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ABSTRACT 

In the semantic web, ontology plays an important role to provide formal definitions of concepts and 

relationships. Therefore, communicating similar ontologies becomes essential to provide ontologies 

interpretability and extendibility. Thus, it is inevitable to have similar but not the same ontologies in a 

particular domain since there might be several definitions for a given concept. This paper presents a 

method to combine similarity measures of different categories without having ontology instances or any 

user feedback in regard with alignment of two given ontologies. To align different ontologies efficiently, 

K Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT) and AdaBoost 

classifiers are investigated. Each classifier is optimized based on the lower cost and better classification 

rate. Experimental results demonstrate that the F-measure criterion improves up to 99% using feature 

selection and combination of AdaBoost and DT classifiers, which is highly comparable, and outperforms 

the previous reported F-measures. 
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1. INTRODUCTION 

Management of distributed information across the web is going to be a serious challenge. 

Ontologies have been a solution to this problem. However, reuse of the existing ontologies has 

been addressed recently. Different attitudes of ontology designers bring about several similar 

ontologies in every particular domain [1, 2]. It is unlikely to find two ontologies describing one 

thing (concept) with a perfect overlap. This makes communication and interoperability either 

difficult or impossible [3]. Ontology alignment overcomes these difficulties through exploring a 

map between similar entities that refer to the same concept in two different ontologies [4, 5]. 

Therefore the importance of ontology alignment methods becomes more non-trivial, considering 

the fact that communication and interoperability are necessary for a wide variety of areas. These 

areas include web service integration, agent communication, information retrieval from 

heterogeneous multimedia databases [6], learning resource management systems [1, 2], 

improving web-based search [7], business processes management systems [8] and so on. 

An ontology alignment process usually comprises six steps: (1) feature engineering, (2) search 

step selection, (3) similarity computation, (4) similarity aggregation, (5) interpretation and (6) 

iteration [9]. Manual solution of this process is usually time-consuming and expensive. 

Therefore, having an automated solution becomes necessary. The current ontology alignment 

has applied automatic techniques in two parts: (1) training and generating the model; and (2) 

classification process [8]. ML techniques help to perform the last three steps of the above more 

efficiently. Different well-known categories of similarity methods used to measure the 

similarity of two ontologies include: string-based, linguistic, structural and instance-based 

methods. Each similarity measure is considered as a feature of the input sample, thus it is 

important to select effective similarity measures (features) from different categories (steps (1) 

and (2)).      

There are several works which have already exploited ML techniques towards ontology 

alignment. In [9] a multi-strategy learning was used to obtain similar instances of hierarchies to 
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extract similar concepts using Naive Bayes (NB) technique. In [10], following a parameter 

optimization process on SVM, DT and neural networks (NN) classifiers, an initial alignment 

was carried out. Then the user's feedback was noticed to improve the overall performance.  

In [11], some string-based and linguistic (using WordNet) measures were utilized as input 

features. It then used CART, NN and DT based classifiers to align ontologies. In [12], string-

based, linguistic and structural measures (in total 23 features) were used to obtain the data set of 

pair entities, and then the SVM algorithm was applied to classify the data set samples. The idea 

of [13] is taken from [9] with an almost similar data set. This study computes 10 similarity 

measures from string-based, linguistic and instance-based methods. The DT and Naive Bayes 

were applied to classify the input samples. While [14] applied SVM classifier to 27 similarity 

measures from string-based, linguistic, structural and instance-based methods. However, paper 

[13] presented a method for improving alignment results via not choosing a specific alignment 

method but applying ML techniques to an ensemble of alignment methods. 

Some research works [7, 8, 15 ,16] have applied ontology instances in conjunction with the 

instance-based methods of similarity. However, to supply the ontology instances almost costs a 

lot. Therefore, this research does not apply instance based methods.  

Other studies use rule sets, RDF graph analysis, data mining and ML techniques to aggregate 

similarity measures of each individual category [17]. This paper, for the first time, composed 

different individual similarity metrics (features) of string-based, linguistic and structural 

categories into one input sample. As each individual similarity measure is able to determine 

partial similarity of the whole feature space, considering all the measures simultaneously will 

probably achieve higher classification accuracy. 

The ensemble method is an active research area which gives better performance than a single 

classifier [18]. Some researches have shown that using a single classifier performing well may 

not be the optimal choice [19]. It may lose potentially valuable information contained in the 

other less accurate classifiers. Thus ensemble approach is proposed as a solution to combine 

several less accurate classifiers in this research.  

Section 2 presents the most well-known and effective similarity measures which are utilized in 

this study. The exploited classifiers are briefly introduced in section 3. The proposed alignment 

method has been modelled and discussed in section 4. Section 5 evaluates the results and the 

paper is concluded in section 6. 

2. FEATURE SELECTION 

String-based, linguistic, structural and instance-based methods are four different categories of 

measuring similarities (features) in ontology alignment. Here, the top 15 effective similarity 

methods of the first three categories have been selected. Instance-based similarity measure is not 

used, because of its difficulty to provide data set. Each method returns a similarity value in the 

range of [0,1] for a given entity pair from two ontologies. These methods are briefly introduced 

in the following subsections.  

 2.1. String-based Methods    

There are several string-based methods in ontology alignment field. These techniques focus on 

entity's name (string) and find similar string entities. Here, the most popular methods which are 

already implemented in Alignment API and SecondString API have been selected [9, 20]. 

Because of low accuracy of each string based method, more methods from this category are 

used compared to the others so that each method calculates a different view of similarity 

(distinct feature). The overall performance can be increased through having a diversity of 

distinct features. The study's experimental results indicate that the following methods provide 

the more accurate outcomes. These methods are performed on two entity names (two strings). 
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N-gram similarity compares two strings and calculates the number of common n-grams 

between them. An n-gram is composed of all sequences of n characters [9]. For instance, three-

gram of word "paper" are: "pap", "ape" and "per". 

Levenshtein distance computes the minimum number of insertion, deletion and substitution of 

characters is needed to transform one string into another [1]. 

SMOA is based on the number of common parts in two strings, while considering the length of 

mismatched substrings and the length of the common prefix in both strings [21]. 

Dice coefficient is defined as twice the number of common terms of compared strings over the 

total number of terms in both strings. The coefficient result of 1 indicates identical vectors, 

while 0 equals orthogonal vectors [22]. 

UnsmoothedJS is a kind of Jensen-Shannon distance for two unsmoothed unigram language 

models. Jensen-Shannon distance is a popular method of measuring the similarity between two 

(or more) probability distributions [22].  

Monge-Elkan distance uses semantic similarity of a number of strings or substrings. Each 

substring is evaluated against the most similar substring in the comparison entity names [16]. 

Substring similarity calculates the similarity of two strings based on their common longest 

substring [2].  

Needleman-Wunsch applies a global alignment on two sequences (strings). It is a suitable 

measure when the two sequences are of similar length, with significant degree of similarity 

throughout. It also determines whether it is likely that two sequences evolves from the same 

string [20].   

Smith-Waterman distance is a version of Needleman-Wunsch which measures the local 

sequence alignment. In other words, it determines similar regions between two string sequences. 

Instead of looking at the total sequence, this algorithm compares segments of all possible 

lengths and optimizes the similarity measure [22]. 

Cosine similarity transforms the input string into vector space so that the Euclidean cosine rule 

is used to determine similarity [21]. 

Jaccard measure is operated on two vectors X and Y. In this case, each vector is an entity 

name. The inner products of X and Y, and Euclidean norm of each vectors are used to calculate 

the similarity measure [21]. 

Jaro measure finds words with spelling mistakes [9].  

2.2. Language-based Methods 

Apart from similar appearance of entity names which has been measured through the string-

based methods, there are some semantic similarities between which reflect the applied language 

in ontologies. For example, although "car" and "automobile" have almost no string-based 

similarity but they refer to the same concept from a linguistic point of view.  

WordNet is the most popular lexicon in English [5]. It arranges the word semantically rather 

than morphologically. WordNet is a network which has several synset. Every synset includes 

words with the same sense. Here, WordNet's package of Alignment API tool has been used to 

measure possible linguistic similarities of corresponding entity names.  

2.3. Structural Methods  

Ontology alignment solely based on string and linguistic similarities may fail because these 

similarities only investigate the entity names without considering the entity's relation to the 

other entities in its ontology. For instance, the result of applying the string and linguistic 
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methods on two entities named "jackpot" from two given ontologies shows they are equal 

entities, while investigation of each entity in its own ontology, supposedly from two different 

ontologies like kitchenware ontology and game ontology, may result the opposite. Thus, 

structural methods are defined to evaluate the similarity of entities and relations in two 

ontologies.  

The current research has investigated two structural methods from the OLA's tool [4]. These 

methods compute the similarity measure of class names and their property locally, which are 

then aggregated into one particular measure. 

3. MACHINE LEARNING TECHNIQUES 

Once the similarity features of two given entities from two ontologies are selected and 

measured, they will be aggregated. There are several techniques to compute the optimal 

aggregation for different types of similarity measures such as fuzzy, weighted product, weighted 

sum, Minkowski, etc. [7]. However choosing the optimum parameters of these techniques such 

as thresholds and other constraints is difficult. ML provides another possibility to combine 

different similarity measures. Here, supervised ML methods are utilized to extract the optimal 

model of compound metrics. Thus, the alignment problem is transformed into a supervised ML 

task. 

The basis of any ML-based ontology alignment system is a classifier. So far, numerous 

classifiers have been developed and applied to ML-based decision making problems. Here, the 

ontology alignment (classification) is regarded as a probability density function modelling. In 

this way, a parametric approach is used, in which explicit assumptions are made about 

underlying model characteristic [23]. This includes some parameters that need to be optimized 

by fitting the model to the data set.  

In this paper, the performance of several classifiers such as SVM, KNN, DT and a re-sampling 

ensemble method (AdaBoost) are analyzed to select the one with the most accurate results. 

These techniques are briefly introduced in the following sub-sections.       

3.1. Support Vector Machine (SVM) 

Given a set of training instances, which are marked as two categories of alignment and non-

alignment, an SVM training algorithm builds a model that predicts the category into which a 

new instance falls. Intuitively, an SVM model is a representation of the instances as points in 

space so that the instances of separate categories are divided by a clear gap that is as wide as 

possible. A new instance is then mapped into that same space, and its category is predicted [24]. 

In other words, an SVM constructs a hyperplane or a set of hyperplanes in a high or infinite 

dimensional space which can be used for classification, regression or other tasks. A good 

separation is achieved by a hyperplane that has the largest distance to the nearest training data 

sets of any class.  

For a separable classification task, the idea is to map the training data into a higher-dimensional 

feature space using a kernel function where a separating hyperplane (w, b), w standing for  

weight vector and b standing for bias, can be found which maximizes the margin or distance 

from the closest data points. The optimum separating hyperplane can be represented based on 

the kernel function (as equation (1)). 

∑ +=

n

i

iii b).x)K(xy(sign  (x) αf

                                             

(1)  

where n is the number of training examples, yi is the label value of example i, and K represents  

the kernel. Subject to the constraints αi ≥ 0 and ∑αiyi=0, there is a Lagrangian multiplier αi for 

each training point and only those training examples that lie close to the decision boundary have 
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nonzero αi. These examples are called support vectors. With a suitable choice of the kernel, the 

original non-separable data in input space becomes separable in feature space. Thus, kernel 

substitution presents a solution for obtaining nonlinear algorithms previously restricted to 

handling linearly separable cases. There are many kernels that can be used e.g. Gaussian Radial 

Basis function (RBF) as shown in equation (2).  

 )2/exp(),( 22

σjiji xxxxk −−=
                                                            (2)

 

Here σ >0 is a constant that defines the kernel width. 

3.2. K-Nearest Neighbours (KNN) 

The KNN classifier has been broadly used in ML applications due to its conceptual simplicity, 

and general applicability [23]. A KNN classifier is trained by storing all training patterns 

presented to it. During the test stage, the K stored entity pairs closest to the test entity pair are 

found using the Euclidian distance measure. A vote is then taken amongst those K neighbours, 

and the most frequent class is assigned to that test entity pair. This assignment minimizes the 

probability of the test entity pair in question being wrongly classified. The reader is referred to 

[24] for the details of this algorithm. In KNN classification, the number of neighbours i.e. K 

needs to be pre-defined. A single nearest neighbour technique (K=1) is primarily suited to 

classifications where there is enough confidence in the fact that class distributions are non-

overlapping and the features used are discriminatory. But in most practical applications, such as 

ours, more than one nearest neighbour is necessary for majority vote. 

A reasonable and practical approach would be to use trial and error to identify K in such a way 

that it gives the lowest misclassification error rate. This is performed with different K values 

ranging from 1 to 9 to find the optimum value (section 5). 

3.3. Decision Tree (DT) 

Different methods exist to build DTs, which summarize given training data in a tree structure 

with each branch representing an association between feature values and a class label. The most 

famous and representative one is perhaps the C4.5 algorithm [23]. It works by recursively 

partitioning the training data set according to tests on the potential of feature values in 

separating the classes. The core of this algorithm is based on its original version, named the 

ID3. So, to have a basic understanding of how this algorithm works, ID3 method is outlined 

below. 

DT is learned from a set of training instances through an iterative process, of choosing a 

similarity measure (i.e. feature) and splitting the given data set according to the values of that 

feature. The key question here is which feature is the most influential in determining the 

classification to be chosen first. Entropy measures or information gain is used to select the most 

influential feature which is intuitively deemed to be feature of the lowest entropy (or of the 

highest information gain). 

In more detail, the learning algorithm works by: (a) computing the entropy measure for each 

feature, (b) partitioning the set of examples according to the possible values of the feature that 

has the lowest entropy, and (c) for each subset of instances repeating these steps until all 

features are partitioned or the other given termination conditions are met. In order to compute 

the entropy measures, frequencies are used to estimate probabilities. Note that although feature 

tests are chosen one at a time in a greedy manner, they are dependent on the results of previous 

tests. 

Explaining the results is one of the most popularity reasons of DT classifier in ontology 

alignment domain. It can be easily converted to set of rules or expression logic. It can also be 

created very fast [23, 24].  
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3.4. AdaBoost 

For an ensemble technique to achieve higher accuracy than a single classifier, it is crucial for 

the base classifiers to be sufficiently diverse. Bagging and Boosting are among the most popular 

re-sampling ensemble methods that generate and combine a diversity of classifiers using the 

same learning algorithm for the base classifiers. Boosting algorithms are deemed to be stronger 

than bagging on noise free data. However, there are strong empirical indications that bagging is 

much more robust than boosting in noisy settings [25]. AdaBoost is a practical version of 

boosting approach. Our experimental results regarding our data set reveal that boosting methods 

outperform the bagging methods.  

Having provided an input training set including m elements, AdaBoost calls a given weak or 

base learner algorithm repeatedly in a series of rounds t =1,…, T. One of the main ideas of 

algorithm is to maintain a distribution or a set of weights over the training set. The weight of 

this distribution on the training example i on round t is denoted by wi
t. Initially, all weights are 

set equal (e.g. wi
1
=1/m), but on each round, the weight of misclassified examples is increased so 

that the weak learner is forced to focus on the hard examples in the training set. The weak 

learner is responsible to find a weak hypothesis ht: X � {-1, +1} appropriate for the distribution 

w
t
. 

The distribution wt is next updated using equations (3) and (4):    
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here Ct is a normalization factor, and et is the error of ht. As the result of Eq. (3), the weight of 

misclassified examples by ht is increased, and the weight of correctly classified examples by ht 

is decreased. Thus, the weight tends to concentrate on hard examples.  

The output is calculated by final hypothesis f, shown in equation (5). It is a weighted majority 

vote of the T weak hypothesis, where αt is the weight assigned to ht [26].   
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T
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                                                        (5) 

In this research, DT and SVM are chosen as the base classifiers of AdaBoost. 

4. PROPOSED ALIGNMENT METHOD 

The proposed system is implemented in JAVA and adopted Alignment API framework and 

MATLAB.  

The data sets are taken from Ontology Alignment Evaluation Initiative (OAEI) which provides 

framework in ontology alignment. These data sets are produced for alignment contest and 

provide several formats [27]. Indeed, the evaluation of proposed system is carried out by OAEI 

API. 

Series #301-304 represent real-life ontologies for bibliographic references found on the web. 

Here, #301 is selected as the training data set, while #302-304 series are considered as test data 

sets. It should be noted that all series are aligned with #101.  

To construct the similarity matrix, similarity measures (section 2) are applied to a pair of 

ontologies selected from the above data sets. Similarity matrix is a table with m rows and n 

columns, where m is the number of given entity pairs and n is the number of applied features 

(similarity measures). The truth alignment of each entity pair corresponding to each row of 
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similarity matrix is called actual value. This value is defined by the expert and takes a value of 1 

(i.e. aligned) or 0 (i.e. not aligned).  

Having provided the similarity matrix and target values, the problem would be reduced to a 

supervised learning task comprised of training and testing phases. Figure 1 illustrates the details. 

Training Phase Testing Phase 

Two Ontologies (as input)  

� 
Extracting Similarity Matrix and 

Actual Values  

� 
Aggregating Similarity Matrix via 

Classification  

� 
Adjusting Classifier's Parameters 

� 
Extracting Training Model (as output) 

Two Ontologies and a Training Model 

(as input) 

� 
Extracting Similarity Matrix and 

Actual Values  

� 
Using Training Model on Similarity 

Matrix  

� 
System Alignment (as output) 

� 
Comparison of Actual Values and 

System Alignment 

Figure 1. Training and testing phases in the proposed alignment system. 

In this research, a binary classification with the objective of achieving the best possible 

alignments in an automatic and efficient way is introduced. 

Within the test stage, the trained optimum model is used to classify the new unseen similarity 

matrixes (test data) into two classes i.e. aligned or not aligned. This type of alignment is named 

System Alignment.    

Each classifier is quantitatively evaluated by independent test data; otherwise the evaluation 

would become biased and would not provide a fair assessment of the classifier performance. To 

assess the classifier generalization ability and consequently measure the classification accuracy, 

system alignment and actual value of each entity pair are compared.    

4.1. Evaluation Criteria  

In ontology alignment task, precision and recall criteria are generally used to evaluate the 

system's performance [28]. These measures are defined as equations (6) and (7).  

                                                           
givenalignment 

alignmentcorrect givenalignment 
 Precision 

∩

=
                                                (6) 

alignmentcorrect 

alignmentcorrect givenalignment 
  Recall

∩

=
                                      (7) 

F-measure is basically the harmonic means of precision and recall, which defined as equation 

(8). 

Recall)  (Precision

Recall *Precision * 2
  measure-F

+

=
                                                  (8) 

F-measure is a common performance measure in information retrieval which balances precision 

and recall. Indeed, Alignment API provides a utility to evaluate the result of alignment [2, 5]. 

4.2. Experiments  

Here, four experiments have been conducted. Each experiment addresses an aspect which has its 

impact on the training model and final results. Furthermore, each experiment is carried out 
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using different classifiers (DT, SVM, KNN and AdaBoost models) and the results are compared 

against each other.  

These experiments are explained as follows. 

4.2.1. First Experiment 

The first experiment has simply chosen the optimum model based on those 15 similarity 

measures which are represented in section 2.    

4.2.2. Second Experiment  

This experiment investigates the comments role in ontology alignment, so that the comments of 

every entity (if exist) are added to the data set. For extracting valuable words, each sentence is 

tokenized and then dummy and auxiliary words are eliminated, so that remained words are 

meaningful information. Furthermore to save the time, this process is only employed on entity 

pairs which are not fully aligned and their similarity measure is less than 1.   

The rest of this experiment is the same as first experiment.  

4.2.3. Third Experiment 

This experiment explores the effect of training samples quantity on the quality of final trained 

model. In the two previous experiments, two ontologies (#101, #301) are utilized to build the 

training model. In this experiment, the number of entity pairs is increased by using other 

ontologies such as #102, #103, i.e. entity pairs extracted from (#101, #102) and (#101, #103). 

So the diversity of instances in training phase is widened. To avoid training the model with 

similar input samples, those samples from #102 and #103 ontologies  which represent the 

highest variances are selected.   

4.2.4. Fourth Experiment 

This experiment takes advantage of feature selection technique to eliminate the ineffective 

features. To do that, a feature selection method is used to rank features based on their weights in 

SVM. This method calculates the set of feature’s weight in SVM classifier and eliminates 

features that have less effect by iteration. Therefore, only those features are selected which lead 

to better discrimination ability [24]. As a result, 8 features from section 2 i.e. SOMA, 

Needleman-Wunsch, WordNet, Jaccard, Dice coefficient, N-gram, and two structural 

similarities are chosen.  

Since the number of features is decreased from 15 to 8, the similarity matrix is created faster 

and in less memory space compared to the first experiment. Furthermore, based on the results of 

second and third experiments, comments (if any) are also added to the data set and the diversity 

of instances is enlarged in the training phase. 

5. RESULTS AND EVALUATION  

This study optimizes the classifiers. If every parameter of each classifier tunes well, the 

alignment result will be more accurate.  

The design of the SVM classifier architecture is simple and mainly requires choosing the kernel 

and its associated parameters. There are currently no technique available to learn the form of 

kernel, thus a Gaussian RBF kernel function has been employed. We construct a set of SVM 

classifiers with a range of values for the kernel parameter σ and with no restriction on the 

Lagrange multipliers αi. Having defined classification rate as the system alignment over the 

truth alignment, the most classification accuracy is achieved when σ = 0.1.  
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In KNN classification, the number of neighbours, i.e. K needs to be pre-defined. A reasonable 

and practical approach would be to use trial and error to identify K in such a way that it gives 

the lowest misclassification rate. We performed such an experiment with different K values 

ranging from 1 to 9 (K is chosen to be odd to avoid tie votes), and found K = 3 as the optimum 

K value for the application at hand.  

In DT, having minimum tree without losing accuracy significantly decreases the costs. 

Therefore once the DT is constructed, it is configured to estimate the minimum tree with the 

lowest cost for every test set. Here, the minimum tree size is experimentally found to be 12. 

This research also experiments an AdaBoost method with two different base classifiers, i.e. 

SVM and DT noted as AdaBoost (SVM) and AdaBoost (DT), respectively.  

In AdaBoost (SVM), finding a suitable σ for SVM base learner is non-trivial because having too 

large value for σ often results in too weak SVM classifier with RBF kernel. The AdaBoost 

(SVM) classification accuracy is often less than 50% and cannot meet the requirement of a 

given AdaBoost classifier. On the other hand, a smaller σ often makes stronger SVM with RBF 

kernel, thus boosting them may become inefficient [29]. Here, the AdaBoost (SVM) algorithm 

initiates firstly by one SVM base learner with the optimum σ value from previous experiment 

(i.e. σ = 0.1). The final optimum architecture is comprised from three SVM base learners with 

the optimum σ values equal to 0.1, 0.09 and 0.08, respectively.  

In AdaBoost (DT), having suitable tree size becomes important. Again, this value is set by 12 

which was obtained in the previous experiment. The optimum number of AdaBoost rounds 

varies in each experiment. Here, these round numbers have been found 18, 2, 15, and 12 for 

experiment #1,…,#4, respectively.  

Table 1 summarizes the best F-measure performance obtained from all experiments against the 

test set #302. As it can be seen, the KNN and AdaBoost provide the first and second best 

results, respectively. Indeed, the obtained performance for both AdaBoost (DT) classifier is very 

close to that of AdaBoost (SVM). On the other hand, the worst results are provided by DT 

classifier.  

Table 1. F-measure values against test set #302. 

AdaBoost 

(SVM) 
AdaBoost 

(DT) 
SVM DT KNN Experiment 

0.89 0.89 0.89 0.85 0.92 #1 

0.91 0.91 0.89 0.88 0.91 #2 

0.90 0.91 0.91 0.85 0.92 #3 

0.90 0.89 0.87 0.83 0.92 #4 

 
Similarly, Table 2 and Table 3 summarize the best F-measure performance obtained from all 

experiments against the test set #303 and #304 respectively. 

As it can be seen, the fourth experiment which benefits from feature selection mostly 

outperforms the first experiment, while on average the KNN and AdaBoost (DT) classifiers 

perform better amongst all exploited classifiers. 

By and large, F-measure values which are obtained against test sets #304 and #303 are the best 

and worst results, respectively. This is due to the fact that test set #304 has similar structure and 

vocabularies to the reference ontology, i.e. #101, while test set #303 has the least vocabularies 

and linguistic information. This trend also validates the recent attentions on reusing the existing 

ontologies. 
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Table 2. F-measure values against test set #303. 

AdaBoost 

(SVM) 

AdaBoost 

(DT) 
SVM DT KNN Experiment 

0.82 0.87 0.80 0.86 0.86 #1 

0.79 0.87 0.76 0.84 0.81 #2 

0.90 0.84 0.80 0.87 0.85 #3 

0.88 0.90 0.88 0.86 0.87 #4 

 

Table 3. F-measure values against test set #304. 

AdaBoost 

(SVM) 

AdaBoost 

(DT) 
SVM DT KNN Experiment 

0.95 0.94 0.94 0.94 0.98 #1 

0.96 0.96 0.96 0.96 0.97 #2 

0.96 0.97 0.95 0.94 0.97 #3 

0.98 0.99 0.96 0.96 0.98 #4 

 
Although, the optimum AdaBoost (DT) model can provide the best results, but usually creation 

of training model for an ensemble-based classifier need much more time and memory space 

compared to the non-ensemble ones. To this end, Table 4 represents the needed test time in 

terms of seconds to perform fourth experiment using different classifiers. As it can be seen, the 

required time for AdaBoost (DT) is reasonable compared to the other non-ensemble classifiers, 

but it is much longer for AdaBoost (SVM) classifier.  

Table 4. Time comparison of different classifiers in experiment #4. 

AdaBoost 

(SVM) 
AdaBoost 

(DT) 
SVM DT KNN Classifiers 

0.9070 0.3676 0.0304 0.3357 0.0798 Time (seconds) 

 

Table 5 compares the F-measure of this system with the most important previous approaches. 

The result of our fourth experiment using the KNN and AdaBoost (DT) achieve remarkable 

improvement in ontology alignment. 

Table 5. Comparison of different methods using the F-measure. 

OLA[17] OMAP[16] Properties[15] Classes[15] NB[13] DT[13] FOAM[9] 

Fourth Experiment Alignment 
Method

      Test set 
AdaBoost 

(DT) 
KNN 

0.34 0.74 0.85 0.69 0.753 0.759 0.77 0.89 0.92 #302 

0.44 0.84 0.88 0.86 0.860 0.816 0.84 0.90 0.87 #303 

0.69 0.91 0.98 0.94 0.960 0.960 0.95 0.99 0.98 #304 

 

6. CONCLUSION  

This paper proposes an efficient method for ontology alignment based on the combination of 

different similarity categories in one input sample. This, in turn, increases the discrimination 

ability of the model and enhances the system's overall accuracy.  
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The proposed model determines the alignment process with no prior need to ontology instances, 

which facilitates alignment task. 

Through a comprehensive optimization process of operational parameters, our proposed model 

does not require any user intervention, and it has a consistent performance for both aligned and 

non-aligned entities. 

AdaBoost (DT) model provides the best overall accuracy, especially when feature selection 

scheme is utilized. Experimental results demonstrate that the F-measure criterion improves up to 

99% which is better than the other related research studies that have used up to 23 similarity 

measures. Although, this research uses only 8 similarity measures in its optimum model, but the 

possible impacts of feature reduction has been compensated by using ontology comments, 

enlarging the diversity of training set samples, and choosing more effective similarity measures. 

This grants more accuracy and less computation cost which makes the proposed model 

appropriate even for an online ontology alignment task.  
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