the textual description associated with each 

element instead of element name. In effect, element 

names are not useful for comparing EDI message 

elements because they are neither significant nor 

readable. This similarity indicates how much two 

elements are similar according to their textual 

description. We use the information retrieval technique 

to solve this problem. From each description to 

compare, we extract a terms vector containing every 

term with their associated term frequency in the 

description. We, then, compute the cosine of the two 

terms vectors to evaluate a part of the pair wise 

description similarity. This option is not sufficient to 

determine the textual description similarity because it 

takes into account only the term frequency in both 

descriptions. Therefore, we add another computing to 

this description comparison by supposing that all the 

textual description associated with every element of 

the target schema forms a corpus, which will be 

indexed. With every single description extracted from 

a source element, a query which considers the terms 

order in the description is formulated to query the 

above index in order to get a set of scores indicating 

how much it is relevant to the descriptions in the 

corpus. The score and the description affinity resulted 

from the vectors cosine computing will be finally used 

to calculate the description affinity between two given 

elements. 

3.1.2. Data Type Similarity. We used a static matrix 

defining the XML schema primitive data type affinity. 

The values given as the data type affinity between two 

elements is obtained from the empirical study on those 

data type format and value boundary. These similarity 

values help to obtain the basic affinity degree of two 

comparing elements’ types.  

3.2. Structural Similarity 
The structural similarity is computed by using two 

modules: the structural neighbors computing and the 

aggregation function agg. This computing is based on 

the fact that two elements are structurally similar if 

theirs structural neighbors are similar. 

3.2.1. Structural Neighbors. The structural neighbors 

of an element e is a quadruplet <ancestor(e), 

sibling(e), immediateChild(e), leaf(e)> in which: 

Item[1](e)=ancestor(e): the set of  parent elements 

from the root until the direct parent of e

Item[2](e)=sibling(e): the set of sibling elements    

that share the same direct parent element as e

Item[3](e)=immediateChild(e): the set of direct 

descendants of e

Item[4](e)=leaf(e): the set of leaf elements of the 

sub-tree rooted at e.

The choice of the structural neighbors of an 

element is related to many structural observations that 

we can summarize as follows:  
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Ancestor elements influence their descendants 

meaning, however, they do not define the entire

structural semantic of a given element.

Moreover, two elements can perfectly share the 

same ancestral structure but differ by the influence 

from their siblings. 

To reinforce the exact semantic of an element, we 

choose to ponder the immediate children because 

they define the basic structure of the parent

element and the choice of the last level descendant

will help us to go through the finest-grained 

content or intentional detail of an element.

8.1.1. Structural Similarity Value Computing. Let s

and t, two elements to match and C(s), C(t) the

structural neighbors of s and t respectively. 

C(s)=<ancestor(s), sibling(s), immediateChild(s),

leaf(s)> the structural neighbors of s 

C(t)=<ancestor(t), sibling(t), immediateChild(t),

leaf(t)> the structural neighbors of t

Let:

ancSim(s,t): ancestor item similarity (between

ancestor(s) and ancestor(t)) 

sibSim(s,t): sibling item similarity (between

sibling(s) and sibling(t))

immCSim(s,t): immediate child item similarity

(between immediateChild(s) and

immediateChild(t))

leafSim(s,t): leaf item similarity (between leaf(s) 

and leaf(t)) 

The structural similarity value of two elements s

and t depends on the similarity value resulting from the

comparison of each pair of structural neighbors items

(ancSim(s, t), sibSim(s, t), immCSim(s, t) and

leafSim(s, t)). Therefore, the structural similarity value

is computed in function of the ancestor item, sibling

item, immediate child item and leaf item’s similarity.

The similarity value of each structural neighbors items’

pair is computed by using the function agg(M, thr)

which take a matrix M and a threshold value thr  [0, 

100] as input. It returns the aggregated value of the

input matrix M (see Figure.2).

Let M be a Matrix. 
Input thr the threshold value defined by the user. 
For Item[x](E1i)  Item[x](e1) { 
For Item[x](E2j)  Item[x](e2) { 
      M[Item[x](E1i)][ Item[x](E2j)] =
      sim_base(Item[x](E1i), Item[x](E2j)); }   } 
sim_Item[x](e1, e2) = agg(M, thr); 

Figure.2: Structural neighbors item’s pair 

similarity

The function agg uses the arithmetic mean (avg)

and the standard deviation (sd) measures of the 

descriptive probability to compute the variation

coefficient (vc) of all the values in M. Thus, M forms a 

population that contains only the basic similarity

values. We use the standard deviation of the arithmetic

mean as dispersion measure because it is sharply more

exact than others dispersion measures (inter-quartile

range, variance, etc). We compute the arithmetic mean

avg and standard deviation sd of M respectively with:

avg =

| ( )| | ( )|

1 1

| ( ) | | ( ) |

i j

ancestor s ancestor t

i j

s t

ancestor s ancestor t

M

 and

sd =

2

| ( )| | ( )|

1 1

| ( ) | | ( ) |

i j

ancestor s ancestor t

i j

s t avgM

ancestor s ancestor t

We compute the variation coefficient vc of M by:

vc= 100
sd

avg

By comparing the calculated variation coefficient 

with the thr value given by a user, agg decides if the 

arithmetic mean of M will be the aggregated value of

M or not. Wishing that we get the small dispersion of

all the values in M around its arithmetic mean, the

main target of this agg function is to get a descriptive

value from a set of values. With the value thr given by

the user we can adjust the aggregated value of the

matrix M by eliminating some low values interfering in

the arithmetic mean computing.

If the user gives thr  vc, then agg returns avg as the 

aggregated value of M. If the user gives thr<vc, we

will eliminate all the values from M

below: 1
100

thr
avg  interfering in the arithmetic

mean computing. We obtain a subset of values in M

and apply again the aggregation function. We apply

this computing to all the structural neighbors’ items

similarity (ancSim(s,t), sibSim(s, t), immCSim(s, t) and

leafSim(s, t)).

Therefore, the structural similarity value

between two elements s and t, structSim(s, t), is 

computed with the following formula:

structSim(s,t)=ancSim(s,t)*coeff_anc

                        + sibSim(s,t)*coeff_sib

          +immCSim(s,t)*coeff_immC

          +leafSim(s,t)*coeff_leaf

Where 0  coeff_anc  1, 0  coeff_sib  1, 

             0  coeff_immC  1 , 0  coeff_leaf  1, 
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And

coeff_anc+coeff_sib+coeff_immC+coeff_leaf=1 

However, to make our structural processing 

flexible and complete, we observe the structural 

neighbors of each pair of elements before deciding 

which value to use (e.g. matching two neighbors 

without sibling elements will have to make the 

coeff_sib value available for other coefficients values). 

Thus, we equally dispatch the value of coeff_sib over 

other three coefficients. Finally the value of the 

remained three coefficients will be the sum of its initial 

value with a part of value from the coeff_sib.

To sum up, depending on the thr value, we will 

have the different aggregated value of the same matrix. 

The rest of the structural neighbor’s item similarity 

(sibSim(s, t), immCSim(s, t) and leafSim(s, t)) will be 

calculated the same way as ancSim(s, t) with help from 

the function agg.

3.3. Pair-Wise Element Similarity 

The pair-wise element similarity value is computed 

as the weighted sum of the basic similarity value and 

the structural similarity value. It’s proposed as the final 

similarity value for a pair of elements in our approach. 

Let s and t, two elements to match. The pair wise 

element similarity of s and t is computed by the 

following formula: 

similarity(s,t)= basicSim(s, t)*coeff_base 

                   +  structSim(s, t)*coeff_struct 

Where   0  coeff_base  1,

0  coeff_struct  1,

And coeff_base + coeff_struct = 1 

3.4. Filtering 

This is the last step in our algorithm consisting of 

eliminating all the pairs of elements with the pair wise 

element similarity value below the value thraccept given 

by the user (0 thraccept 1).

As we are using many coefficients in our 

algorithm, we suggest a method to calculate the best 

value of each coefficient.  We provide the possibility 

for the user the run the performance batch which helps 

them to determine the good set of coefficients to use a 

process of matching.  

9. Conclusion 

This algorithm can be classified among the schema 

based approaches that combines the structural 

similarity and the textual description similarity. It can 

differentiate from other approaches with the following 

particularities: 

It treats the textual description of the elements, 

which is richer than other approaches treating only 

the elements names. In effect, this choice was 

directed by the particularity of EDI branching 

diagram. We used some known techniques in 

Information Retrieval techniques to find the 

similarity of two elements’ descriptions.  

It fully treats the structure of an element by 

covering the structural neighbors’ items: 

ancestors, siblings, immediate children, and 

leaves.

We developed a prototype implementing EXMAL and 

some more tools helping the users to find out the best 

set of coefficients to use. Our prototype can be 

improved by allowing user’s intervention after the 

matching process in order to define the mapping 

expression between the matched elements (i.e. 

applying the next step after schema matching).  

As future works, we consider using all the elements of 

EDI’s branching diagram (e.g. constraint, status, 

cardinality, etc.). We envisage enlarging our 

performance test with a larger number of real-world 

EDI message schemata.  
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