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hool of Informati
s, University of EdinburghAbstra
t In open and distributed environments ontology mapping pro-vides interoperability between intera
ting a
tors. However, 
onventionalmapping systems fo
us on a
quiring stati
 information, and on map-ping whole ontologies, whi
h is infeasible in open systems. This papershows that the intera
tions themselves between the a
tors 
an be used topredi
t mappings, simplifying dynami
 ontology mapping. The intuitiveidea is that similar intera
tions follow similar 
onventions and patterns,whi
h 
an be analysed. The 
omputed model 
an be used to suggest thepossible mappings for the ex
hanged messages in new intera
tions. Thesuggestions 
an be evaluate by any standard ontology mat
her: if theyare a

urate, the mat
hers avoid evaluating mappings unrelated to theintera
tion.The minimal requirement in order to use this system is that it is possibleto des
ribe and identify the intera
tion sequen
es: the OpenKnowledgeproje
t has produ
ed an implementation that demonstrates this is pos-sible in a fully peer-to-peer environment.1 Introdu
tionMost ontology mapping systems [9,15℄ available for the semanti
 web and forsemanti
 web servi
es fo
us on a
quiring stati
, a priori information about map-pings. Depending on the approa
h, mat
hers 
ompare labels, ontology stru
tures[10℄, use external di
tionaries like WordNet to prove similarity between nodesin hierar
hies [7℄, learn how instan
es are 
lassi�ed to �nd similarities between
on
epts [5℄ or 
ombine information from di�erent sour
es [4,6℄. In an open anddistributed environment ontology mapping systems aim at providing interoper-ability between intera
ting a
tors, ea
h with possibly a di�erent ontology. Map-ping in advan
e, before the intera
tions, is unfeasible, as the agents may be stillunknown. Mapping during the intera
tions may be 
omputationally di�
ult, asmany intera
tions with di�erent a
tors 
an go on simultaneously.This paper shows that the intera
tions between the a
tors 
an be used topredi
t the mappings, making the problems related to dynami
 ontology map-ping more tra
table. The intuitive idea is that intera
tions follow 
onventions andpatterns, and these patterns are repeated when similar situations arise. The pat-terns are extra
ted by analysing the intera
tions in order to model the relationsbetween the terms that appear in them. If the 
omputed model is representativeof a 
lass of intera
tions, then it 
an provide the basis for predi
ting the 
ontentof ex
hanged messages in future intera
tions. A predi
tion is a list of suggestions



for the mapping, that any standard ontology mat
her 
an evaluate. If the predi
-tions are a

urate, the mat
hers 
an avoid evaluating mappings unrelated to theintera
tion, improving e�
ien
y and de
reasing ambiguity. In fa
t, the 
ontextof the intera
tion provides additional information, that 
an help in those 
asesin whi
h the mat
hers do not have enough stati
 information to distinguish the
orre
t mapping among many possible ones.This paper shows that, after a reasonably small number of intera
tions thepredi
tor 
onsistently provides reliable suggestions. The minimal requirementin order to use this system is that it is possible to des
ribe and identify theintera
tion sequen
es. In prin
iple, any system based on work�ow language 
anprovide this. Work�ow systems normally are 
entralised, but we have re
entlyshown, in the EU funded OpenKnowledge proje
t 1 that it is possible to a
hievepeer-to-peer based work�ow systems, as a means of web servi
e 
horeography.In this paper, we �rst des
ribe, in Se
tion 2, the intuitive notions of dia-logue and intera
tion behind our work; then, in Se
tion 3, we brie�y dis
uss thealternative approa
hes for agents 
ommuni
ation, introdu
ing the OpenKnowl-edge peer-to-peer framework for de�ning and exe
uting intera
tions. Se
tion 4de�nes the 
on
epts and terms used in modelling the 
ontext of intera
tions,while Se
tion 5 des
ribes what needs to be modelled, and how to model it withan example. Se
tion 6 de�nes what needs to be evaluated, then reports how thetesting was stru
tured and next presents and interprets the results.2 Servi
es' intera
tionsMany a
tivities require intera
tion between di�erent a
tors: for example, in orderto book a room for a 
onferen
e an inquirer needs to 
onta
t a travel agen
y (ormore than one) or dire
tly a number of hotels.In the simplest version, 
ommuni
ation between two agents is a messagetransmitted from a sender to a re
eiver. A

ording to the spee
h a
t theory,a message is a performative a
t that 
hanges the state of the world [14℄. Forexample, a message sent from agents i to agent j to inform about φ will likely
hange the beliefs of j, adding the belief about φ. In our example, the followingmessage, sent from Mr Smith's agent to the agent representing the hotel Y:inform(booking, 11 Nov 2007, 15 Nov 2007, Mr Smith, single)should make the hotel agent believe that a single room must be reserved for MrSmith from the 11th to the 15th of November. Or at least this is what Mr Smiththinks. But, for example, the hotel agent may not know the meaning of bookingor single, or it may use a di�erent format for dates. To over
ome this problem,either all agents that 
onta
t the hotel servi
e must share the same ontology,whi
h is not feasible in an open environment where agents from di�erent ba
k-grounds may intera
t, or the agents must have a

ess to the mappings betweendi�erent ontologies.Unfortunately, it is infeasible in an open system to pre
ompute all mappings,as it is impossible to fore
ast whi
h agents will 
onta
t the hotel servi
e, so some1 www.openk.org



(or perhaps all) mappings must be 
omputed dynami
ally when the intera
tiontakes pla
e. Many di�erent ontology mapping systems have been developed andtested. However, the use of these systems raises two problems, both 
onne
tedto the fa
t that they map full ontologies. Firstly, ontologies 
an be large, andthe pro
ess 
an be lengthy, making it di�
ult to perform at run time, possiblysimultaneously with other intera
tions that require other mappings. Se
ondly,ontologies often overlap only partially, and evaluating the result of the mappingpro
ess 
an be hard: one mapping pro
ess between two ontologies may yield15% of 
overage, while another one between di�erent ontologies may yield 80%
overage, but the mappings in the �rst 
ase may be the ones needed for anintera
tion, and those in the se
ond 
ase may be unrelated to it (this only beingknowable at intera
tion time).Usually intera
tions are more 
omplex than single messages. Mr Smith'sagent may �rst 
he
k the availability of o�ers, or it may want to �rst try singleand then double rooms. Moreover, the booking may require a deposit or a 
redit
ard number. This in
reased 
omplexity, 
onsisting in ex
hanges of messages,follows rules and 
onventions: as the 
onversation unfolds, the 
ontent of newmessages is bound by the previously ex
hanged messages. A message failing tofollow these rules would surprise the hearer as being at best o� topi
 or evenin
omprehensible.Dialogue norms and 
onventions appear at synta
ti
 level: a request is nor-mally followed by an answer, an o�er by an a

eptan
e or a reje
tion. They
an also be found at semanti
 level: the topi
 of a 
onversation tends to remain
onsistent over a number of messages, forming a sort of �lo
al� 
ontext to the
onversation - for example when the agents are dis
ussing about the pur
haseof a spe
i�
 produ
t. The intuitions about synta
ti
 norms has prompted re-sear
hers in NLP to study the possibility of dialogue grammars, that have oftenbeen represented as �nite state ma
hines, where the spee
h a
ts are the tran-sition states between admissible states of the dialogue. The use of models fordialogues has been used, for example, in dialogue translation [12℄.The 
ontent of intera
tions (even the simple ones 
onsisting of single mes-sages) are also in�uen
ed by the �real world� 
ontext - agents still a
t on thebehalf of real a
tors - whi
h in�uen
es the likelihood of some spe
i�
 topi
s(tastes and needs 
hange with geography and time). The travel agen
y 
ontextbinds already the possible 
ontent of the intera
tion (you may ask for a �ight,for a holiday pa
kage, but you will unlikely ask for a laptop)For example, after entering in a travel agen
y and asking for an a

ommo-dation somewhere, the 
lerk will likely ask the requested period, and then willtry to re�ne the request proposing di�erent types of a

ommodations (hotels,B&B, hostels, and so on). On
e a

ommodation has been addressed, the 
ontentof the possible messages is further 
onstrained: talks about 
ruises are still pos-sible, but less likely. However, the list of proposed a

ommodation may 
hange,depending on the deals that the agen
y has, or more general on the 
ountry andperiod (for example, B&B are starting to appear in Italy, but were extremelyrare until a few years ago, while they are very 
ommon in the UK).



Intera
tions aimed at performing tasks tend to be repeated fairly similarlyevery time the same task needs to be done: the stru
ture of the intera
tion inthe example will be repeated similarly in di�erent travel agen
ies. The repetitionof intera
tions o�ers the possibility of extra
ting patterns in the intera
tion,providing the basis for a representation of 
ontext. This representation 
an beused for fo
using the mapping pro
ess.3 Dialogues and proto
olsDialogues between software agents are, at least at the moment, simpler andmore restri
ted than those between humans: they are 
arried out in order torea
h a goal (buying a produ
t, booking a �ight, querying a pri
e, ...) and thereis no need to 
are for digressions, unless relevant to the task. Therefore, theirgrammars 
an be simpler than those required for human intera
tions.Intera
tions 
an be hard-
oded in the agents involved in them; may beplanned dynami
ally; or de�ned in work�ows that are followed as a s
ript bythe agents. These approa
hes o�er di�erent trade-o�s between �exibility ande�
ien
y: embedding the intera
tions in the agents is the most in�exible butpossibly very e�
ient. Planning is based on the the idea that spee
h a
ts 
anbe 
onsidered as a
tions that 
hange the world, and have pre
onditions andpost
onditions, usually relative to the mental state of the agents involved in theintera
tion [3℄. It o�ers the maximum �exibility but may require hefty 
ompu-tation at every intera
tion, and 
onditions 
an be di�
ult to verify. However, aswe have argued, intera
tions tend to be repeated, so planning them every time isa waste of resour
es: work�ows represent a good 
ompromise and are 
urrentlythe dominant solution.Work�ows 
an be seen as a sort of expli
it, more stringent dialogue grammar,that agents follow. Their spee
h a
ts represent the transitions (or moves) betweenthe di�erent state in the dialogue.Most work�ow languages represent intera
tions between pro
esses, and 
anbe formalised using pro
ess 
al
uli (su
h as π-
al
ulus [11℄). The LightweightCoordination Cal
ulus (LCC) [13℄ is based on π-
al
ulus and 
an be used as a
ompa
t way of representing work�ows. It is also exe
utable and it is adapted topeer-to-peer work�ows. In the original version, proto
ols are de
larative s
ripts,
ir
ulated with messages. Agents exe
ute the proto
ols they re
eive by applyingrewrite rules to expand the state and �nd the next move.It uses roles for agents and 
onstraints on message sending to enfor
e theso
ial norms. The basi
 behaviours are to send (⇒) or to re
eive (⇐) a mes-sage. More 
omplex behaviours are expressed using 
onne
tives: then 
reatessequen
es, or 
reates 
hoi
es.The proto
ol in Figure 1 shows the initial part of a proto
ol des
ribing anintera
tion between a 
ustomer and a supplier of some produ
t. In the fragment,the 
ustomer asks for a produ
t and then the supplier veri�es if the request mustbe re�ned. If this is the 
ase, the supplier will propose to the 
ustomer another,more spe
i�
, produ
t. The 
ustomer, in turn, will analyse the proposal and see



Figure1. Request re�nement in LCCif it �ts its needs. Figure 2 shows a run of the proto
ol in an intera
tion betweena 
ustomer and a travel agen
y for booking an a

ommodation.While the example has been kept simple for explanation purposes, a realintera
tion 
ould be far more 
omplex, involving many agents: LCC has beenused in appli
ations su
h as business pro
ess ena
tment [8℄ and e-s
ien
e servi
eintegration [1℄. In parti
ular, it has been 
hosen as the spe
i�
ation languageused for de�ning intera
tion models in OpenKnowledge, whi
h aims at 
reatinga Peer-to-Peer system that is open in parti
ipation, fun
tionality and data andshould allow people to easily 
reate, �nd, invoke, 
ompose and run servi
es in ade
entralised and autonomous fashion.3.1 Open Knowledge KernelThe 
ore 
on
ept in OpenKnowledge are the intera
tions, de�ned by intera
tionmodels written in LCC and published by the authors on the distributed dis
overyservi
e with a keyword-based des
ription. The roles in the intera
tion modelsare played by peers. The peers that want to perform some tasks, su
h as bookinga room or provide a booking servi
e, use keyword queries to sear
h for publishedintera
tion models for the task, and then advertise their intention of interpretingone of its roles to the dis
overy servi
e. In the running example, a travel agen
ysubs
ribes to perform role supplier, while a peer sear
hing a room subs
ribesas 
ustomer.When all the roles are �lled, the dis
overy servi
e 
hooses randomly a peerin the network as 
oordinator for the intera
tion, and hands over the intera
tionmodel together with the list of involved peers in order to exe
ute it.The 
oordinator then asks ea
h peer to 
ommit to the intera
tion. If theyall 
ommit, the 
oordinator exe
utes the intera
tion instantiating a lo
al proxy



Figure2. Run of the proto
ol for sear
hing an a

ommodationfor ea
h peer: the peers are 
onta
ted to solve 
onstraints in the role they havesubs
ribed. In the example proto
ol, the 
oordinator will ask the peer that hassubs
ribed as 
ustomer to solve want(Produ
t).4 Predi
ting the 
ontent of messagesA message in an intera
tion is a tuple, whose elements 
onvey the 
ontent of asingle 
ommuni
ation a
t:
mi = 〈s1, ..., sn〉A term si is introdu
ed when a 
onstraint in a role is satis�ed by one of thea
tors playing the role (in the example shown in Figure 2, �a

ommodation�is introdu
ed by the 
ustomer peer, satisfying the 
onstraint want(Produ
t)).The term si is de�ned in the ontology of that agent, and refers to an entity

Qk. The other agents, if they need to satisfy a 
onstraint that 
ontains si, willneed to �nd the term tm in their ontology that refers to the same, or a similar,entity Qk (in the example, in order to satisfy the 
onstraint refine(Produ
t,ListRefined), the supplier must map the term �a

ommodation� to �lodging� inits ontology). The mapping is performed by a �mapping ora
le�, whose spe
i�
implementation is irrelevant for this work: any existing mapping system, su
has S-Mat
h [7℄, would �t smoothly in the framework.Let us suppose that a peer, with ontology La, needs to satisfy a 
onstraint
κr (. . . , wi, . . .) when in a spe
i�
 state of an intera
tion, and that wi /∈ La is theforeign term re
eived in some previous message mj . The task of the ora
le is to�nd what entity Qk, represented in the agent's ontology by the term tm ∈ La,was en
oded in wi.De�nition 1. The intended entity Qk represented in the argument of the 
on-straint by the foreign term wi is, from the agent's perspe
tive, a random variable,whose domain is the whole ontology.



As said before, an ontology mapping algorithm 
an be used to interpret the sign
wi in the message and map it to the 
orresponding symbol tm.De�nition 2. The term tm is the mat
hing term: it is, in the agent's ontology,the 
losest to the intended entity Qk. For the 
urrent work, the mat
hing term isassumed to exist in La. The assumption is based on the weakness of the relationbetween tm and Qk: it is su�
ient that the meanings are 
lose enough to performthe intera
tion.However, 
onventional ontology mapping algorithms do not take into a

ount the
ontext of the intera
tion, and 
onsider all the terms in the domain as equiprob-able:

p(Qk = ti) = p(Qk = tj) for ∀ti, tj ∈ LaAs introdu
ed earlier, dialogues follows 
onventions and rules, made expli
it bythe proto
ol, and the 
ontent of the messages are in�uen
ed by the lo
al and thegeneral 
ontext: therefore the terms are not equiprobable - some will be morelikely than others.De�nition 3. The random variable Qk has a 
onditional probability distribu-tion, where the eviden
e is the 
ontext of the intera
tion (we dis
uss 
ontext inSe
tion 5):
P (Qk |context ) = 〈. . . , p (Qk = ti |context ) , . . .〉 for ti ∈ Lawhere p (Qk = ti |context ) is the probability that ti is the best mat
hing termfor Qk given the 
urrent state of the intera
tion and the history of previousintera
tions.The knowledge of the probability distribution of a variable is used to predi
tthe possible values of Qk sele
ting a subset of likely terms to be veri�ed by theora
le, improving the e�
ien
y and the results of the ontology mapping systems,and making it more feasible to be performed at runtime.De�nition 4. A subset Λ ⊆ La is a set of terms 
ontaining the most likelyterms for a random variable Qk. The probability that the 
orre
t mat
hing term

tm belongs to Λ is:
p (tm ∈ Λ) =

∑

ti∈Λ p (Qk = ti |context )For Λ = La, this probability is 1. If the distribution is uniform, then a set Λ ofsize γ |Λ|, with 0 ≤ γ ≤ 1, will 
ontain tm with probability p (tm ∈ Λ) = γ. If thedistribution is non-uniform, then even for smaller resizing fa
tor γ it is possibleto obtain high probabilities p (tm ∈ Λ): it be
omes useful to trade o� betweenthe size of the set Λ and the probability of �nding the 
orre
t mapping. To sele
tthe terms to insert in Λ, it is ne
essary to set a threshold τ < 1 for p (tm ∈ Λ). Ifthe terms are ordered from the most probable to the least one, then this meanssolving the equation in n:
τ ≤

∑n
1 p (tj)That simply means taking the �rst n most likely terms until their 
umulativeprobability is equal or greater than τ .



5 Modelling the 
ontext5.1 What to modelAn intera
tion is an ex
hange of messages, where the 
ontent of the messages
omes from satisfying 
onstraints. A peer satisfying a 
onstraint is responsiblefor the introdu
tion of terms related to the intera
tion: failure to do so disruptsthe 
ommuni
ation. If the travel agen
y peer, after being asked for an a

ommo-dation, satis�es the 
onstraint refine(Produ
t, ListRefined) with a 
hoi
eof possible types of 
o�ee, then the 
ommuni
ation loses meaning. Therefore,what the predi
tor should model are 
onstraints. Intuitively, 
onstraints fall intothree main 
ategories:� Purely fun
tional : given a set of parameters, they always unify with thesame values: for example multiply(X, Y, Z) is supposed to always unify thevariables with the same numbers.� Purely �preferen
e-based�: they 
olle
t requests from users and their possiblevalues 
an di�er every time. In the example, the 
onstraint want(Produ
t)is preferen
e-based: ea
h peer will satisfy it a

ording to its tastes and needs.Overall, the variables in preferen
e-based 
onstraints will have an unknowndistribution. These distributions may 
hange with time, depending on gen-eral shifts of �tastes� and �needs� (fashions, trends, fads, ...) or the hetero-geneity in the peer group 
omposition, and 
an be more or less biased.� Mixed : they 
an be mainly fun
tional, but the results may 
hange depend-ing on external fa
tors (availability, new produ
ts appearing on the market,et
), or 
an be mainly preferen
e-based, but 
onstrained by some other pa-rameters. In the example, the 
onstraint refine(Produ
t,ListRefined) ismainly fun
tional, as it returns the list of possible sub
lasses of a term ifthe query 
an be re�ned. The list of terms 
an however 
hange dependingon the spe
i�
 peer and with time.A purely fun
tional 
onstraint, when the fun
tion is ontologi
al (obtain sub-
lasses, or siblings, or properties), 
an be guessed and the hypotheses 
an beveri�ed 
omparing the guesses with the feedba
k from the ontology mat
hingpro
ess. For the purely preferen
e based, it is possible to 
ount the frequen
iesof the terms and learn their prior probability distribution. For the mixed, it ispossible to use a mix of hypotheses and 
ounting the frequen
ies. Sometimesthe ontology of the peer does not allow him to formulate the 
orre
t ontologi-
al relation (be
ause the ontology is stru
tured di�erently from the agent thatintrodu
ed the term): it is still possible to 
ount the 
onditional frequen
ies,modelling the relation from a purely statisti
al point of view.5.2 How to modelOur solution, suggested but not evaluated in [2℄, is a model of the intera
tion inwhi
h the properties of entities appearing in the random variable Qk in di�erentruns of the same proto
ol are 
ounted and stored in assertions:



Frequen
y of terms: Freq (Ei ∈ {tq})Assertions 
an be about the frequen
y of the entities in an argument, disregarding the
ontent of other variables in the dialogue, like A1−5 in Table 2.Conditional frequen
y of terms: Freq (Ei ∈ {tq} |Ek = th)More pre
ise assertions 
an be about the frequen
y of an entity given the 
ontent ofpreviously en
ountered variables, like A6−10 in Table 2.Frequen
y of relations with terms in other variables: Freq (Ei ∈ {X | rel (X, Ek)})They 
an regard the relation with an argument of another variable in the proto
ol, like
A11−12 in Table 2.Frequen
y of relations with terms in ontology: Freq (Ei ∈ {X|rel (X, tk)})They 
an be about an ontologi
al relation between the entity in the argument and anentity tk in the agent's ontology, like A13 in Table 2.Table1. Types of assertionsDe�nition 5. An assertion about a random variable Qk keeps tra
k of the fre-quen
y with whi
h the entity has been part of a set Ψ in the en
ountered dialogues:

Aj
.
= Freq (Qk ∈ Ψ) (1)Assertions 
an be about frequen
ies of terms in the variable, or 
an be about thefrequen
ies of ontologi
al relations between one variable and another, as des
ribedin Table 1.For example, the 
ustomer peer, having exe
uted the intera
tion in Figure 1a number of times with di�erent types of servi
e providers, will have a tablewith assertions about the 
ontent of the variable Proposalk in the form shownin Table 2. As proto
ols 
an be re
ursive, the variables are tagged with theirappearan
e in the run (in the example, the variable Proposal is used twi
e, sothere will be two random variables named Proposal1 and Proposal2)When the 
ontent of a variable must be predi
ted, the assertions relative to itare instantiated with the 
urrent state of the the intera
tion. In the intera
tionshown in Figure 2, in order to predi
t the 
ontent of Proposal2 (re
eived in these
ond o�er sent by the travel agen
y), given that Product1 was instantiated to�a

ommodation� and Proposal1 was instantiated to �hostel�, it is ne
essary:1. to drop the 
onditional assertions whose eviden
e does not 
orrespond tothe 
urrent state of the intera
tion; so assertions A9−10 are dropped be
ausetheir eviden
e Product1 = ”car” is in
onsistent with the 
urrent intera
tion,2. to unify the variables in relations with the 
urrent state of the intera
tion ;

Product1 in A11 is repla
ed with �a

ommodation� and Proposalk−1 in A12is repla
ed with �hotel�, obtaining:
A11)Freq(Proposal2 ∈ {Proposal2 : subClassOf(Proposal2 ,“accomodation”)})

A12)Freq(Proposal2 ∈ {Proposal2 : siblingOf(Proposal2 ,“hotel”)})3. the relations are 
omputed, obtaining sets of terms; so A11−13 be
omes:
A11)Freq(Proposal2 ∈ {“hostel”, “hotel”, “b&b”, “camping”}) = 24
A12)Freq(Proposalk ∈ {“hotel”, “b&b”, “camping”}) = 24

A13)Freq(Proposalk ∈ {“accomodation”, “hotel”, ..., “car”, ..., “van”}) = 24



A1) Freq(Proposalk ∈ {“hotel”}) = 6
A2) Freq(Proposalk ∈ {“hostel”}) = 6
A3) Freq(Proposalk ∈ {“b&b”}) = 4
A4) Freq(Proposalk ∈ {“compact_car”}) = 3
A5) Freq(Proposalk ∈ {“economy_car”}) = 5
A6) Freq(Proposalk ∈ {“hotel”} |Product1 = “accommodation”) = 6
A7) Freq(Proposalk ∈ {“hostel”} |Product1 = “accommodation”) = 6
A8) Freq(Proposalk ∈ {“b&b”} |Product1 = “accommodation”) = 4
A9) Freq(Proposalk ∈ {“compact_car”} |Product1 = “car” ) = 3
A10)Freq(Proposalk ∈ {“economy_car”} |Product1 = “car” ) = 5
A11)Freq(Proposalk ∈ {Proposalk : subClassOf(Proposalk , Product1)}) = 24
A12)Freq(Proposalk ∈ {Proposalk : siblingOf(Proposalk , Proposalk−1)}) = 24
A13)Freq(Proposalk ∈ {Proposalk : subClassOf(Proposalk , “product”)}) = 24Table2. Statisti
al model of the 
ontext for the 
ustomer peerThe result of the third step is that some of the assertions assign probabili-ties to possibly large and overlapping sets. The frequen
ies assigned to setsare uniformly distributed among the members: a

ording to the prin
iple ofindi�eren
e the frequen
y of mutually ex
lusive elements in a set should beevenly distributed. However, assertions about ontologi
al relations 
reate twomain problems. First, some of the relations 
an be spurious. Se
ond, some re-lations may refer to large sets, bringing little information (like assertion A13 inthe example). To deal with the �rst issue, only relations found in a signi�
antproportion of the 
ases are taken into 
onsideration. To deal with the se
ondsets larger than a signi�
ant portion of the ontology are dis
arded. Tests haveshown that a threshold for the �rst issue of 10% and of 20% for the se
ond oneminimise the problem.Finally, the probability that an entity ti is used for Qk is 
omputed by sum-ming the frequen
ies in all the instantiated assertions in whi
h ti appears, dividedby the sum of the frequen
ies of all the sele
ted assertions:

p (ti) =

∑

Aj(ti∈Ψ)
∑

Ak

(2)In the example, to 
ompute the probability that the 
on
ept in Proposal2 isthe term �hotel� , the numerator 
ontains the assertions A1, A6, A11,A12. Theassertions A11−12 
ontain more than one element, and therefore the frequen
yassigned to �hotel � is 
omputed dividing the frequen
y assigned to the set by thesize of the set to obtain the following:
P (hotel) = 6+6+24/4+24/3

6+6+4+3+5+6+6+4+24+24 = 26
88 = 0.295The 
omplete distribution of variable P (Proposal2 = “hotel”|Context) is shownin Figure 3.



Figure3. Probability distribution for variable Proposal6 EvaluationThe predi
tor is 
hara
terised by its average su

ess rate, E [PQ(tm ∈ Λ)], andthe average size of the suggested set Λ, E [|Λ|]. Let us assume to have the exa
tprobability distribution P (Qk |context ) of the terms for a random variable Qkgiven the 
urrent 
ontext. The 
orre
t size n of Λ in order to obtain the desiredprobability of �nding tm is:
τ =

∑n
1 p (tj)If the 
omputed distributionP (Qk |context ) is a good approximation ofP (Qk |context ),then the average of p(tm ∈ Λ) should 
onverge towards the average ofP (Qk |context )and therefore towards the threshold τ :

lim
iterations→∞

E [p(tm ∈ Λ)] = E [p(tm ∈ Λ)] = τ (3)If the su

ess rate of the predi
tor remains lower than the threshold τ , indepen-dently of the number of intera
tions, then the 
omputed distribution is di�erentfrom the exa
t P (Qk |context ).A key issue to evaluate is the number of repeated intera
tions needed for thepredi
tor to rea
h a stable behaviour. This number will be di�erent for everytype of intera
tion, but what is ne
essary is to �nd its probability distribution:what is the probability that n intera
tions are enough to have a stable behaviour.On
e in the stable region, the predi
tor will go on updating its representation,but the behaviour should 
hange slowly or remain 
onstant.The size of the suggested set Λ will depend on the existen
e relations be-tween variables in the intera
tion and on the unknown distribution of terms inpreferen
e-based 
onstraints, as we have seen in Se
tion 5.1. These unknowndistributions 
an 
hange over time - if the phenomena are non-stationary - obvi-ously de
reasing the su

ess rate. The la
k of relations or �at distributions will
ause large suggestions sets Λ.6.1 TestingOne way of testing is through real intera
tion s
enarios, using real ontologies andreal work�ows for the dialogues, but sin
e these are s
ar
e this would 
over only



a(r8a(O), I) ::=
m1(X, P )⇒ a(r8b,O)← κ1(P, X)

then

(

m2(Y )⇐ a(r8b, O)
or

m3(M)⇐ a(r8b, O)

)

a(r8b, O) ::=
m1(X, P )⇐ a(r8a(_), I)

then

(

m2(Y )⇒ a(r8a,O)← κ2(P, X, Y )
or

m3(M)⇒ a(r8b, O)← κ3(P, X, M)

)Figure4. Proto
ol templatepart of the testing spa
e, without having the possibility of varying parametersto verify the e�e
ts.What is important, however, is to verify the ability of the predi
tor in sta-tisti
ally modelling the way 
onstraints are satis�ed given the state of the inter-a
tion. And, as we have seen in Se
tion 5.1, the 
onstraints 
an be fun
tional,preferen
e-based, or mixed. It is thus possible to simulate di�erent real world s
e-narios using template proto
ols exe
uted by dummy peers that 
an only satisfy
onstraints a

ording to parametrisable rules and ontologies.The template proto
ols must 
over the basi
 patterns in intera
tions. Thefun
tional 
onstraints are ontologi
al rules, the preferen
e-based 
onstraints re-turn terms a

ording to probability distributions that re�e
t the distribution of�needs� and �tastes� over a 
ommunity of peers, and mixed 
onstraints are ruleswith an element of probability.For example, the proto
ol in Figure 4 
an model many di�erent intera
tions:
m1 
an be a request for information X about P (for example, the pri
e of a X),with m2 being the reply and m3 being the apology for failing to know the answer.Alternatively, m1 
an be an o�er (the produ
t X at pri
e P ), with m2 being thea

eptan
e and m3 the reje
tion. By viewing intera
tion proto
ols abstra
tly we
an set up large s
ale experiments in whi
h we vary the forms of 
onstraints ina 
ontrolled way.Testing has involved a number of di�erent abstra
t proto
ols with di�erentpossible relations between the terms in variables. The proto
ols were run indi�erent bat
hes, with ea
h of them 
onsisting of 200 runs of the proto
ol. Ea
hbat
h is 
hara
terised by a spe
i�
 ontology (with a hierar
hi
al depth) and aset of preferen
e distributions. Every 10 runs, the average size and the averages
ore are stored in order to obtain a graph representing the improvement of theresults over time.6.2 ResultsThe results shown in Figure 5 were obtained averaging the results of 12 di�erentbat
hes, generated 
ombining 6 proto
ols, 3 ontologies (225, 626 and 1850 ele-ments) and di�erent settings for the preferen
e distributions (narrow and widedistributions for the preferen
e-based 
onstraints). All the bat
hes were run witha threshold τ = 0.8. The �gure shows the average value of the size of the sug-



Figure5. Average size and average s
oregested set Λ and the average value of p(tm ∈ Λ), together with a band spe
ifyingthe standard deviation of the measure. The limit in Formula 3 is veri�ed, as theaverage s
ore tends to stabilise, logarithmi
ally, around τ (the standard devia-tion, showing �u
tuations in su

ess rate, de
reases).The average size remains small, independently of the size of the ontology,but its deviation tends to in
rease - albeit only logarithmi
ally and remainswell below 15% of the smaller ontology. The relatively large deviation re�e
tsthe fa
t that di�erent bat
hes have di�erent relations between variable, andpreferen
e-based 
onstraints have di�erent distributions: therefore to obtain thesame su

ess rate the size of Λ may 
hange meaningfully. However, the useof the �lters on the assertions, des
ribed in Se
tion 5.2, improved the resultssubstantially: previous tests run on the same bat
hes before the introdu
tion ofthe �lters returned the same average s
ore, but a mu
h higher average size (morethan 150 elements instead of about 20).The learning 
urve is, as stated, logarithmi
: on average, most improvement(from 0 to nearly 70%) is obtained in the �rst 70-80 intera
tions, whi
h is a smallnumber of intera
tions in large peer-to-peer 
ommunities as those envisioned inthe OpenKnowledge proje
t. In the example s
enario, the travel agen
y peer
an be 
onta
ted by a thousand peers, all making similar requests, while the
ustomer may need to 
onta
t several travel agen
ies before �nding an propera

ommodation.7 Con
lusionThis paper has shown that it is possible to use the intera
tions between peers inan open environment to statisti
ally model and then predi
t the possible 
on-tent of ex
hanged messages. The predi
tions 
an be forwarded to an ontologymat
hing algorithm that fo
uses its 
omputational e�ort on verifying the sug-gested hypotheses, without wasting time on evaluating mappings not related tothe intera
tion.The evaluation of the proposed method shows that a relatively small numberof intera
tion is often enough to obtain a good su

ess rate in the suggestions,espe
ially when it is possible to dete
t ontologi
al relations between terms ap-pearing in the 
onversation.



The main requirement is to use a framework that allows the des
ription of theintera
tion sequen
e: work�ow based systems provide the fun
tionality, but areoften 
entralised. With the European proje
t OpenKnowledge we have shownthat these results 
an be obtained in a purely peer-to-peer environment.Referen
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