DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

SEMANTIC MATCHING

Fausto Giunchiglia, Pavel Shvaiko and Mikalai Yatskevich

August 2007

Technical Report DIT-07-064

Also : to appear in the Encyclopedia of Database Systems, Springer, 2008

SEMANTIC MATCHING

Fausto Giunchiglia, Pavel Shvaiko, Mikalai Yatskevich
Department of Information and Communication Technology
University of Trento, Povo, Trento, Italy
{fausto|pavel|yatskevi}@dit.unitn.it

SYNONYMS

None

DEFINITION

Semantic matching: given two graph representations of ontologies G1 and G2, compute N1 x N2 mapping
elements (ID; ;, nl;, n2;, R'), with nl; € G1, i=1,...,N1, n2; € G2, j=1,...,N2 and R’ the strongest semantic
relation which is supposed to hold between the concepts at nodes nl; and n2;.

A mapping element is a 4-tuple (ID;;, nl;, n2;, R), i=1,...,N1; j=1,... ,N2; where ID,; is a unique identifier
of the given mapping element; nl; is the i-th node of the first graph, N1 is the number of nodes in the first
graph; n2; is the j-th node of the second graph, N2 is the number of nodes in the second graph; and R specifies
a semantic relation which is supposed to hold between the concepts at nodes nl; and n2;.

The semantic relations are within equivalence (=), more general (3), less general (C), disjointness (L) and
overlapping (M). When none of the above mentioned relations can be explicitly computed, the special idk (I don’t
know) relation is returned. The relations are ordered according to decreasing binding strength, i.e., from the
strongest (=) to the weakest (idk), with more general and less general relations having equal binding power. The
semantics of the above relations are the obvious set-theoretic semantics.

Concept of a label is the logical formula which stands for the set of data instances or documents that one would
classify under a label it encodes. Concept at a node is the logical formula which represents the set of data instances
or documents which one would classify under a node, given that it has a certain label and that it is in a certain
position in a graph.

HISTORICAL BACKGROUND

An ontology typically provides a vocabulary that describes a domain of interest and a specification of the
meaning of terms used in the vocabulary. Depending on the precision of this specification, the notion of
ontology encompasses several data and conceptual models, for example, classifications, database schemas, or fully
axiomatized theories. In open or evolving systems, such as the semantic web, different parties would, in general,
adopt different ontologies. Thus, just using ontologies, just like using XML, does not reduce heterogeneity: it raises
heterogeneity problems to a higher level. Ontology matching is a plausible solution to the semantic heterogeneity
problem faced by information management systems. Ontology matching aims at finding correspondences or
mapping elements between semantically related entities of the input ontologies. These mapping elements can
be used for various tasks, such as ontology merging, query answering, data translation, etc. Thus, matching
ontologies enables the knowledge and data expressed in the matched ontologies to interoperate [6].

Many diverse solutions of matching have been proposed so far, see [7, 18, 17] for recent surveys, which addressed
the matching problem from different perspectives, including databases, artificial intelligence and information
systems; while the major contributions of the last decades are provided in [14, 2, 19]. Some examples of individual

approaches addressing the matching problem can be found in [4, 15, 16, 8, 5]*. Finally, ontology matching has been
given a book account in [6]. This work provided a uniform view on the topic with the help of several classifications
of the available methods, discussed these methods in detail, etc. In particular, the matching methods are primarily
classified and further detailed according to (i) the input of the algorithms, (i) the characteristics of the matching
process and (#i¢) the output of the algorithms.

The work in [10] mixed the process dimension of matching together with the output dimension and classified
matching approaches into syntactic and semantic. Syntactic are those approaches that rely on purely syntactic
matching methods, e.g., edit distance between strings, tree edit distance. The semantic category, in turn,
represents methods that work with concepts and compare their meanings in order to compute mapping elements.
However, these have been also constrained by a second condition dealing with the output dimension: syntactic
techniques return coefficients in the [0 1] range, while semantic techniques return logical relations, such as
equivalence, subsumption (and justified by deductive techniques for instance). The work in [4] provided a first
implementation of semantic matching.

SCIENTIFIC FUNDAMENTALS

In order to motivate the matching problem two simple XML schemas are used. These are represented as trees in
Figure 1 and exemplify one of the possible situations which arise, for example, when resolving a schema integration
task. Suppose an e-commerce company Al needs to finalize a corporate acquisition of another company A2. To
complete the acquisition, databases of the two companies have to be integrated. The documents of both companies
are stored according to XML schemas Al and A2, respectively. A first step in integrating the schemas is to identify
candidates to be merged or to have taxonomic relationships under an integrated schema. This step refers to a
process of ontology (schema) matching. For example, the elements with labels Personal_Computers in Al and PC
in A2 are the candidates to be merged, while the element with label Digital_Cameras in A2 should be subsumed
by the element with label Photo_and_-Cameras in Al.

1:Electronics » 1:Electronics

;[Z:PersonaI,Computers ¢)@—“
; €

Al “—[4:M|croprocessors ¢ % 4:PC_Board)—“ A2

11:ID =
12:Brand <
13:Amount <
14:Price <

(-/_,[3:Cameras,and,Photo]—
J

—[3:Photo,and,Cameras]

(5 Accesories

—» 6:PID é\'{&DigitaICameras]—

--» T7:Name | D .
'''''' > 8:Quanti~, 7:1D

> O-Price \ 8:Brand <

' M:Amount -

10:Price <

Figure 1: Two simple XML schemas. The XML elements are shown in rectangles with rounded corners, while

attributes are shown without them. Numbers before the labels of tree nodes are the unique identifiers of the XML

elements and attributes. In turn, the mapping elements are expressed by arrows. By default, their relation is =;
otherwise, these are mentioned above the arrows.

Consider semantic matching as first motivated in [10] and implemented within the S-Match system [13].
Specifically, a schema-based solution is discussed, where only the schema information is exploited. It is assumed
that all the data and conceptual models, e.g., classifications, database schemas, ontologies, can be generally

1See http://www.ontologymatching.org for a complete information on the topic.

2

represented as graphs. This allows for the statement and solution of a generic (semantic) matching problem
independently of specific conceptual or data models, very much along the lines of what is done, for example, in
Cupid [15].

The semantic matching takes as input two graph representations of ontologies and returns as output logical
relations, e.g., equivalence, subsumption (instead of computing coefficients rating match quality in the [0 1]
range, as it is the case with other approaches, e.g., [16, 15]), which are supposed to hold between the nodes in
the graphs. The relations are determined by (i) expressing the entities of the ontologies as logical formulas, and
(#4) reducing the matching problem to a logical validity problem. In particular, the entities are translated into
logical formulas which explicitly express the concept descriptions as encoded in the ontology structure and in
external resources, such as WordNet2. This allows for a translation of the matching problem into a logical validity
problem, which can then be efficiently resolved using (sound and complete) state of the art satisfiability solvers.

Consider tree-like structures, e.g., classifications, and XML schemas. Real-world ontologies are seldom trees,
however, there are (optimized) techniques, transforming a graph representation of an ontology into a tree
representation, e.g., the graph-to-tree operator of Protoplasm [3]. From now on it is assumed that a graph-
to-tree transformation can be done by using existing systems, and therefore, the focus is on other issues instead.

Consider Figure 1. “C” is used to denote concepts of labels and concepts at nodes. Also “C1” and “C2” are
used to distinguish between concepts of labels and concepts at nodes in tree 1 and tree 2, respectively. Thus, in
A1, Clphotoand_Cameras and Clg are, respectively, the concept of the label Photo_and_Cameras and the concept
at node 3. Finally, in order to simplify the presentation whenever it is clear from the context, it is assumed that
the formula encoding the concept of label is the label itself. Thus, for example in A2, Cameras_and_Photos is a
notational equivalent of C2cameras_and_Photo-

The algorithm inputs two ontologies and outputs a set of mapping elements in four macro steps. The first two
steps represent the pre-processing phase. The third and the fourth steps are the element level and structure level
matching, respectively?.

Step 1. For all labels L in the two trees, compute concepts of labels. The labels at nodes are
viewed as concise descriptions of the data that is stored under the nodes. The meaning of a label at a node
is computed by taking as input a label, analyzing its real-world semantics, and returning as output a concept of
the label, C',. Thus, for example, Ccameras_and_Photo indicates a shift from the natural language ambiguous label
Cameras_and_Photo to the concept Coameras_and.Photos Which codifies explicitly its intended meaning, namely
the data which is about cameras and photo. Technically, concepts of labels are codified as propositional logical
formulas [9]. First, labels are chuncked into tokens, e.g., Photo_and_Cameras — (photo, and, cameras); and then,
lemmas are extracted from the tokens, e.g., cameras — camera. Atomic formulas are WordNet senses of
lemmas obtained from single words (e.g., cameras) or multiwords (e.g., digital cameras). Complex formulas
are built by combining atomic formulas using the connectives of set theory. For example, C2cameras.and_Photo =
(Cameras, senseswn#2) U (Photo, senseswnx1), where sensesy nx2 is taken to be disjunction of the two senses
that WordNet attaches to Cameras, and similarly for Photo. The natural language conjunction “and” has been
translated into the logical disjunction “L1”.

Step 2. For all nodes N in the two trees, compute concepts at nodes. During this step the meaning of
the positions that the labels at nodes have in a tree is analyzed. By doing this, concepts of labels are extended to
concepts at nodes, C. This is required to capture the knowledge residing in the structure of a tree, namely the
context in which the given concept at label occurs. For example, in A2, by writing Cg it is meant the concept
describing all the data instances of the electronic photography products which are digital cameras. Technically,
concepts of nodes are written in the same propositional logical language as concepts of labels. XML schemas
are hierarchical structures where the path from the root to a node uniquely identifies that node (and also its
meaning). Thus, following an access criterion semantics, the logical formula for a concept at node is defined as
a conjunction of concepts of labels located in the path from the given node to the root. For example, C2¢ =
FElectronicss M Cameras_and_Photos M Digital_Camerass.

2http://wordnet.princeton.edu/
3Element level matching techniques compute mapping elements by analyzing entities in isolation, ignoring their relations with
other entities. Structure level techniques compute mapping elements by analyzing how entities are related together.

3

Table 1: Element level semantic matchers.

Matcher name | Execution | Approximation Matcher Schema info
order level type

WordNet 1 1 Sense-based | WordNet senses

Prefix 2 2 String-based Labels

Suffix 3 2 String-based Labels

Edit distance 4 2 String-based Labels

Ngram 5 2 String-based Labels

Step 3. For all pairs of labels in the two trees, compute relations among atomic concepts of labels.
Relations between concepts of labels are computed with the help of a library of element level semantic matchers.
These matchers take as input two atomic concepts of labels and produce as output a semantic relation between
them. Some of them are re-implementations of the well-known matchers used, e.g., in Cupid. The most important
difference is that these matchers return a semantic relation (e.g., =, J, C), rather than an affinity level in the
[0 1] range, although sometimes using customizable thresholds.

The element level semantic matchers are briefly summarized in Table 1. The first column contains the names
of the matchers. The second column lists the order in which they are executed. The third column introduces
the matcher’s approximation level. The relations produced by a matcher with the first approximation level are
always correct. For example, name J brand returned by the WordNet matcher. In fact, according to WordNet
name is a hypernym (superordinate word) of brand. In WordNet name has 15 senses and brand has 9 senses.
Some sense filtering techniques are used to discard the irrelevant senses for the given context, see [13] for details.
Notice that matchers are executed following the order of increasing approximation. The fourth column reports
the matcher’s type, while the fifth column describes the matcher’s input. As from Table 1, there are two main
categories of matchers. String-based matchers have two labels as input. These compute only equivalence relations
(e.g., equivalence holds if the weighted distance between the input strings is lower than a threshold). Sense-based
matchers have two WordNet senses as input. The WordNet matcher computes equivalence, more/less general,
and disjointness relations. The result of step 3 is a matrix of the relations holding between atomic concepts of
labels. A part of this matrix for the example of Figure 1 is shown in Table 2.

Table 2: The matrix of semantic relations holding between atomic concepts of labels.

Camerasy | Photoy | Digital_Camerass
Photo idk = idk
Camerasy = idk |

Step 4. For all pairs of nodes in the two trees, compute relations among concepts at nodes. During
this step, initially the tree matching problem is reformulated into a set of node matching problems (one problem
for each pair of nodes). Then, each node matching problem is translated into a propositional validity problem.
Semantic relations are translated into propositional connectives in an obvious way, namely: equivalence (=) into
equivalence («+), more general (J) and less general (C) into implication («+ and —, respectively) and disjointness
(L) into negation (—) of the conjunction (A). The criterion for determining whether a relation holds between
concepts at nodes is the fact that it is entailed by the premises. Thus, it is necessary to prove that the following
formula:

(1) axioms — rel(contexty, contexts)

is valid, namely that it is true for all the truth assignments of all the propositional variables occurring in it.
context; is the concept at node under consideration in tree 1, while contexts is the concept at node under
consideration in tree 2. rel (within =, C, J, 1) is the semantic relation (suitably translated into a propositional
connective) to be proved to hold between context; and contexty. The axioms part is the conjunction of all
the relations (suitably translated) between atomic concepts of labels mentioned in context, and contexts. The

4

validity of formula (1) is checked by proving that its negation is unsatisfiable. Specifically, it is done, depending
on a matching task, either by using ad hoc reasoning techniques or standard propositional satisfiability solvers.

From the example in Figure 1, trying to prove that C2¢ is less general than C'13, requires constructing formula (2),
which turns out to be unsatisfiable, and therefore, the less general relation holds.

((Electronics; < Electronicsy) A (Photoy <> Photog) A
@) (Camerasy <« Camerass) A (Digital_Camerass — Camerasy))A
(Electronicsa A (Camerass V Photos) A Digital . Camerass)A
—(Electronicsy A (Photoy V Camerasy))

A part of this matrix for the example of Figure 1 is shown in Table 3.

Table 3: The matrix of semantic relations holding between concepts at nodes (the matching result).

02, [C2 | C23 | C24 | O25 | O2%
Cls | T |ddk | = |4dk | 3 | 3

Finally, notice that the algorithm returns N1 x N2 correspondences, therefore the cardinality of mapping elements
is one-to-many. Also, these, if necessary, can be decomposed straightforwardly into mapping elements with the
one-to-one cardinality.

KEY APPLICATIONS

Semantic matching is an important operation in traditional metadata intensive applications, such as ontology
integration, schema integration, or data warehouses. Typically, these applications are characterized by heteroge-
neous structural models that are analyzed and matched either manually or semi-automatically at design time.
In such applications matching is a prerequisite of running the actual system. A line of applications that can be
characterized by their dynamics, e.g., agent communication, peer-to-peer information sharing, web service com-
position, is emerging. Such applications, contrary to traditional ones, require (ultimately) a run time matching
operation and take advantage of more explicit conceptual models [18].

FUTURE DIRECTIONS

Future work includes development of a fully-fledged iterative and interactive semantic matching system. It will
improve the quality of the mapping elements by iterating and by focusing user’s attention on the critical points
where his/her input is maximally useful. Initial steps have already been done in this direction by discovering
automatically missing background knowledge in ontology matching tasks [11]. Also, an evaluation methodology is
needed, capable of estimating quality of the mapping elements between ontologies with hundreds and thousands
of nodes. Initial steps have already been done as well; see for details [1, 12]. Here, the key issue is that in these
cases, specifying reference mapping elements manually is neither desirable nor feasible task, thus a semi-automatic
approach is needed.

EXPERIMENTAL RESULTS

In general, for the semantic matching approach, there is an accompanying experimental evaluation in the
corresponding references. Also, there is the Ontology Alignment Evaluation Initiative* (OAEI), which is a
coordinated international initiative that organizes the evaluation of the increasing number of ontology matching
systems. The main goal of the Ontology Alignment Evaluation Initiative is to be able to compare systems and
algorithms on the same basis and to allow anyone for drawing conclusions about the best matching strategies.
From such evaluations, matching system developers can learn and improve their systems.

4http://oaei.ontologymatching.org/

DATA SETS
A large collection of datasets commonly used for experiments can be found at:
http://oaei.ontologymatching.org/

URL TO CODE
The OntologyMatching.org contains links to a number of ontology matching projects which provide code for their
implementations of the matching operation: http://www.ontologymatching.org/

CROSS REFERENCE

VIII. DATA INTEGRATION

V.c. Peer-to-Peer data management

V.d. Mobile and ubiquitous data management

I.a. Data models (including semantic data models)

RECOMMENDED READING

[1] Paolo Avesani, Fausto Giunchiglia, and Mikalai Yatskevich. A large scale taxonomy mapping evaluation. In
Proceedings of the 4th International Semantic Web Conference (ISWC), pages 6781, Galway (IE), 2005.

[2] Carlo Batini, Maurizio Lenzerini, and Shamkant Navathe. A comparative analysis of methodologies for database
schema integration. ACM Computing Surveys, 18(4):323-364, 1986.

[3] Philip Bernstein, Sergei Melnik, Michalis Petropoulos, and Christoph Quix. Industrial-strength schema matching.
ACM SIGMOD Record, 33(4):38-43, 2004.

[4] Paolo Bouquet, Luciano Serafini, and Stefano Zanobini. Semantic coordination: A new approach and an application.
In Proceedings of the 2nd International Semantic Web Conference (ISWC), pages 130-145, Sanibel Island (FL US),
2003.

[5] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos, and Alon Y. Halevy. Learning to match
ontologies on the semantic web. The VLDB Journal, 12(4):303-319, 2003.

[6] Jéréme Euzenat and Pavel Shvaiko. Ontology matching. Springer, Heidelberg (DE), 2007.

[7] Avigdor Gal. Why is schema matching tough and what can we do about it? SIGMOD Record, 35(4):2-5, 2006.

[8] Avigdor Gal, Ateret Anaby-Tavor, Alberto Trombetta, and Danilo Montesi. A framework for modeling and evaluating
automatic semantic reconciliation. The VLDB Journal, 14(1):50-67, 2005.

[9] Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu. Encoding classifications into lightweight ontologies.
Journal on Data Semantics, VIII:57-81, 2007.

[10] Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. The Knowledge Engineering Review, 18(3):265-280, 2003.

[11] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. Discovering missing background knowledge in ontology
matching. In Proceedings of the 17th European Conference on Artificial Intelligence (ECAI), pages 382-386, Riva del
Garda (IT), 2006.

[12] Fausto Giunchiglia, Mikalai Yatskevich, Paolo Avesani, and Pavel Shvaiko. A large scale dataset for the evaluation
of ontology matching systems. The Knowledge Engineering Review, 2008, (to appear).

[13] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Semantic matching: algorithms and implementation.
Journal on Data Semantics, 1X:1-38, 2007.

[14] James Larson, Shamkant Navathe, and Ramez Elmasri. A theory of attributed equivalence in databases with
application to schema integration. IEEE Transactions on Software Engineering, 15(4):449-463, 1989.

[15] Jayant Madhavan, Philip Bernstein, and Erhard Rahm. Generic schema matching with Cupid. In Proceedings of the
27th International Conference on Very Large Data Bases (VLDB), pages 48-58, Roma (IT), 2001.

[16] Natalya Noy and Mark Musen. The PROMPT suite: interactive tools for ontology merging and mapping.
International Journal of Human-Computer Studies, 59(6):983-1024, 2003.

[17] Erhard Rahm and Philip Bernstein. A survey of approaches to automatic schema matching. The VLDB Journal,
10(4):334-350, 2001.

[18] Pavel Shvaiko and Jérome Euzenat. A survey of schema-based matching approaches. Journal on Data Semantics,
IV:146-171, 2005.

[19] Stefano Spaccapietra and Christine Parent. Conflicts and correspondence assertions in interoperable databases.
SIGMOD Record, 20(4):49-54, 1991.

