How Service Choreography Statistics Reduce the
Ontology Mapping Problem

Paolo Besana and Dave Robertson

School of Informatics, University of Edinburgh

Abstract In open and distributed environments ontology mapping pro-
vides interoperability between interacting actors. However, conventional
mapping systems focus on acquiring static information, and on map-
ping whole ontologies, which is infeasible in open systems. This paper
shows that the interactions themselves between the actors can be used to
predict mappings, simplifying dynamic ontology mapping. The intuitive
idea is that similar interactions follow similar conventions and patterns,
which can be analysed. The computed model can be used to suggest the
possible mappings for the exchanged messages in new interactions. The
suggestions can be evaluate by any standard ontology matcher: if they
are accurate, the matchers avoid evaluating mappings unrelated to the
interaction.

The minimal requirement in order to use this system is that it is possible
to describe and identify the interaction sequences: the OpenKnowledge
project has produced an implementation that demonstrates this is pos-
sible in a fully peer-to-peer environment.

1 Introduction

Most ontology mapping systems [9,15] available for the semantic web and for
semantic web services focus on acquiring static, a priori information about map-
pings. Depending on the approach, matchers compare labels, ontology structures
[10], use external dictionaries like WordNet to prove similarity between nodes
in hierarchies [7], learn how instances are classified to find similarities between
concepts [5] or combine information from different sources [4,6]. In an open and
distributed environment ontology mapping systems aim at providing interoper-
ability between interacting actors, each with possibly a different ontology. Map-
ping in advance, before the interactions, is unfeasible, as the agents may be still
unknown. Mapping during the interactions may be computationally difficult, as
many interactions with different actors can go on simultaneously.

This paper shows that the interactions between the actors can be used to
predict the mappings, making the problems related to dynamic ontology map-
ping more tractable. The intuitive idea is that interactions follow conventions and
patterns, and these patterns are repeated when similar situations arise. The pat-
terns are extracted by analysing the interactions in order to model the relations
between the terms that appear in them. If the computed model is representative
of a class of interactions, then it can provide the basis for predicting the content
of exchanged messages in future interactions. A prediction is a list of suggestions

for the mapping, that any standard ontology matcher can evaluate. If the predic-
tions are accurate, the matchers can avoid evaluating mappings unrelated to the
interaction, improving efficiency and decreasing ambiguity. In fact, the context
of the interaction provides additional information, that can help in those cases
in which the matchers do not have enough static information to distinguish the
correct mapping among many possible ones.

This paper shows that, after a reasonably small number of interactions the
predictor consistently provides reliable suggestions. The minimal requirement
in order to use this system is that it is possible to describe and identify the
interaction sequences. In principle, any system based on workflow language can
provide this. Workflow systems normally are centralised, but we have recently
shown, in the EU funded OpenKnowledge project ! that it is possible to achieve
peer-to-peer based workflow systems, as a means of web service choreography.

In this paper, we first describe, in Section 2, the intuitive notions of dia-
logue and interaction behind our work; then, in Section 3, we briefly discuss the
alternative approaches for agents communication, introducing the OpenKnowl-
edge peer-to-peer framework for defining and executing interactions. Section 4
defines the concepts and terms used in modelling the context of interactions,
while Section 5 describes what needs to be modelled, and how to model it with
an example. Section 6 defines what needs to be evaluated, then reports how the
testing was structured and next presents and interprets the results.

2 Services’ interactions

Many activities require interaction between different actors: for example, in order
to book a room for a conference an inquirer needs to contact a travel agency (or
more than one) or directly a number of hotels.

In the simplest version, communication between two agents is a message
transmitted from a sender to a receiver. According to the speech act theory,
a message is a performative act that changes the state of the world [14]. For
example, a message sent from agents i to agent j to inform about ¢ will likely
change the beliefs of j, adding the belief about ¢. In our example, the following
message, sent from Mr Smith’s agent to the agent representing the hotel Y:

inform(booking, 11 Nov 2007, 15 Nov 2007, Mr Smith, single)

should make the hotel agent believe that a single room must be reserved for Mr
Smith from the 11*" to the 15" of November. Or at least this is what Mr Smith
thinks. But, for example, the hotel agent may not know the meaning of booking
or single, or it may use a different format for dates. To overcome this problem,
either all agents that contact the hotel service must share the same ontology,
which is not feasible in an open environment where agents from different back-
grounds may interact, or the agents must have access to the mappings between
different ontologies.

Unfortunately, it is infeasible in an open system to precompute all mappings,
as it is impossible to forecast which agents will contact the hotel service, so some

1
WWW.openk.org

(or perhaps all) mappings must be computed dynamically when the interaction
takes place. Many different ontology mapping systems have been developed and
tested. However, the use of these systems raises two problems, both connected
to the fact that they map full ontologies. Firstly, ontologies can be large, and
the process can be lengthy, making it difficult to perform at run time, possibly
simultaneously with other interactions that require other mappings. Secondly,
ontologies often overlap only partially, and evaluating the result of the mapping
process can be hard: one mapping process between two ontologies may yield
15% of coverage, while another one between different ontologies may yield 80%
coverage, but the mappings in the first case may be the ones needed for an
interaction, and those in the second case may be unrelated to it (this only being
knowable at interaction time).

Usually interactions are more complex than single messages. Mr Smith’s
agent may first check the availability of offers, or it may want to first try single
and then double rooms. Moreover, the booking may require a deposit or a credit
card number. This increased complexity, consisting in exchanges of messages,
follows rules and conventions: as the conversation unfolds, the content of new
messages is bound by the previously exchanged messages. A message failing to
follow these rules would surprise the hearer as being at best off topic or even
incomprehensible.

Dialogue norms and conventions appear at syntactic level: a request is nor-
mally followed by an answer, an offer by an acceptance or a rejection. They
can also be found at semantic level: the topic of a conversation tends to remain
consistent over a number of messages, forming a sort of “local” context to the
conversation - for example when the agents are discussing about the purchase
of a specific product. The intuitions about syntactic norms has prompted re-
searchers in NLP to study the possibility of dialogue grammars, that have often
been represented as finite state machines, where the speech acts are the tran-
sition states between admissible states of the dialogue. The use of models for
dialogues has been used, for example, in dialogue translation [12].

The content of interactions (even the simple ones consisting of single mes-
sages) are also influenced by the “real world” context - agents still act on the
behalf of real actors - which influences the likelihood of some specific topics
(tastes and needs change with geography and time). The travel agency context
binds already the possible content of the interaction (you may ask for a flight,
for a holiday package, but you will unlikely ask for a laptop)

For example, after entering in a travel agency and asking for an accommo-
dation somewhere, the clerk will likely ask the requested period, and then will
try to refine the request proposing different types of accommodations (hotels,
B&B, hostels, and so on). Once accommodation has been addressed, the content
of the possible messages is further constrained: talks about cruises are still pos-
sible, but less likely. However, the list of proposed accommodation may change,
depending on the deals that the agency has, or more general on the country and
period (for example, B&B are starting to appear in Italy, but were extremely
rare until a few years ago, while they are very common in the UK).

Interactions aimed at performing tasks tend to be repeated fairly similarly
every time the same task needs to be done: the structure of the interaction in
the example will be repeated similarly in different travel agencies. The repetition
of interactions offers the possibility of extracting patterns in the interaction,
providing the basis for a representation of context. This representation can be
used for focusing the mapping process.

3 Dialogues and protocols

Dialogues between software agents are, at least at the moment, simpler and
more restricted than those between humans: they are carried out in order to
reach a goal (buying a product, booking a flight, querying a price, ...) and there
is no need to care for digressions, unless relevant to the task. Therefore, their
grammars can be simpler than those required for human interactions.

Interactions can be hard-coded in the agents involved in them; may be
planned dynamically; or defined in workflows that are followed as a script by
the agents. These approaches offer different trade-offs between flexibility and
efficiency: embedding the interactions in the agents is the most inflexible but
possibly very efficient. Planning is based on the the idea that speech acts can
be considered as actions that change the world, and have preconditions and
postconditions, usually relative to the mental state of the agents involved in the
interaction [3]. It offers the maximum flexibility but may require hefty compu-
tation at every interaction, and conditions can be difficult to verify. However, as
we have argued, interactions tend to be repeated, so planning them every time is
a waste of resources: workflows represent a good compromise and are currently
the dominant solution.

Workflows can be seen as a sort of explicit, more stringent dialogue grammar,
that agents follow. Their speech acts represent the transitions (or moves) between
the different state in the dialogue.

Most workflow languages represent interactions between processes, and can
be formalised using process calculi (such as w-calculus [11]). The Lightweight
Coordination Calculus (LCC) [13] is based on m-calculus and can be used as a
compact way of representing workflows. It is also executable and it is adapted to
peer-to-peer workflows. In the original version, protocols are declarative scripts,
circulated with messages. Agents execute the protocols they receive by applying
rewrite rules to expand the state and find the next move.

It uses roles for agents and constraints on message sending to enforce the
social norms. The basic behaviours are to send (=) or to receive (<) a mes-
sage. More complex behaviours are expressed using connectives: then creates
sequences, or creates choices.

The protocol in Figure 1 shows the initial part of a protocol describing an
interaction between a customer and a supplier of some product. In the fragment,
the customer asks for a product and then the supplier verifies if the request must
be refined. If this is the case, the supplier will propose to the customer another,
more specific, product. The customer, in turn, will analyse the proposal and see

a(customer(S, Proposal),C)::=
Roles ask(Product) => a?supp ier, §% <-- want(Product) Constraints

then
a(customer_refine(S,Product,Proposal),C).

—{a(customer_refine(S, Product, Proposal),C) ::= |

orffer(ProposaI) <= a(supplier_refine(_),S)
tl

en
accept(Proposal) => a(supplier_refine(_),S)
acceptable(Product, Proposal)

<-- (Proposal == Product) or %

or
(reject(Proposal) => a(supplier_refine(_),S)
then

a(customer_refine(S, Product, Proposal),C)).

a(supplier, S) ::

ask(Product) <= a(customer(_,_),C)

en
a(supplier_refine(ListRefined),S) [<- refine(Product,ListRefined).f

“—a(supplier_refine(ListRefined),S) ::= |

offer(Proposal) => a(customer_refine(_, _,),C) [<-- ListRefined = [Proposal[Tail]-H
then
accept(Proposal) <= a(customer_refine(_,_,_),C)
or
(reject(Proposal) <= a(customer _refine(_,_,_),C)
then

a(supplier_refine(Tail),S)).

Figurel. Request refinement in LCC

if it fits its needs. Figure 2 shows a run of the protocol in an interaction between
a customer and a travel agency for booking an accommodation.

While the example has been kept simple for explanation purposes, a real
interaction could be far more complex, involving many agents: LCC has been
used in applications such as business process enactment [8] and e-science service
integration [1]. In particular, it has been chosen as the specification language
used for defining interaction models in OpenKnowledge, which aims at creating
a Peer-to-Peer system that is open in participation, functionality and data and
should allow people to easily create, find, invoke, compose and run services in a
decentralised and autonomous fashion.

3.1 Open Knowledge Kernel

The core concept in OpenKnowledge are the interactions, defined by interaction
models written in LCC and published by the authors on the distributed discovery
service with a keyword-based description. The roles in the interaction models
are played by peers. The peers that want to perform some tasks, such as booking
a room or provide a booking service, use keyword queries to search for published
interaction models for the task, and then advertise their intention of interpreting
one of its roles to the discovery service. In the running example, a travel agency
subscribes to perform role supplier, while a peer searching a room subscribes
as customer.

When all the roles are filled, the discovery service chooses randomly a peer
in the network as coordinator for the interaction, and hands over the interaction
model together with the list of involved peers in order to execute it.

The coordinator then asks each peer to commit to the interaction. If they
all commit, the coordinator executes the interaction instantiating a local proxy

‘economy_car
~

.,
@ Compact_car i P @
P4 = customer supplier .GMB T
—

want(Product)

accommoda

mapping ...
—) . lodging
ask(accommodation) -
Solve a
, 2N
offer(hostel)) |« i bed&breakfast
@mind) | ChosteD>
—d
acceptable(hostel, .residences
A_ accommodation) .
reject(hostel)
mapping ...
offer(bed&breakfast)

acceptable(be

G ORE) — accept(bed&breakfast)

Figure2. Run of the protocol for searching an accommodation

for each peer: the peers are contacted to solve constraints in the role they have
subscribed. In the example protocol, the coordinator will ask the peer that has
subscribed as customer to solve want (Product).

4 Predicting the content of messages

A message in an interaction is a tuple, whose elements convey the content of a
single communication act:

M = (81, vy Sn)
A term s; is introduced when a constraint in a role is satisfied by one of the
actors playing the role (in the example shown in Figure 2, “accommodation”
is introduced by the customer peer, satisfying the constraint want (Product)).
The term s; is defined in the ontology of that agent, and refers to an entity
Qk- The other agents, if they need to satisfy a constraint that contains s;, will
need to find the term ¢,, in their ontology that refers to the same, or a similar,
entity Q. (in the example, in order to satisfy the constraint refine(Product,
ListRefined), the supplier must map the term “accommodation” to “lodging” in
its ontology). The mapping is performed by a “mapping oracle”, whose specific
implementation is irrelevant for this work: any existing mapping system, such
as S-Match [7], would fit smoothly in the framework.

Let us suppose that a peer, with ontology L,, needs to satisfy a constraint
Kr (..., w;,...) when in a specific state of an interaction, and that w; ¢ L, is the
foreign term received in some previous message m;. The task of the oracle is to
find what entity @, represented in the agent’s ontology by the term ¢,, € L,,
was encoded in w;.

Definition 1. The intended entity Qi represented in the argument of the con-
straint by the foreign term w; is, from the agent’s perspective, a random variable,
whose domain is the whole ontology.

As said before, an ontology mapping algorithm can be used to interpret the sign
w; in the message and map it to the corresponding symbol %,,.

Definition 2. The term t,, is the matching term: it is, in the agent’s ontology,
the closest to the intended entity Q. For the current work, the matching term is
assumed to exist in Lo,. The assumption is based on the weakness of the relation
between t,, and Qy: it is sufficient that the meanings are close enough to perform
the interaction.

However, conventional ontology mapping algorithms do not take into account the
context of the interaction, and consider all the terms in the domain as equiprob-
able:
p(Qr =t;) = p(Qr = tj) forVti,t; € L

As introduced earlier, dialogues follows conventions and rules, made explicit by
the protocol, and the content of the messages are influenced by the local and the
general context: therefore the terms are not equiprobable - some will be more
likely than others.

Definition 3. The random variable Qi has a conditional probability distribu-
tion, where the evidence is the context of the interaction (we discuss context in
Section 5):

P (Qg |context) = (...,p(Qr = t; [context),...) for t; € L,
where p (Qr = t; |context) is the probability that t; is the best matching term
for Qi given the current state of the interaction and the history of previous
interactions.

The knowledge of the probability distribution of a variable is used to predict
the possible values of Q) selecting a subset of likely terms to be verified by the
oracle, improving the efficiency and the results of the ontology mapping systems,
and making it more feasible to be performed at runtime.

Definition 4. A subset A C L, is a set of terms containing the most likely
terms for a random variable Q). The probability that the correct matching term
tm belongs to A is:

ptm € A) =3, 4P (Qk = ti|context)

For A = L, this probability is 1. If the distribution is uniform, then a set A of
size v|A], with 0 < v < 1, will contain ¢,, with probability p (t,, € A) = ~. If the
distribution is non-uniform, then even for smaller resizing factor -y it is possible
to obtain high probabilities p (¢, € A): it becomes useful to trade off between
the size of the set A and the probability of finding the correct mapping. To select
the terms to insert in A, it is necessary to set a threshold 7 < 1 for p (¢,, € A). If
the terms are ordered from the most probable to the least one, then this means
solving the equation in n:
T<Yip(t)

That simply means taking the first n most likely terms until their cumulative
probability is equal or greater than 7.

5 Modelling the context

5.1 What to model

An interaction is an exchange of messages, where the content of the messages
comes from satisfying constraints. A peer satisfying a constraint is responsible
for the introduction of terms related to the interaction: failure to do so disrupts
the communication. If the travel agency peer, after being asked for an accommo-
dation, satisfies the constraint refine(Product, ListRefined) with a choice
of possible types of coffee, then the communication loses meaning. Therefore,
what the predictor should model are constraints. Intuitively, constraints fall into
three main categories:

— Purely functional: given a set of parameters, they always unify with the
same values: for example multiply(X,Y, Z) is supposed to always unify the
variables with the same numbers.

— Purely “preference-based”. they collect requests from users and their possible
values can differ every time. In the example, the constraint want (Product)
is preference-based: each peer will satisfy it according to its tastes and needs.
Overall, the variables in preference-based constraints will have an unknown
distribution. These distributions may change with time, depending on gen-
eral shifts of “tastes” and “needs” (fashions, trends, fads, ...) or the hetero-
geneity in the peer group composition, and can be more or less biased.

— Mized: they can be mainly functional, but the results may change depend-
ing on external factors (availability, new products appearing on the market,
etc), or can be mainly preference-based, but constrained by some other pa-
rameters. In the example, the constraint refine (Product,ListRefined) is
mainly functional, as it returns the list of possible subclasses of a term if
the query can be refined. The list of terms can however change depending
on the specific peer and with time.

A purely functional constraint, when the function is ontological (obtain sub-
classes, or siblings, or properties), can be guessed and the hypotheses can be
verified comparing the guesses with the feedback from the ontology matching
process. For the purely preference based, it is possible to count the frequencies
of the terms and learn their prior probability distribution. For the mixed, it is
possible to use a mix of hypotheses and counting the frequencies. Sometimes
the ontology of the peer does not allow him to formulate the correct ontologi-
cal relation (because the ontology is structured differently from the agent that
introduced the term): it is still possible to count the conditional frequencies,
modelling the relation from a purely statistical point of view.

5.2 How to model

Our solution, suggested but not evaluated in [2], is a model of the interaction in
which the properties of entities appearing in the random variable Q) in different
runs of the same protocol are counted and stored in assertions:

Frequency of terms: Freq (E; € {tq})

Assertions can be about the frequency of the entities in an argument, disregarding the
content of other variables in the dialogue, like A;_5 in Table 2.

Conditional frequency of terms: Freq (E; € {tq} | Ex = tn)

More precise assertions can be about the frequency of an entity given the content of
previously encountered variables, like Ag_1¢ in Table 2.

Frequency of relations with terms in other variables: Freq (E; € {X | rel (X, Ex)})
They can regard the relation with an argument of another variable in the protocol, like
A11712 in Table 2.

Frequency of relations with terms in ontology: Freq (E; € {X|rel (X,tx)})

They can be about an ontological relation between the entity in the argument and an
entity t5 in the agent’s ontology, like A3 in Table 2.

Tablel. Types of assertions

Definition 5. An assertion about a random variable Qy keeps track of the fre-
quency with which the entity has been part of a set W in the encountered dialogues:

Aj =Freq(Qr € V) (1)

Assertions can be about frequencies of terms in the variable, or can be about the
frequencies of ontological relations between one variable and another, as described
in Table 1.

For example, the customer peer, having executed the interaction in Figure 1
a number of times with different types of service providers, will have a table
with assertions about the content of the variable Proposaly in the form shown
in Table 2. As protocols can be recursive, the variables are tagged with their
appearance in the run (in the example, the variable Proposal is used twice, so
there will be two random variables named Proposaly and Proposals)

When the content of a variable must be predicted, the assertions relative to it
are instantiated with the current state of the the interaction. In the interaction
shown in Figure 2, in order to predict the content of Proposal, (received in the
second offer sent by the travel agency), given that Product; was instantiated to
“accommodation” and Proposal; was instantiated to “hostel”, it is necessary:

1. to drop the conditional assertions whose evidence does not correspond to
the current state of the interaction; so assertions Ag_1g are dropped because
their evidence Producty = "car” is inconsistent with the current interaction,

2. to unify the variables in relations with the current state of the interaction ;
Product; in Ay is replaced with “accommodation” and Proposaly_; in Ajo
is replaced with “hotel”, obtaining:

A11) Freg(Proposal, € {Proposal, : subClass0f (Proposals, “accomodation”)})
A1) Freg(Proposal, € {Proposal, : sibling0f(Proposals,“hotel”)})

3. the relations are computed, obtaining sets of terms; so Ai1_13 becomes:
A11)Freq(Proposal, € {“hostel”, “hotel”, “b&b”, “camping”}) = 24
Ai2)Freq(Proposaly € {“hotel”, “b&b”, “camping”}) = 24
Ai3)Freq(Proposaly € {“accomodation”, “hotel”, ..., “car”, ..., “van”}) = 24

Proposaly € {“hotel”}) =6

Proposaly € {“hostel’}) =6

Proposaly € {“b&b”}) =4

Proposaly € {“compact car’}) =3

Proposaly € {“economy car’}) =5

Proposaly € {“hotel”} |Product; = “accommodation”) = 6
Freq(Proposaly € {“hostel”} [Product; = “accommodation”) = 6
Freq(Proposaly € {“b&b”} |[Product; = “accommodation”) = 4

Ag) Freq(Proposaly € {“compact car”} |Product; = “car”) =3

A1o) Freq(Proposalx € {“economy_car”} |Product; = “car”) =5

A1) Freq(Proposaly € {Proposaly : subClass0f (Proposaly, Product;)}) = 24

A12) Freq(Proposaly € {Proposaly : sibling0f(Proposaly,Proposaly_1)}) = 24

A13) Freq(Proposaly € {Proposaly : subClass0f(Proposaly, “product”)}) = 24

A1) Freq
A2) Freq
As) Freq
Ay4) Freq
As) Freq
Ag) Freq
A7)
As)

NN N N S S S

Table2. Statistical model of the context for the customer peer

The result of the third step is that some of the assertions assign probabili-
ties to possibly large and overlapping sets. The frequencies assigned to sets
are uniformly distributed among the members: according to the principle of
indifference the frequency of mutually exclusive elements in a set should be
evenly distributed. However, assertions about ontological relations create two
main problems. First, some of the relations can be spurious. Second, some re-
lations may refer to large sets, bringing little information (like assertion Aj3 in
the example). To deal with the first issue, only relations found in a significant
proportion of the cases are taken into consideration. To deal with the second
sets larger than a significant portion of the ontology are discarded. Tests have
shown that a threshold for the first issue of 10% and of 20% for the second one
minimise the problem.

Finally, the probability that an entity ¢; is used for @ is computed by sum-
ming the frequencies in all the instantiated assertions in which ¢; appears, divided
by the sum of the frequencies of all the selected assertions:

p(t) = L=)

In the example, to compute the probability that the concept in Proposal, is
the term “hotel” , the numerator contains the assertions Ay, Ag, A11,A12. The
assertions Aj1_12 contain more than one element, and therefore the frequency
assigned to “hotel” is computed dividing the frequency assigned to the set by the
size of the set to obtain the following:

_ 616+24/4424/3 _ 26 _
P(hotel) = gr5riraratororitorrai — 53 = 0-295

The complete distribution of variable P(Proposaly = “hotel” |Context) is shown
in Figure 3.

6+6+24/4+24/3 26 cumulative probability

P(Proposal,="hotel")=——M—M——————= —— =
(rerps=ty b 88 s ~0-2% 1 ;
'
P(Proposal ="hostel")= M =1—8 =0.204 .
2 88 8 08 0
'
P(Proposa|2="b&b")= M=£ =0.225 H
88 88 0.64 '
o L ._ 24/4+24/3 _ 14 ' 1
P(Proposalz— camping")= 88 =88 =0.159 g
5 0.4 !
P(P! | =")= —— =0.
(Proposa 3 economy_car") 38 0.056 / '
3 0.2+ g
P(Proposal ="compact_car")= W=0.034 D : ﬂ
2 '
; 0 1 ==
W{el b&b hostel camping economy compact

suggested terms /

Figure3. Probability distribution for variable Proposal

6 Evaluation

The predictor is characterised by its average success rate, E [Pg(t,, € A)], and
the average size of the suggested set A, E [|A]]. Let us assume to have the exact
probability distribution P (Qy, |context) of the terms for a random variable Q,
given the current context. The correct size n of A in order to obtain the desired
probability of finding ¢, is:

T=31D(t)
If the computed distribution P (Qy, |context) is a good approximation of P (Qy, |context)
then the average of p(t,, € A) should converge towards the average of P (Q}, |context)
and therefore towards the threshold 7:

3

lim E[p(tm € A)] = E[p(tm € A)] =7 3)

iterations— oo

If the success rate of the predictor remains lower than the threshold 7, indepen-
dently of the number of interactions, then the computed distribution is different
from the exact P (Qy |context).

A key issue to evaluate is the number of repeated interactions needed for the
predictor to reach a stable behaviour. This number will be different for every
type of interaction, but what is necessary is to find its probability distribution:
what is the probability that n interactions are enough to have a stable behaviour.
Once in the stable region, the predictor will go on updating its representation,
but the behaviour should change slowly or remain constant.

The size of the suggested set A will depend on the existence relations be-
tween variables in the interaction and on the unknown distribution of terms in
preference-based constraints, as we have seen in Section 5.1. These unknown
distributions can change over time - if the phenomena are non-stationary - obvi-
ously decreasing the success rate. The lack of relations or flat distributions will
cause large suggestions sets A.

6.1 Testing

One way of testing is through real interaction scenarios, using real ontologies and
real workflows for the dialogues, but since these are scarce this would cover only

a(r8a(0),I) ==
m1(X, P) = a(r8b,0) «— r1(P, X)

ma(Y) < a(r8b,0)
then| or
<m3(M) < a(r8b,0))

a(r8b,0) 1=
m1(X, P) < a(r8a(_),I)
ma(Y) = a(r8a,0) «— k2(P, X,Y)
then| or
(mg(M) = a(r8b,0) «— k3(P, X, M))

Figured. Protocol template
part of the testing space, without having the possibility of varying parameters
to verify the effects.

What is important, however, is to verify the ability of the predictor in sta-
tistically modelling the way constraints are satisfied given the state of the inter-
action. And, as we have seen in Section 5.1, the constraints can be functional,
preference-based, or mized. It is thus possible to simulate different real world sce-
narios using template protocols executed by dummy peers that can only satisfy
constraints according to parametrisable rules and ontologies.

The template protocols must cover the basic patterns in interactions. The
functional constraints are ontological rules, the preference-based constraints re-
turn terms according to probability distributions that reflect the distribution of
“needs” and “tastes” over a community of peers, and mixed constraints are rules
with an element of probability.

For example, the protocol in Figure 4 can model many different interactions:
m1 can be a request for information X about P (for example, the price of a X),
with mq being the reply and mg being the apology for failing to know the answer.
Alternatively, m; can be an offer (the product X at price P), with my being the
acceptance and mg the rejection. By viewing interaction protocols abstractly we
can set up large scale experiments in which we vary the forms of constraints in
a controlled way.

Testing has involved a number of different abstract protocols with different
possible relations between the terms in variables. The protocols were run in
different batches, with each of them consisting of 200 runs of the protocol. Each
batch is characterised by a specific ontology (with a hierarchical depth) and a
set of preference distributions. Every 10 runs, the average size and the average
score are stored in order to obtain a graph representing the improvement of the
results over time.

6.2 Results

The results shown in Figure 5 were obtained averaging the results of 12 different
batches, generated combining 6 protocols, 3 ontologies (225, 626 and 1850 ele-
ments) and different settings for the preference distributions (narrow and wide
distributions for the preference-based constraints). All the batches were run with
a threshold 7 = 0.8. The figure shows the average value of the size of the sug-

0.8
0.6+
g
o
% 0.4+
0.2
5] .
Average size Average score
0 0
0 50 100 150 200 0 50 100 150 200
nr interactions nr interactions

Figure5. Average size and average score

gested set A and the average value of p(t,, € A), together with a band specifying
the standard deviation of the measure. The limit in Formula 3 is verified, as the
average score tends to stabilise, logarithmically, around 7 (the standard devia-
tion, showing fluctuations in success rate, decreases).

The average size remains small, independently of the size of the ontology,
but its deviation tends to increase - albeit only logarithmically and remains
well below 15% of the smaller ontology. The relatively large deviation reflects
the fact that different batches have different relations between variable, and
preference-based constraints have different distributions: therefore to obtain the
same success rate the size of A may change meaningfully. However, the use
of the filters on the assertions, described in Section 5.2, improved the results
substantially: previous tests run on the same batches before the introduction of
the filters returned the same average score, but a much higher average size (more
than 150 elements instead of about 20).

The learning curve is, as stated, logarithmic: on average, most improvement
(from 0 to nearly 70%) is obtained in the first 70-80 interactions, which is a small
number of interactions in large peer-to-peer communities as those envisioned in
the OpenKnowledge project. In the example scenario, the travel agency peer
can be contacted by a thousand peers, all making similar requests, while the
customer may need to contact several travel agencies before finding an proper
accommodation.

7 Conclusion

This paper has shown that it is possible to use the interactions between peers in
an open environment to statistically model and then predict the possible con-
tent of exchanged messages. The predictions can be forwarded to an ontology
matching algorithm that focuses its computational effort on verifying the sug-
gested hypotheses, without wasting time on evaluating mappings not related to
the interaction.

The evaluation of the proposed method shows that a relatively small number
of interaction is often enough to obtain a good success rate in the suggestions,
especially when it is possible to detect ontological relations between terms ap-
pearing in the conversation.

The main requirement is to use a framework that allows the description of the
interaction sequence: workflow based systems provide the functionality, but are
often centralised. With the European project OpenKnowledge we have shown
that these results can be obtained in a purely peer-to-peer environment.

References

1. A Barker and B Mann. Agent-based scientific workflow composition. In Astronom-
ical Data Analysis Software and Systems XV, volume 351, pages 485 488, 2006.

2. P Besana and D Robertson. Probabilistic dialogue models for dynamic ontology
mapping. In Proceedings of the Second ISWC Workshop on Uncertainty Reasoning
for the Semantic Web, volume 2. CEUR-WS.org, 2006.

3. P.R. Cohen and H.J Levesque. Rational interaction as the basis for communication.
Intentions in Communication, pages 221-256, 1990.

4. Hong Hai Do and Erhard Rahm. Coma - a system for flexible combination of
schema matching approaches. In VLDB, pages 610-621, 2002.

5. AnHai Doan, J Madhavan, R Dhamankarse, P Domingos, and A Halevy. Learning
to match ontologies on the semantic web. The VLDB Journal, 12(4):303 319, 2003.

6. M Ehrig and S Staab. Qom - quick ontology mapping. In International Semantic
Web Conference, pages 683 697, 2004.

7. F Giunchiglia, P Shvaiko, and M Yatskevich. S-match: an algorithm and an im-
plementation of semantic match. In In Proceeding of the European Semantic Web
Symposium, pages 61 75, 2004.

8. Li Guo, D Robertson, and Y Chen-Burger. A novel approach for enacting the
distributed business workflows using bpeldws on the multi-agent platform. In IEEE
Conference on E-Business Engineering, pages 657 664, 2005.

9. Y Kalfoglou and M Schorlemmer. Ontology mapping: the state of the art. The
Knowledge Engineering Review, 18(1):1-31, 2003.

10. S Melunik, H Garcia-Molina, and E Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In ICDE ’02: Proceed-
ings of the 18th International Conference on Data Engineering, page 117, 2002.

11. F Puhlmann and M Weske. Using the pi-calculus for formalizing workflow patterns.
In 8rd International Conference, BPM 2005, volume 3649/2005, pages 153 168.
Springer, 2005.

12. N Reithinger, R Engel, M Kipp, and M Klesen. Predicting dialogue acts for a
speech-to-speech translation system. In Proc. ICSLP ’96, volume 2, pages 654
657, 1996.

13. D Robertson. A lightweight coordination calculus for agent systems. In Declarative
Agent Languages and Technologies, pages 183 197, 2004.

14. J.R. Searle. Speech acts: an essay in the philosophy of language. Cambridge Uni-
versity Press, 1969.

15. P Shvaiko and J Euzenat. A survey of schema-based matching approaches. Journal
on Data Semantics, 4:146-171, 2005.

