
How Servie Choreography Statistis Redue theOntology Mapping ProblemPaolo Besana and Dave RobertsonShool of Informatis, University of EdinburghAbstrat In open and distributed environments ontology mapping pro-vides interoperability between interating ators. However, onventionalmapping systems fous on aquiring stati information, and on map-ping whole ontologies, whih is infeasible in open systems. This papershows that the interations themselves between the ators an be used topredit mappings, simplifying dynami ontology mapping. The intuitiveidea is that similar interations follow similar onventions and patterns,whih an be analysed. The omputed model an be used to suggest thepossible mappings for the exhanged messages in new interations. Thesuggestions an be evaluate by any standard ontology mather: if theyare aurate, the mathers avoid evaluating mappings unrelated to theinteration.The minimal requirement in order to use this system is that it is possibleto desribe and identify the interation sequenes: the OpenKnowledgeprojet has produed an implementation that demonstrates this is pos-sible in a fully peer-to-peer environment.1 IntrodutionMost ontology mapping systems [9,15℄ available for the semanti web and forsemanti web servies fous on aquiring stati, a priori information about map-pings. Depending on the approah, mathers ompare labels, ontology strutures[10℄, use external ditionaries like WordNet to prove similarity between nodesin hierarhies [7℄, learn how instanes are lassi�ed to �nd similarities betweenonepts [5℄ or ombine information from di�erent soures [4,6℄. In an open anddistributed environment ontology mapping systems aim at providing interoper-ability between interating ators, eah with possibly a di�erent ontology. Map-ping in advane, before the interations, is unfeasible, as the agents may be stillunknown. Mapping during the interations may be omputationally di�ult, asmany interations with di�erent ators an go on simultaneously.This paper shows that the interations between the ators an be used topredit the mappings, making the problems related to dynami ontology map-ping more tratable. The intuitive idea is that interations follow onventions andpatterns, and these patterns are repeated when similar situations arise. The pat-terns are extrated by analysing the interations in order to model the relationsbetween the terms that appear in them. If the omputed model is representativeof a lass of interations, then it an provide the basis for prediting the ontentof exhanged messages in future interations. A predition is a list of suggestions



for the mapping, that any standard ontology mather an evaluate. If the predi-tions are aurate, the mathers an avoid evaluating mappings unrelated to theinteration, improving e�ieny and dereasing ambiguity. In fat, the ontextof the interation provides additional information, that an help in those asesin whih the mathers do not have enough stati information to distinguish theorret mapping among many possible ones.This paper shows that, after a reasonably small number of interations thepreditor onsistently provides reliable suggestions. The minimal requirementin order to use this system is that it is possible to desribe and identify theinteration sequenes. In priniple, any system based on work�ow language anprovide this. Work�ow systems normally are entralised, but we have reentlyshown, in the EU funded OpenKnowledge projet 1 that it is possible to ahievepeer-to-peer based work�ow systems, as a means of web servie horeography.In this paper, we �rst desribe, in Setion 2, the intuitive notions of dia-logue and interation behind our work; then, in Setion 3, we brie�y disuss thealternative approahes for agents ommuniation, introduing the OpenKnowl-edge peer-to-peer framework for de�ning and exeuting interations. Setion 4de�nes the onepts and terms used in modelling the ontext of interations,while Setion 5 desribes what needs to be modelled, and how to model it withan example. Setion 6 de�nes what needs to be evaluated, then reports how thetesting was strutured and next presents and interprets the results.2 Servies' interationsMany ativities require interation between di�erent ators: for example, in orderto book a room for a onferene an inquirer needs to ontat a travel ageny (ormore than one) or diretly a number of hotels.In the simplest version, ommuniation between two agents is a messagetransmitted from a sender to a reeiver. Aording to the speeh at theory,a message is a performative at that hanges the state of the world [14℄. Forexample, a message sent from agents i to agent j to inform about φ will likelyhange the beliefs of j, adding the belief about φ. In our example, the followingmessage, sent from Mr Smith's agent to the agent representing the hotel Y:inform(booking, 11 Nov 2007, 15 Nov 2007, Mr Smith, single)should make the hotel agent believe that a single room must be reserved for MrSmith from the 11th to the 15th of November. Or at least this is what Mr Smiththinks. But, for example, the hotel agent may not know the meaning of bookingor single, or it may use a di�erent format for dates. To overome this problem,either all agents that ontat the hotel servie must share the same ontology,whih is not feasible in an open environment where agents from di�erent bak-grounds may interat, or the agents must have aess to the mappings betweendi�erent ontologies.Unfortunately, it is infeasible in an open system to preompute all mappings,as it is impossible to foreast whih agents will ontat the hotel servie, so some1 www.openk.org



(or perhaps all) mappings must be omputed dynamially when the interationtakes plae. Many di�erent ontology mapping systems have been developed andtested. However, the use of these systems raises two problems, both onnetedto the fat that they map full ontologies. Firstly, ontologies an be large, andthe proess an be lengthy, making it di�ult to perform at run time, possiblysimultaneously with other interations that require other mappings. Seondly,ontologies often overlap only partially, and evaluating the result of the mappingproess an be hard: one mapping proess between two ontologies may yield15% of overage, while another one between di�erent ontologies may yield 80%overage, but the mappings in the �rst ase may be the ones needed for aninteration, and those in the seond ase may be unrelated to it (this only beingknowable at interation time).Usually interations are more omplex than single messages. Mr Smith'sagent may �rst hek the availability of o�ers, or it may want to �rst try singleand then double rooms. Moreover, the booking may require a deposit or a reditard number. This inreased omplexity, onsisting in exhanges of messages,follows rules and onventions: as the onversation unfolds, the ontent of newmessages is bound by the previously exhanged messages. A message failing tofollow these rules would surprise the hearer as being at best o� topi or eveninomprehensible.Dialogue norms and onventions appear at syntati level: a request is nor-mally followed by an answer, an o�er by an aeptane or a rejetion. Theyan also be found at semanti level: the topi of a onversation tends to remainonsistent over a number of messages, forming a sort of �loal� ontext to theonversation - for example when the agents are disussing about the purhaseof a spei� produt. The intuitions about syntati norms has prompted re-searhers in NLP to study the possibility of dialogue grammars, that have oftenbeen represented as �nite state mahines, where the speeh ats are the tran-sition states between admissible states of the dialogue. The use of models fordialogues has been used, for example, in dialogue translation [12℄.The ontent of interations (even the simple ones onsisting of single mes-sages) are also in�uened by the �real world� ontext - agents still at on thebehalf of real ators - whih in�uenes the likelihood of some spei� topis(tastes and needs hange with geography and time). The travel ageny ontextbinds already the possible ontent of the interation (you may ask for a �ight,for a holiday pakage, but you will unlikely ask for a laptop)For example, after entering in a travel ageny and asking for an aommo-dation somewhere, the lerk will likely ask the requested period, and then willtry to re�ne the request proposing di�erent types of aommodations (hotels,B&B, hostels, and so on). One aommodation has been addressed, the ontentof the possible messages is further onstrained: talks about ruises are still pos-sible, but less likely. However, the list of proposed aommodation may hange,depending on the deals that the ageny has, or more general on the ountry andperiod (for example, B&B are starting to appear in Italy, but were extremelyrare until a few years ago, while they are very ommon in the UK).



Interations aimed at performing tasks tend to be repeated fairly similarlyevery time the same task needs to be done: the struture of the interation inthe example will be repeated similarly in di�erent travel agenies. The repetitionof interations o�ers the possibility of extrating patterns in the interation,providing the basis for a representation of ontext. This representation an beused for fousing the mapping proess.3 Dialogues and protoolsDialogues between software agents are, at least at the moment, simpler andmore restrited than those between humans: they are arried out in order toreah a goal (buying a produt, booking a �ight, querying a prie, ...) and thereis no need to are for digressions, unless relevant to the task. Therefore, theirgrammars an be simpler than those required for human interations.Interations an be hard-oded in the agents involved in them; may beplanned dynamially; or de�ned in work�ows that are followed as a sript bythe agents. These approahes o�er di�erent trade-o�s between �exibility ande�ieny: embedding the interations in the agents is the most in�exible butpossibly very e�ient. Planning is based on the the idea that speeh ats anbe onsidered as ations that hange the world, and have preonditions andpostonditions, usually relative to the mental state of the agents involved in theinteration [3℄. It o�ers the maximum �exibility but may require hefty ompu-tation at every interation, and onditions an be di�ult to verify. However, aswe have argued, interations tend to be repeated, so planning them every time isa waste of resoures: work�ows represent a good ompromise and are urrentlythe dominant solution.Work�ows an be seen as a sort of expliit, more stringent dialogue grammar,that agents follow. Their speeh ats represent the transitions (or moves) betweenthe di�erent state in the dialogue.Most work�ow languages represent interations between proesses, and anbe formalised using proess aluli (suh as π-alulus [11℄). The LightweightCoordination Calulus (LCC) [13℄ is based on π-alulus and an be used as aompat way of representing work�ows. It is also exeutable and it is adapted topeer-to-peer work�ows. In the original version, protools are delarative sripts,irulated with messages. Agents exeute the protools they reeive by applyingrewrite rules to expand the state and �nd the next move.It uses roles for agents and onstraints on message sending to enfore thesoial norms. The basi behaviours are to send (⇒) or to reeive (⇐) a mes-sage. More omplex behaviours are expressed using onnetives: then reatessequenes, or reates hoies.The protool in Figure 1 shows the initial part of a protool desribing aninteration between a ustomer and a supplier of some produt. In the fragment,the ustomer asks for a produt and then the supplier veri�es if the request mustbe re�ned. If this is the ase, the supplier will propose to the ustomer another,more spei�, produt. The ustomer, in turn, will analyse the proposal and see



Figure1. Request re�nement in LCCif it �ts its needs. Figure 2 shows a run of the protool in an interation betweena ustomer and a travel ageny for booking an aommodation.While the example has been kept simple for explanation purposes, a realinteration ould be far more omplex, involving many agents: LCC has beenused in appliations suh as business proess enatment [8℄ and e-siene servieintegration [1℄. In partiular, it has been hosen as the spei�ation languageused for de�ning interation models in OpenKnowledge, whih aims at reatinga Peer-to-Peer system that is open in partiipation, funtionality and data andshould allow people to easily reate, �nd, invoke, ompose and run servies in adeentralised and autonomous fashion.3.1 Open Knowledge KernelThe ore onept in OpenKnowledge are the interations, de�ned by interationmodels written in LCC and published by the authors on the distributed disoveryservie with a keyword-based desription. The roles in the interation modelsare played by peers. The peers that want to perform some tasks, suh as bookinga room or provide a booking servie, use keyword queries to searh for publishedinteration models for the task, and then advertise their intention of interpretingone of its roles to the disovery servie. In the running example, a travel agenysubsribes to perform role supplier, while a peer searhing a room subsribesas ustomer.When all the roles are �lled, the disovery servie hooses randomly a peerin the network as oordinator for the interation, and hands over the interationmodel together with the list of involved peers in order to exeute it.The oordinator then asks eah peer to ommit to the interation. If theyall ommit, the oordinator exeutes the interation instantiating a loal proxy



Figure2. Run of the protool for searhing an aommodationfor eah peer: the peers are ontated to solve onstraints in the role they havesubsribed. In the example protool, the oordinator will ask the peer that hassubsribed as ustomer to solve want(Produt).4 Prediting the ontent of messagesA message in an interation is a tuple, whose elements onvey the ontent of asingle ommuniation at:
mi = 〈s1, ..., sn〉A term si is introdued when a onstraint in a role is satis�ed by one of theators playing the role (in the example shown in Figure 2, �aommodation�is introdued by the ustomer peer, satisfying the onstraint want(Produt)).The term si is de�ned in the ontology of that agent, and refers to an entity

Qk. The other agents, if they need to satisfy a onstraint that ontains si, willneed to �nd the term tm in their ontology that refers to the same, or a similar,entity Qk (in the example, in order to satisfy the onstraint refine(Produt,ListRefined), the supplier must map the term �aommodation� to �lodging� inits ontology). The mapping is performed by a �mapping orale�, whose spei�implementation is irrelevant for this work: any existing mapping system, suhas S-Math [7℄, would �t smoothly in the framework.Let us suppose that a peer, with ontology La, needs to satisfy a onstraint
κr (. . . , wi, . . .) when in a spei� state of an interation, and that wi /∈ La is theforeign term reeived in some previous message mj . The task of the orale is to�nd what entity Qk, represented in the agent's ontology by the term tm ∈ La,was enoded in wi.De�nition 1. The intended entity Qk represented in the argument of the on-straint by the foreign term wi is, from the agent's perspetive, a random variable,whose domain is the whole ontology.



As said before, an ontology mapping algorithm an be used to interpret the sign
wi in the message and map it to the orresponding symbol tm.De�nition 2. The term tm is the mathing term: it is, in the agent's ontology,the losest to the intended entity Qk. For the urrent work, the mathing term isassumed to exist in La. The assumption is based on the weakness of the relationbetween tm and Qk: it is su�ient that the meanings are lose enough to performthe interation.However, onventional ontology mapping algorithms do not take into aount theontext of the interation, and onsider all the terms in the domain as equiprob-able:

p(Qk = ti) = p(Qk = tj) for ∀ti, tj ∈ LaAs introdued earlier, dialogues follows onventions and rules, made expliit bythe protool, and the ontent of the messages are in�uened by the loal and thegeneral ontext: therefore the terms are not equiprobable - some will be morelikely than others.De�nition 3. The random variable Qk has a onditional probability distribu-tion, where the evidene is the ontext of the interation (we disuss ontext inSetion 5):
P (Qk |context ) = 〈. . . , p (Qk = ti |context ) , . . .〉 for ti ∈ Lawhere p (Qk = ti |context ) is the probability that ti is the best mathing termfor Qk given the urrent state of the interation and the history of previousinterations.The knowledge of the probability distribution of a variable is used to preditthe possible values of Qk seleting a subset of likely terms to be veri�ed by theorale, improving the e�ieny and the results of the ontology mapping systems,and making it more feasible to be performed at runtime.De�nition 4. A subset Λ ⊆ La is a set of terms ontaining the most likelyterms for a random variable Qk. The probability that the orret mathing term

tm belongs to Λ is:
p (tm ∈ Λ) =

∑

ti∈Λ p (Qk = ti |context )For Λ = La, this probability is 1. If the distribution is uniform, then a set Λ ofsize γ |Λ|, with 0 ≤ γ ≤ 1, will ontain tm with probability p (tm ∈ Λ) = γ. If thedistribution is non-uniform, then even for smaller resizing fator γ it is possibleto obtain high probabilities p (tm ∈ Λ): it beomes useful to trade o� betweenthe size of the set Λ and the probability of �nding the orret mapping. To seletthe terms to insert in Λ, it is neessary to set a threshold τ < 1 for p (tm ∈ Λ). Ifthe terms are ordered from the most probable to the least one, then this meanssolving the equation in n:
τ ≤

∑n
1 p (tj)That simply means taking the �rst n most likely terms until their umulativeprobability is equal or greater than τ .



5 Modelling the ontext5.1 What to modelAn interation is an exhange of messages, where the ontent of the messagesomes from satisfying onstraints. A peer satisfying a onstraint is responsiblefor the introdution of terms related to the interation: failure to do so disruptsthe ommuniation. If the travel ageny peer, after being asked for an aommo-dation, satis�es the onstraint refine(Produt, ListRefined) with a hoieof possible types of o�ee, then the ommuniation loses meaning. Therefore,what the preditor should model are onstraints. Intuitively, onstraints fall intothree main ategories:� Purely funtional : given a set of parameters, they always unify with thesame values: for example multiply(X, Y, Z) is supposed to always unify thevariables with the same numbers.� Purely �preferene-based�: they ollet requests from users and their possiblevalues an di�er every time. In the example, the onstraint want(Produt)is preferene-based: eah peer will satisfy it aording to its tastes and needs.Overall, the variables in preferene-based onstraints will have an unknowndistribution. These distributions may hange with time, depending on gen-eral shifts of �tastes� and �needs� (fashions, trends, fads, ...) or the hetero-geneity in the peer group omposition, and an be more or less biased.� Mixed : they an be mainly funtional, but the results may hange depend-ing on external fators (availability, new produts appearing on the market,et), or an be mainly preferene-based, but onstrained by some other pa-rameters. In the example, the onstraint refine(Produt,ListRefined) ismainly funtional, as it returns the list of possible sublasses of a term ifthe query an be re�ned. The list of terms an however hange dependingon the spei� peer and with time.A purely funtional onstraint, when the funtion is ontologial (obtain sub-lasses, or siblings, or properties), an be guessed and the hypotheses an beveri�ed omparing the guesses with the feedbak from the ontology mathingproess. For the purely preferene based, it is possible to ount the frequeniesof the terms and learn their prior probability distribution. For the mixed, it ispossible to use a mix of hypotheses and ounting the frequenies. Sometimesthe ontology of the peer does not allow him to formulate the orret ontologi-al relation (beause the ontology is strutured di�erently from the agent thatintrodued the term): it is still possible to ount the onditional frequenies,modelling the relation from a purely statistial point of view.5.2 How to modelOur solution, suggested but not evaluated in [2℄, is a model of the interation inwhih the properties of entities appearing in the random variable Qk in di�erentruns of the same protool are ounted and stored in assertions:



Frequeny of terms: Freq (Ei ∈ {tq})Assertions an be about the frequeny of the entities in an argument, disregarding theontent of other variables in the dialogue, like A1−5 in Table 2.Conditional frequeny of terms: Freq (Ei ∈ {tq} |Ek = th)More preise assertions an be about the frequeny of an entity given the ontent ofpreviously enountered variables, like A6−10 in Table 2.Frequeny of relations with terms in other variables: Freq (Ei ∈ {X | rel (X, Ek)})They an regard the relation with an argument of another variable in the protool, like
A11−12 in Table 2.Frequeny of relations with terms in ontology: Freq (Ei ∈ {X|rel (X, tk)})They an be about an ontologial relation between the entity in the argument and anentity tk in the agent's ontology, like A13 in Table 2.Table1. Types of assertionsDe�nition 5. An assertion about a random variable Qk keeps trak of the fre-queny with whih the entity has been part of a set Ψ in the enountered dialogues:

Aj
.
= Freq (Qk ∈ Ψ) (1)Assertions an be about frequenies of terms in the variable, or an be about thefrequenies of ontologial relations between one variable and another, as desribedin Table 1.For example, the ustomer peer, having exeuted the interation in Figure 1a number of times with di�erent types of servie providers, will have a tablewith assertions about the ontent of the variable Proposalk in the form shownin Table 2. As protools an be reursive, the variables are tagged with theirappearane in the run (in the example, the variable Proposal is used twie, sothere will be two random variables named Proposal1 and Proposal2)When the ontent of a variable must be predited, the assertions relative to itare instantiated with the urrent state of the the interation. In the interationshown in Figure 2, in order to predit the ontent of Proposal2 (reeived in theseond o�er sent by the travel ageny), given that Product1 was instantiated to�aommodation� and Proposal1 was instantiated to �hostel�, it is neessary:1. to drop the onditional assertions whose evidene does not orrespond tothe urrent state of the interation; so assertions A9−10 are dropped beausetheir evidene Product1 = ”car” is inonsistent with the urrent interation,2. to unify the variables in relations with the urrent state of the interation ;

Product1 in A11 is replaed with �aommodation� and Proposalk−1 in A12is replaed with �hotel�, obtaining:
A11)Freq(Proposal2 ∈ {Proposal2 : subClassOf(Proposal2 ,“accomodation”)})

A12)Freq(Proposal2 ∈ {Proposal2 : siblingOf(Proposal2 ,“hotel”)})3. the relations are omputed, obtaining sets of terms; so A11−13 beomes:
A11)Freq(Proposal2 ∈ {“hostel”, “hotel”, “b&b”, “camping”}) = 24
A12)Freq(Proposalk ∈ {“hotel”, “b&b”, “camping”}) = 24

A13)Freq(Proposalk ∈ {“accomodation”, “hotel”, ..., “car”, ..., “van”}) = 24



A1) Freq(Proposalk ∈ {“hotel”}) = 6
A2) Freq(Proposalk ∈ {“hostel”}) = 6
A3) Freq(Proposalk ∈ {“b&b”}) = 4
A4) Freq(Proposalk ∈ {“compact_car”}) = 3
A5) Freq(Proposalk ∈ {“economy_car”}) = 5
A6) Freq(Proposalk ∈ {“hotel”} |Product1 = “accommodation”) = 6
A7) Freq(Proposalk ∈ {“hostel”} |Product1 = “accommodation”) = 6
A8) Freq(Proposalk ∈ {“b&b”} |Product1 = “accommodation”) = 4
A9) Freq(Proposalk ∈ {“compact_car”} |Product1 = “car” ) = 3
A10)Freq(Proposalk ∈ {“economy_car”} |Product1 = “car” ) = 5
A11)Freq(Proposalk ∈ {Proposalk : subClassOf(Proposalk , Product1)}) = 24
A12)Freq(Proposalk ∈ {Proposalk : siblingOf(Proposalk , Proposalk−1)}) = 24
A13)Freq(Proposalk ∈ {Proposalk : subClassOf(Proposalk , “product”)}) = 24Table2. Statistial model of the ontext for the ustomer peerThe result of the third step is that some of the assertions assign probabili-ties to possibly large and overlapping sets. The frequenies assigned to setsare uniformly distributed among the members: aording to the priniple ofindi�erene the frequeny of mutually exlusive elements in a set should beevenly distributed. However, assertions about ontologial relations reate twomain problems. First, some of the relations an be spurious. Seond, some re-lations may refer to large sets, bringing little information (like assertion A13 inthe example). To deal with the �rst issue, only relations found in a signi�antproportion of the ases are taken into onsideration. To deal with the seondsets larger than a signi�ant portion of the ontology are disarded. Tests haveshown that a threshold for the �rst issue of 10% and of 20% for the seond oneminimise the problem.Finally, the probability that an entity ti is used for Qk is omputed by sum-ming the frequenies in all the instantiated assertions in whih ti appears, dividedby the sum of the frequenies of all the seleted assertions:

p (ti) =

∑

Aj(ti∈Ψ)
∑

Ak

(2)In the example, to ompute the probability that the onept in Proposal2 isthe term �hotel� , the numerator ontains the assertions A1, A6, A11,A12. Theassertions A11−12 ontain more than one element, and therefore the frequenyassigned to �hotel � is omputed dividing the frequeny assigned to the set by thesize of the set to obtain the following:
P (hotel) = 6+6+24/4+24/3

6+6+4+3+5+6+6+4+24+24 = 26
88 = 0.295The omplete distribution of variable P (Proposal2 = “hotel”|Context) is shownin Figure 3.



Figure3. Probability distribution for variable Proposal6 EvaluationThe preditor is haraterised by its average suess rate, E [PQ(tm ∈ Λ)], andthe average size of the suggested set Λ, E [|Λ|]. Let us assume to have the exatprobability distribution P (Qk |context ) of the terms for a random variable Qkgiven the urrent ontext. The orret size n of Λ in order to obtain the desiredprobability of �nding tm is:
τ =

∑n
1 p (tj)If the omputed distributionP (Qk |context ) is a good approximation ofP (Qk |context ),then the average of p(tm ∈ Λ) should onverge towards the average ofP (Qk |context )and therefore towards the threshold τ :

lim
iterations→∞

E [p(tm ∈ Λ)] = E [p(tm ∈ Λ)] = τ (3)If the suess rate of the preditor remains lower than the threshold τ , indepen-dently of the number of interations, then the omputed distribution is di�erentfrom the exat P (Qk |context ).A key issue to evaluate is the number of repeated interations needed for thepreditor to reah a stable behaviour. This number will be di�erent for everytype of interation, but what is neessary is to �nd its probability distribution:what is the probability that n interations are enough to have a stable behaviour.One in the stable region, the preditor will go on updating its representation,but the behaviour should hange slowly or remain onstant.The size of the suggested set Λ will depend on the existene relations be-tween variables in the interation and on the unknown distribution of terms inpreferene-based onstraints, as we have seen in Setion 5.1. These unknowndistributions an hange over time - if the phenomena are non-stationary - obvi-ously dereasing the suess rate. The lak of relations or �at distributions willause large suggestions sets Λ.6.1 TestingOne way of testing is through real interation senarios, using real ontologies andreal work�ows for the dialogues, but sine these are sare this would over only



a(r8a(O), I) ::=
m1(X, P )⇒ a(r8b,O)← κ1(P, X)

then

(

m2(Y )⇐ a(r8b, O)
or

m3(M)⇐ a(r8b, O)

)

a(r8b, O) ::=
m1(X, P )⇐ a(r8a(_), I)

then

(

m2(Y )⇒ a(r8a,O)← κ2(P, X, Y )
or

m3(M)⇒ a(r8b, O)← κ3(P, X, M)

)Figure4. Protool templatepart of the testing spae, without having the possibility of varying parametersto verify the e�ets.What is important, however, is to verify the ability of the preditor in sta-tistially modelling the way onstraints are satis�ed given the state of the inter-ation. And, as we have seen in Setion 5.1, the onstraints an be funtional,preferene-based, or mixed. It is thus possible to simulate di�erent real world se-narios using template protools exeuted by dummy peers that an only satisfyonstraints aording to parametrisable rules and ontologies.The template protools must over the basi patterns in interations. Thefuntional onstraints are ontologial rules, the preferene-based onstraints re-turn terms aording to probability distributions that re�et the distribution of�needs� and �tastes� over a ommunity of peers, and mixed onstraints are ruleswith an element of probability.For example, the protool in Figure 4 an model many di�erent interations:
m1 an be a request for information X about P (for example, the prie of a X),with m2 being the reply and m3 being the apology for failing to know the answer.Alternatively, m1 an be an o�er (the produt X at prie P ), with m2 being theaeptane and m3 the rejetion. By viewing interation protools abstratly wean set up large sale experiments in whih we vary the forms of onstraints ina ontrolled way.Testing has involved a number of di�erent abstrat protools with di�erentpossible relations between the terms in variables. The protools were run indi�erent bathes, with eah of them onsisting of 200 runs of the protool. Eahbath is haraterised by a spei� ontology (with a hierarhial depth) and aset of preferene distributions. Every 10 runs, the average size and the averagesore are stored in order to obtain a graph representing the improvement of theresults over time.6.2 ResultsThe results shown in Figure 5 were obtained averaging the results of 12 di�erentbathes, generated ombining 6 protools, 3 ontologies (225, 626 and 1850 ele-ments) and di�erent settings for the preferene distributions (narrow and widedistributions for the preferene-based onstraints). All the bathes were run witha threshold τ = 0.8. The �gure shows the average value of the size of the sug-



Figure5. Average size and average soregested set Λ and the average value of p(tm ∈ Λ), together with a band speifyingthe standard deviation of the measure. The limit in Formula 3 is veri�ed, as theaverage sore tends to stabilise, logarithmially, around τ (the standard devia-tion, showing �utuations in suess rate, dereases).The average size remains small, independently of the size of the ontology,but its deviation tends to inrease - albeit only logarithmially and remainswell below 15% of the smaller ontology. The relatively large deviation re�etsthe fat that di�erent bathes have di�erent relations between variable, andpreferene-based onstraints have di�erent distributions: therefore to obtain thesame suess rate the size of Λ may hange meaningfully. However, the useof the �lters on the assertions, desribed in Setion 5.2, improved the resultssubstantially: previous tests run on the same bathes before the introdution ofthe �lters returned the same average sore, but a muh higher average size (morethan 150 elements instead of about 20).The learning urve is, as stated, logarithmi: on average, most improvement(from 0 to nearly 70%) is obtained in the �rst 70-80 interations, whih is a smallnumber of interations in large peer-to-peer ommunities as those envisioned inthe OpenKnowledge projet. In the example senario, the travel ageny peeran be ontated by a thousand peers, all making similar requests, while theustomer may need to ontat several travel agenies before �nding an properaommodation.7 ConlusionThis paper has shown that it is possible to use the interations between peers inan open environment to statistially model and then predit the possible on-tent of exhanged messages. The preditions an be forwarded to an ontologymathing algorithm that fouses its omputational e�ort on verifying the sug-gested hypotheses, without wasting time on evaluating mappings not related tothe interation.The evaluation of the proposed method shows that a relatively small numberof interation is often enough to obtain a good suess rate in the suggestions,espeially when it is possible to detet ontologial relations between terms ap-pearing in the onversation.
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