
Structure Matching for Enhancing UDDI Queries Results

Giancarlo Tretola
University of Sannio

Department of Engineering
Benevento,82100 Italy
tretola@unisannio.it

Eugenio Zimeo
University of Sannio

Research Centre on Software Technology
Benevento,82100 Italy
zimeo@unisannio.it

Abstract

To enhance UDDI query capability, typically based

on taxonomic classification, semantic matching is
assuming a key role. Even if we recognize the great
importance of semantics in the discovery process,
structure-based matching can be very useful in many
situations where semantic annotations are not
provided at publish time or ontologies are not yet well
defined. Moreover, structure matching has a potential
application in dynamic binding and invocation to
perform correct parameter passing based on syntactic
elements obtained from the mapping returned by the
structure matching algorithm. The paper discusses the
problem of similarity structure matching and proposes
and compares different implementations of the
algorithm introduced by Wang-Stroulia with the aim of
obtaining better performance. We integrated the
algorithm in a matchmaking framework based on
multiple cascade filters that are able to combine
several matchmaking techniques in order to improve
precision and recall in a flexible and effective way.

1. Introduction

Web Services based distributed applications in B2B

environments are now dealing with an important step
in the improvement of the paradigm: discovery and
binding of published services. The main problem in
this domain is related to the growing diffusion of Web
Services deployment that makes harder to find the
most apt service for the specific needs of the business
process to implement. Web Service Description
Language (WSDL) is oriented to interface description
and is not aimed to support functional matching and
selection when binding is performed. However it is
possible to consider the use of WSDL to define the
mapping between syntactic elements in service
invocation.

In the Service Oriented Architecture (SOA) a

registry has the role to collect information about
published services, making them accessible to the
client that is looking for the more appropriate service
to invoke. The published services are catalogued with
taxonomic criteria (NAICS or UNSPSC) and the
Universal Description, Discovery and Integration
(UDDI) provides an API to interact with the registry.
The API offers functionality for issuing queries, aimed
to discover the services, based on taxonomic
categorization. This discovery approach is clearly not
sufficient, because it does not distinguish the different
services in the same category to enable selecting the
best fitting one.

To overcome the limitations of UDDI registry,
many researchers are proposing several techniques,
either based on structural or semantic information
[14][15]. Even if semantic allows for more expressive
service descriptions and more precise selection of
desired services, it still requires a lot of burden in the
publishing phase and a lot of computational effort at
discovery time. An alternative, useful approach that
improves keyword-based search and syntactic
matching is called “structure matching”. With this
approach, a basic semantic of services is inferred from
their structure and in particular from operations and
parameters types. The approach could be used to
provide an indication of the degree of similarity
between a requested service and the set of services
returned by the taxonomic based queries.

One interesting proposal is described in [1] through
the definition of an algorithm aimed to compute the
structural similarity degree between two service
interface descriptions. In this paper, we present an
implementation of that approach proposed with the aim
of improving performance. Our implementation of the
algorithm represents a part of a matchmaking
framework, which is able to use one or more matching
techniques with a cascading pipe and filter architecture
to improve matching results. Therefore, with this work,
we extend and improve UDDI performances enabling

IEEE International Conference on Service-Oriented Computing and Applications(SOCA'07)
0-7695-2861-9/07 $20.00 © 2007

more accurate queries, even if semantic information is
not available. Our opinion is, in fact, that structure
matching could be used by the side of semantic
matching in a complex matchmaking system for two
main reasons. The principal reason is the possibility to
perform a matching procedure in fields where there is
not any ontology available for semantic description or
if only partial descriptions are possible. As example,
let’s consider services described without an available
ontology for data semantics. Services, then, are
described only with functional semantics. Structure
matching could be used, after the functional semantic
matching, to perform the matching of input and output
data structures that should be not executed using
semantic matching. That operation could be useful if
there is the necessity to make automatic selection and a
subsequent invocation: structure matching could be
used to make a matching of data structures involved in
the operation, performing a mapping between data
types useful for finding the correct order of parameters
passing and data conversion.

Moreover, using structure matching could be
possible to improve overall performance, filtering the
services before executing semantic matching, for
example, in order to consider only the services with a
required degree of similarity.

The paper is organized as follow. In Section 2, we
briefly describe the operative environment: the Service
Oriented Architecture, the discovery phase, and the
matchmaking strategies. In Section 3, we analyze more
in detail the structure matching and related work in
schema and structure matching fields. In Section 4, we
present the Wang-Stroulia algorithm. Section 5
describes our design and implementation activity.
Section 6 shows the experimental results, while
Section 7 concludes the paper highlighting the
potential exploitation of the implemented version of
the algorithm.

2. SOA and matching operation

Service Oriented Architecture is a paradigm applied

to develop distributed application in B2B environment,
using functionality supplied by external enterprises,
exposed as Services [4]. We can say, briefly, that SOA
is an architecture aimed to model systems and
components designed for interoperability, collaboration
and reuse. An important feature of SOA is the
possibility to look for and retrieve the needed services
also at run-time through a process known as dynamic
binding [3]. In more details, SOA defines three main
components and roles that perform the fundamental
interactions: Provider, Registry and Requestor.

In a typical scenario, a provider hosts the
implementation of a service and publishes on the

registry the interface that describes the service. A
requestor may query the registry to discover a service
useful for enacting an operation in its process. It
obtains the information needed to bind to the provider
and invokes the functionality.

The Web Service implementation of SOA is based
on three main technologies: WSDL, SOAP, and UDDI.
WSDL is an XML format for describing services as a
set of endpoints operating on messages, described
abstractly, and then connected to concrete endpoints
[5].

The information contained in a WSDL description
could be divided in two logical sections: the interface,
which defines the service operation and messages
involved in invocation, and the implementation
description that identifies a concrete instance of the
interface and a protocol binding to it.

In a WSDL interface, information is hierarchically
organized. At lowest level there are data types, still
defined hierarchically in XML. Then there are
input/output messages, which use data types for the
definition of the parameters list. At top layer there are
the operations that refer to messages.

Simple Object Access Protocol (SOAP) is the
interaction protocol, based on XML, used to perform
the request/response messages exchange between
requestor and provider [6]. The Universal Description,
Discovery & Integration (UDDI) [7][8] is an initiative
of the OASIS [9] to define a registry able to perform
the operation of collecting published information,
allows for discovery with query and eases the
integration of the services in a business process. The
classification and the inquiry of the registry are based
on taxonomy classification of the published services.

The discovery process is the most critical step in the
lifecycle of Web Service based application: once
identified the service requirements, there is the need to
select the one that fits well with them [10]. The overall
operation to perform is the matching, that is the
comparison of a desired service description, called
template, with a list of several candidate service
interface descriptions, called targets.

Matching

O

A
O'

r

p

A'

Figure 1. The matching process

The matching operation may be defined as a
function that receives two descriptions as input and
returns as result a mapping between the two

IEEE International Conference on Service-Oriented Computing and Applications(SOCA'07)
0-7695-2861-9/07 $20.00 © 2007

descriptions, called mapping elements, composed of
five elements: (id, e, e’, n, R). id is an univocal
identification number, e and e’ are the entities of the
first and of the second descriptions, n is the match
result that expresses numerically the matching between
e and e’, and R is a relation that states the similarity
degree.

The matching process, depicted in Figure 1, is
aimed to produce an alignment of mapping elements. A
is the input alignment, to be completed by the
matching process with the match result, i.e. mapping
and matching score. O and O’ are the descriptions to
match, representing, for example, the couple of schema
or ontology to be matched. A’ is the resulting
alignment. The p parameter is used as boundary
threshold for n or R. r models a resource used for the
matching, for example a data dictionary.

The matching process can be classified in syntactic
and semantic. The syntactic matching is aimed to
determine the linguistic correspondence of the
elements in the two matched descriptions, R is a
syntactic relationship computed between entities and is
measured with n, which is a numerical quantification
of the syntactic relationship [11]. The semantic
matching expresses the conceptual similarity between
the elements in the two descriptions by means of a
semantic relationship R and typically lacks a numerical
score [13]. The semantic matching, in fact, returns as a
result a conceptual relationship between the matched
descriptions based on the ontology used to annotate the
services. Then, this relationship is qualitative and is not
expressed in numerical form. In [13], for example, the
matching of two descriptions may have four possible
results: exact, plug-in, subsume and disjoint. However,
a ranking process can be built by considering the
semantic distance of target descriptions from the
template.

3. Related works

The discovery process that we are going to examine

in this work is aimed to identify a service that could
satisfy the functional requirements specified by a
requestor using WSDL interface descriptions. The
matching procedure, based on the structure of the
descriptions, is an important operation in other
traditional IT systems, such as data warehousing,
information integration, etc. [11]. There are, for
example, procedure in the e-commerce domain aimed
to XML Schema Matching, as preliminary operation to
the definition of automatic expressions that translate
data instance from a schema to another one [12].
Summarizing, in Web Services domain, during the
discovery and integration phases there is the need for
an operation useful to assign the correspondence

among the various description terms of the services. To
perform this operation, in situation where it is not
available an ontology that supports semantic
descriptions and considered that WSDL is an extension
of XML, it is possible to use a particular type of
schema matching: structure matching.

The schema matching allows for checking syntactic
correspondence between elements of two descriptions
or XML schema. In Figure 2, a high-level taxonomy
classification of the schema matching [15] is shown.
The individual matching computes the score basing on
a single criterion, which could be further specified:
comparison of data instance versus comparison of data
schema, or single element matching versus structure of
the entity, etc. The “combining matcher” obtains the
result using the same strategy with several criteria
(hybrid matching) or combining results from different
algorithms (composite matcher). A further
classification, based on the granularity and kind of
inputs, introduces important evaluation criteria: the
distinction between approximate or exact techniques;
the differentiation from syntactic, extern and semantic;
classification in terminological, structural and semantic
[12].

Schema Matching

Individual Matchers Combining Matchers

Schema-Only Instance/Contents Hy brid Composite

Figure 2. Schema matching taxonomy

We consider, now, the works performed in the field
of Structure Matching and the existing prototypes,
which are all classifiable as Hybrid Matchers.

In [21], a structure-matching algorithm based on the
concept of similarity propagation is proposed. The
strategy works on schemas that are converted in
labelled graphs. The algorithm performs the element
level matching between the labels. The central idea is
that two elements are similar when the near elements
are similar, so the similarity is propagated in the
graphs. The propagation in the graph is performed as
flooding does for IP packets in broadcast
communication. This strategy has been implemented
and tested in Rondo [22]. Another hybrid schema
matching prototype is Cupid [1]. In the first phase of
the strategy, a linguistic match is performed, using
three elements level matching based on names, data
types and domain. In the next phase, the schemas are
transformed in a tree and there is a structure matching.
The matching score is the weighted mean of the two
matching, linguistic and structural.

IEEE International Conference on Service-Oriented Computing and Applications(SOCA'07)
0-7695-2861-9/07 $20.00 © 2007

We focalize our interest on a structural matching
algorithm to reach the proposed objective: adding a
better distinction between services collected through
UDDI queries.

4. Wang-Stroulia algorithm

The paper focuses on different implementations of

the structure-matching algorithm proposed by E.
Stroulia and Y. Wang [1]. The matching criterion used
is based on the hypothesis that if two services are
conceptually similar, they are in the same taxonomical
category, and then they are also structurally similar.
The desired service description (template) is matched
with the target description to evaluate the similarity
level. Since the WSDL service description is based on
XML syntax, their elements are compared in a
hierarchical way. The conceptual similarity hypothesis
was used to develop a heuristic, to assign a degree of
structural similarity to WSDL structures.

The matching algorithm is a domain specific
implementation of the tree-edit distance algorithm [2],
which calculates the similarity of two tree structures as
the minimum number of node modifications required
to match them.

The matching of two Web Services is based on the
match of their composing operations. All possible
pairing of each template-operation with each target-
operation is matched and a score is assigned. The
maximum score of all possible pairings determines the
mapping between operations.

The matching of an operation is based on the
comparison of the messages. Each operation has input
and output messages, and the matching between a
couple of operations is performed assigning a score to
the pair of input messages and to the pair of output
messages. The scoring for messages pairing is assigned
performing the matching of parameters data types.

One data type is matched with another comparing
the elements of each type. The elements from each
type are stored in two lists: the template list and the
target list. To consider all pairings, an integer matrix is
built. Each matrix element (i,j) contains the score
assigned to the similarity between template element i
with target element j. The score is assigned using a
heuristic criterion and a MAXSCORE (equals to 10)
value is used as defined by Wang and Stroulia. If two
elements are primitive and could be converted one into
the other without information loss, they are compatible
and their score is MAXSCORE. If the transformation
could cause information loss they are semi-compatible
and their score is MAXSCORE/2. If they are not
compatible the score is 0. If at least one of the elements
is a complex structure then a new list of elements is
created and a recursive invocation to the data types

matching function is invoked, to obtain the matching
score. A data types matching could receive a bonus,
equal to MAXSCORE, if the compared structures have
the same grouping style. After the matrix is filled, the
final step of the matching is performed using the
similarity score to define the mapping between
elements of the two data types. All the possible
pairings are formed and the result is computed
summing all the scores of each pairing. The set of
pairing with the highest result is selected as the
mapping between the two data types defining the
resulting score of the matching.

Considering the complexity of the algorithm it is
clear that the most onerous operation is the research of
the best mapping for all couple of elements in the
similarity matrices. The solution proposed in [1] uses
the total enumeration of all the possible associations
that give the correct solution but with an enormous
computational cost. In this paper we analyze others
methods to implement alternative solutions for the
mapping problem. One possibility is the use of sub-
optimal methodology, as the Greedy algorithm, that
provides sub-optimal solutions but requires less
computational cost. Another possibility is the use of
algorithms applicable only in particular situations, as
the Kuhn-Munkres algorithm, which gives the correct
solution but works only with square matrixes.

5. Design and implementation

Our implementation of structural matching

algorithm [1] was designed to work with a brokering
system that represents an extension of a matchmaking
framework that we defined and we are implementing
using Java technologies. The framework sets the
architecture and the control logic for the matchmaking
of Web Services, which is composed of the following
typical operations: description, discovery, matching
and selection of services. To this end, the framework
works using a registry, where the publishing
information about the services are stored to form a
single search space.

To obtain a working system through the
specialization of the framework, three features are
necessary to define: service description languages,
service registry and matching strategies. The first
feature defines as the services are described using the
data and metadata. The second determines the specific
registry used to publish the services and to store the
data and metadata. The last feature defines the
strategies and the algorithms to be used in services
comparison and selection.

Service registry is accessed through a Repository
Adapter that uses registry API for interaction.
Publishers could interact with Matchmaker to retrieve

IEEE International Conference on Service-Oriented Computing and Applications(SOCA'07)
0-7695-2861-9/07 $20.00 © 2007

information about services annotation. Requestors
interact with the framework using a matchmaking API.
The matchmaker conceptual architecture is depicted in
Figure 3. The matchmaker core contains the frozen
spot of the framework, defining control logic of
operations and using the Factory pattern to allocate the
concrete implementation of the framework hot spots
related to description and matchmaking, that are
chosen by defining the three features of specialization.
The Matching Manager contains the hot spot used
during specialization to plug in the custom code apt to
manage the description and the strategies chosen for
the specialization. The Repository Adapter performs
the adaptation to the selected Repository for Service
description.

Matchmaker
Core

Matching Manager

Repository
Adapter

Matchmaking
API

Repository

Customizable pipe

filter filter...

Figure 3. Conceptual matchmaking framework

Regarding the operation of the framework the
matching process starts with a request formulated by a
service requestor using the Matchmaking API. The
Matchmaker Core receives the target description of the
desired services and accesses to the repository. The
first step is the reduction of the services search space
using the functionality offered by the repository to
submit a query. This operation returns the list of
candidate services. The Matching Manager, performs a
fine-grained analysis of the service subspace using a
set of matching filters organized in a pipelined
structure. A matching filter is a component of the
framework that executes a specific matching strategy.

The matching between services description is
performed using a specific Matching Function. It is
possible to customize the pipeline by implementing
different filters, characterized by distinct strategies,
choosing which filter to use and defining their
sequence. The filters are able to reduce the list of
candidate services, step after step, returning a mapping
between the target and the templates. We developed a
testing specialization of the conceptual framework by
defining the three mentioned features: service
description, registry and matching strategies. The
descriptions used to annotate the services are:
taxonomy (NAICS or UNSPSC), tModel, WSDL

syntactic description. The registry used is the UDDI
registry and specifically we used UDDI4J [16] and
JUDDI [17]. The matching strategies used are the
functional and data semantics based on the algorithm
defined by Wang and Stroulia. However, for other
purpose we have also implemented and integrated the
semantic matching as proposed by Paolucci [13].

To integrate the algorithm in a filter and this in the
matchmaking framework an architecture hot spot has
to be extended. The architecture uses the strategy and
the template method design patterns. The class diagram
that describes the framework adaptation is shown in
Figure 4. The framework control logic uses an
interface that defines the Matchable type, that has the
method setMatchingFunction to choose the matching
function to use among the possible choices. That
interface defines a frozen spot of the framework that
allows for selection of the matching strategies.

<<interface>>
Matchable

+setMatchingFunction
+match

<<interface>>
MatchingFunction

+makeMatch

<<abstract>>
StructuralMatching

+ abstract maxScore

<<interface>>
MatchingResult

<<interface>>
Mapping

<<interface>>
MatchingScore

Figure 4. Matchmaking framework adaptation

The matching process is performed with the
invocation, on behalf of framework control logic, of
the method match. The hot spot to be implemented is
the interface MatchingFunction that defines a type with
a single operation, makeMatch, which performs the
matching of a template with a target description,
according to the Strategy design pattern.

The Strategy implementation is driven via the
abstract class StructuralMatching, which defines the
algorithm for the makeMatch that is a template method
for the structural matching algorithm, according to the
Template Method design pattern. To this intent, the
abstract class defines also an abstract hook method
maxScore, which is used to define the maximum
similarity score for the elements. The matching method
returns a matching result that is composed of the
matching score assigned to the couple of descriptions
examined and a mapping among the elements in the
descriptions, defined as we have described in the
second section related to the matching problem.

IEEE International Conference on Service-Oriented Computing and Applications(SOCA'07)
0-7695-2861-9/07 $20.00 © 2007

The use of a hook method allows for different
implementations of the mapping problem. We have
developed three different solutions for this hook
method: total enumeration of all the possible
association, a greedy algorithm and a solution based on
the Hungarian algorithm, a technique for solving
resource allocation problems.

6. Performance evaluation

To evaluate the different implementations of the

Wang-Stroulia algorithm, we conducted three tests.
First, we have tested the correctness of the
implementation, performing a matching with services
with different levels of similarity. Second, we
conducted a quantitative test about the performance of
different implementations of the algorithm, which
differ in the functionality that computes the maximum
score of similarity. The last test was about the quality
of the matching.

In the first test, we used the same Web Service as
described in [1] (to obtain comparable results) which
contains only one operation: int GetData(POType p). It
is a complex data type and is sketched in Figure 5. We
conducted three tests, performing the match with other
two simple services containing only one operation and
in the third case with an identical service. The data
types used in the first two examples, Type1 and Type2,
are also shown in Figure 5, the third data type, Type3,
is identical to the template type POType.

POType

id:String name:String Item

quantity:int product:String

Type1

id:int name:String

Type2

id:int name:String Item

quantity:int

Figure 5. Data types used in correctness test

The maximum score that could be realized in this
test is 70, that is the matching score obtained from the
matching of the template description with itself. The
following table shows the mapping between POType
and Type 2 in the second test, giving a maximum score
of 40. Symbol ? indicates recursive invocation of the
matching function, to compare complex elements. The
resulting mapping is denoted by the numbers in bold
style.

Table 1. Second test data types matching

 Type2
 id:int item:Item code:String

id:String 5 ? 10 10
item:Item ? 10 ? 10+10 ? 5

POType
 name:String 10 ? 5 10

The test results are presented in Table 2. We can
observe that the algorithm implementation is able to
give different results for the description that presents
major structural difference (the first one); the result is
less different for a description that is more similar (the
second one). In third case, the matching of the most
similar service returns a value equals to the maximum
score. The quantitative testing was conducted to
evaluate the different implementations for solving the
maximum score problem. We used the three different
algorithms with different computational complexities,
shown in Table 3.

The first algorithm is applicable in every situation
and gives always the optimum solution.

Table 2. Correctness testing

Test Score (Score/Max Score)*100
1st Test 34 49%
2nd Test 60 86%
3rd Test 70 100%

The second method is always applicable but give a
sub-optimal solution. The third method is applicable
only to match description of the same dimension, i.e. it
works only on square matrices, but gives the optimal
solution.

Table 3. Computational complexity

Algorithm Complexity
Total Enumeration (optimal) O((max{m,n})!)
Greedy (sub optimal) O((max{m,n})2)
Kuhn-Munkres (Hungarian method –
optimal with constraints)

O(n3)

To produce a performance comparison, we
conducted the matching between two descriptions with
the same number of elements, so it is possible to use
also the third algorithm. The performance was
measured with a growing dimension of the description,
i.e. the number of composing elements, starting with 6
and scaling up until 10. All the operations were
conducted on a: PC – Pentium IV 2.4 GHz with 512
MB of RAM. The values measured were the total
execution times of the matching function. The results
obtained are shown in Table 4, where time is measured
in milliseconds.

To conduct a deep analysis of performance, we have
plotted the execution times in Figure 6 with the
dimension of descriptions on the horizontal axis and

IEEE International Conference on Service-Oriented Computing and Applications(SOCA'07)
0-7695-2861-9/07 $20.00 © 2007

execution time on the vertical axis, by using a
logarithmic scale.

Table 4. Performance test results

Matrix
dimension

Total
Enumeration Greedy

Kuhn-
Munkres

6 26 ms 0,073 ms 2,5 ms
7 107 ms 0,08 ms 2,8 ms
8 944 ms 0,1 ms 3,01 ms
9 11751 ms 0,151 ms 3,31 ms

10 148362 ms 0,198 ms 3,52 ms

The figure shows that the total enumeration solution

is computational heavy even with the smallest value,
and performs the matching with time that increases
exponentially. The greedy algorithm returns a sub-
optimal solution, which could be a non-optimal
mapping, but the execution times are really very good.

The Hungarian method returns an optimal solution
and presents the best compromise between correctness
and execution time. The major problem is its
applicability to only the special cases where the
template description and the target description are
composed by the same number of elements.

26
107

944

11751

148362

0,073 0,08 0,1 0,151 0,198

2,5 2,8 3,01 3,31 3,52

0,01

0,1

1

10

100

1000

10000

100000

1000000

6 7 8 9 10
Matrix dimension

Ti
m

e
[m

s]
 (l

og
ar

ith
m

ic
)

Total Enumeration Greedy Kuhn-Munkres
Figure 6. Performance results

The last test is about the qualitative feature of the
algorithm. To this end, we uses precision and recall
metrics, both well known in the information retrieval
research [19]. Precision measures the fraction of really
similar descriptions returned on the total of the
returned descriptions. It represents the ability of the
strategy to present correct results. Recall measures the
fraction of really similar descriptions on the total of all
the similar descriptions in the service space. It
represents the ability of the strategy to individuate as
many as correct results. Both values range from 0 to 1,
with 1 as the best result and 0 the worst.

To carry out a qualitative test, it is necessary to
manually perform a pre-match, that is defining in
advance which is the service space, which results are

correct and which are not correct. To perform this pre-
match we have used the website XMethods [20], that
presents publicly available Web Services to the users,
classified in categories. We selected 20 services in five
different categories, used also for the evaluation in [1]
in order to perform a similar testing.

DNA info searcher 5 services
FAX 4 services
Email Address Verifier 5 services
Stock Quote Finder 3 services
Weather Info Finder 3 services

The services in each category were considered to be

similar and compatible among them. The testing was
conducted using each service as template and
comparing it with any other service. This means that
for the first category, we used the five services as
template and all 20 services as target list. In this test,
we used the algorithm implementation that employs
the greedy techniques to resolve the mapping sub-
problem. The results obtained are shown in Table 5.

Table 5. Qualitative test results

Category p[%] r[%]
DNA info searcher 64,0 80,0

Fax 32,5 43,8
Email Address Verifier 38,6 28,0

Stock Quote Finder 8,3 33,3
Wheater Info Finder 26,4 44,4

Average 34,0 45,9

The overall average precision obtained is about

34,0% and the overall average recall is about 45.9%,
which show that the algorithm could make errors when
there are services that, although different, could have a
quite similar syntactic structure. The results obtained
are compatible to those presented in [1]. Wang and
Stroulia have proposed the use of supporting
techniques to improve precision and recall. Also in our
opinion, algorithm should not be used alone but
supported by other techniques or in a system that uses
also semantic strategies to improve precision and
recall, while structure matching contribute to global
performance improvements.

7. Conclusions

In this paper, we presented the implementation of a
structure-matching algorithm that aims at improving
UDDI registry querying. The algorithm was realized as
part of a larger project under development: a

IEEE International Conference on Service-Oriented Computing and Applications(SOCA'07)
0-7695-2861-9/07 $20.00 © 2007

framework for Matchmaking of Web Services. The
algorithm was realized using a Template Method
pattern for having different resolving strategies.

The performance evaluation showed that the
algorithm is useful to discover services similarity but
when used alone it does not give satisfactory results, as
shown by the values of precision and recall indexes.
The precision and recall could be improved when the
algorithm is used with other discovery and matching
strategies. To this end, we have some ideas for possible
further improvements.

We planned to use the algorithm together with a
semantic matching strategy, and we are conducting
these tests in our framework. In one scenario, the
structure matching is used to complement semantic
matching, when semantic information is not sufficient.
In this scenario, the structure-matching algorithm is not
used completely, but only its first step, the data
similarity, could be used to improve the performance
of semantic matching. The matching could be adopted
to compare the types of the parameters when data
semantic information is not available.

In another case, the first step of the matching
process could be the sorting, in descending similarity
order, of the services, performing a filtering operation
on the services space and so reducing the quantity of
semantic matching to perform.

An additional enhancement could be achieved by
increasing the modularity of the structure matching. In
the third test, in fact, we noted that the algorithm
performs quite well in matching some types of services
in certain categories, for example DNA search, and
gives worst result in others, for example Stock Quote.
Then it could be possible to use different heuristics in
the assignment of similarity score for taking into
account this problem. The heuristic could be more
specialized and fit well in a single taxonomic category.
Having a heuristic for each category could be a
noteworthy improvement in qualitative performance.

Finally, another additional improvement could be a
heuristic that adapts itself at runtime. It could be
adjusted considering runtime performances, that is,
collecting results from matching and obtaining
feedbacks from users to adjust heuristic scoring. In
such a way the structure matchmaking could be
adaptively fitted to the client behaviour and category of
services used.

Acknowledgements

The work described in this paper is framed within
the LOCOSP project funded by Italian Ministry of
University and Scientific Research, ex MIUR.

We also thank Ausilio Di Prizito for his support
during the implementation phase of the algorithm.

8. References

[1] E. Stroulia, Y. Wang, “Flexible Interface Matching for

Web-Service Discovery”, 4th IEEE International
Conference on Web Information Systems Engineering
(WISE 03), 10-12 December 2003, Rome Italy.

[2] M. Garofalakis, and A. Kumar. "Correlating XML Data
Streams Using Tree-Edit Distance Embeddings". In
Proceedings of ACM PODS’2003.

[3] S. Matthew, J. McGovern, M. Stevens, S. Tyagi, “Java
Web Services Architecture”, Morgan Kauffman
Publishers, 2003.

[4] World Wide Web Consortium, W3C,
http://www.w3c.org.

[5] WSDL, Web Services Description Language,
http://www.w3c.org/TR/wsdl.

[6] SOAP, Simple Object Access Protocol 1.1, 2002,
http://www.w3.org/TR/SOAP.

[7] UDDI, Universal Description, Discovery, and
Integration, http://www.uddi.org/.

[8] UDDI technical paper,
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_
Paper.pdf.

[9] OASIS, http://www.oasis-open.org/.
[10] J. Cardoso, A. Sheth, “Semantic e-Workflow

Composition”, Journal of Intelligent Information Systems
(JIIS), 2003.

[11] P. Shvaiko, “Iterative Schema-based Semantic
Matching”, Technical Report DIT-04-020, University of
Trento, 2004.

[12] J. Euzenat, P. Shvaiko, “A Survey of Schema-based
Matching Approaches”, Journal of Data Semantics
(JoDS), IV, LNCS 3730, 2005.

[13] T. Kawamura, T. Payne, M. Paolucci, K. Sycara,
“Semantic matching of web services capabilities”, in
Proc. of the 1st International Semantic Web Conference
(ISWC), 2002.

[14] T. Kawamura, T. Payne, M. Paolucci, K. Sycara,
“Importing the Semantic Web in UDDI”, in Proceedings
Web Services, E-Business and Semantic Web Workshop,
CAiSE 2002. Toronto, Canada, 2002.

[15] P. A. Bernstein, E. Rahm, “A Survey of Approaches to
Automatic Schema Matching”, VLDB Journal, 2001.

[16] UDDI4J, http://www.uddi4j.org.
[17] WSDL4J, http://sourceforge.net/projects/wsdl4j.
[18] WSIF, http://ws.apache.org/wsif/.
[19] I. Cho, L. Krause, J. McGregor, “A protocol-based

approach to specifying interoperability between objects”,
In Proceedings of TOOLS’26 Santa Barbara, California,
1998.

[20] XMethods, http://www.xmethods.com/.
[21] H. Garcia-Molina, S. Melnik, E. Rahm, ”Similarity

Flooding: A Versatile Graph Matching Algorithm and Its
Application to Schema Matching”, ICDE, 2002.

[22] P. A. Bernstein, S. Melnik, E. Rahm, “Rondo: A
Programming Platform for Generic Model Management”,
SIGMOD Conference, 2003.

[23] P. A. Bernstein, J. Madhavan , E. Rahm, ”Generic
Schema Matching with Cupid”, VLDB, 2001.

IEEE International Conference on Service-Oriented Computing and Applications(SOCA'07)
0-7695-2861-9/07 $20.00 © 2007

