
Leveraging Web Services Discovery with
Customizable Hybrid Matching

Natallia Kokash1, Willem-Jan van den Heuvel2, and Vincenzo D’Andrea1

1 DIT - University of Trento, Via Sommarive, 14, 38050 Trento, Italy
{kokash,dandrea}@dit.unitn.it

2 Infolab, Tilburg University, 5000 LE, PO Box 90158, Tilburg, The Netherlands
wjheuvel@uvt.nl

Abstract. Improving web service discovery constitutes a vital step for
making the Service Oriented Computing (SOC) vision of dynamic ser-
vice selection, composition and deployment, a reality. Matching allows for
comparing service requests of users with descriptions of available service
implementations, and sits at the heart of the service discovery process.
During the last years, several matching algorithms for comparing user
requests to service interfaces have been suggested, but unfortunately
there are no consistent comparative experimental evaluations of existing
service discovery methods. This paper firstly reviews several state-of-
the-art approaches to matching using syntactic, semantic and structural
information from service interface descriptions. Secondly, it evaluates the
efficacy of several key similarity metrics that underpin these approaches,
using a uniform corpus of web services. Thirdly, this paper develops and
experiments with a novel style of matching that allows for blending vari-
ous existing matching approaches and makes them configurable to cater
service discovery given domain-specific constraints and requirements.

1 Introduction

Service Oriented Architectures (SOAs) offer tantalizing possibilities for enter-
prizes by allowing large-scale reuse of loosely-coupled services, defining service
description, discovery and composition at heart of its paradigm [1]. Web services
seem to become the preferred implementation technology for realizing the SOA
promise of service sharing and interoperability. By now, a stack of standards
and specifications supports the description, discovery, invocation, composition,
security and deployment of web services, and many tools to develop applications
from web services have become commercially available. However, the vision of
dynamic composition of heterogeneous web services still seems far away.

Web service discovery is generally perceived a key step to reach automation
of service composition, and further realizing the SOA vision. Web service discov-
ery is concerned with locating web services that match a set of functional and
non-functional criteria [2]. Given the fact that the description of web services
has been standardized on WSDL, many of today’s discovery approaches confine
themselves to locating web services on the basis of their functional description,

but some novel techniques that take into consideration extra-functional descrip-
tions, such as performance, are under investigation.

Discovery involves three interrelated phases: (1) matching, (2) assessment
and (3) selection. During the first phase, the description of a service is matched
to that of a set of available resources. Next, the result of matching (typically a set
of ranked web services) is assessed, filtered by a set of criteria. Finally, services
are actually selected so they may be subsequently customized and combined with
others. This paper focuses on the first phase of service discovery - matching.

Existing approaches to web service matching tend to address syntactic and/or
semantic matching. To analyze their merits, it is useful to further classify them
as uniform or hybrid. Uniform matching approaches refer to atomic matching
techniques that can not be any further decomposed in finer-grained matching
techniques. Hybrid matching approaches on the other hand may combine various
matching methods (e.g., syntactic and semantic) into a composite algorithm.
Unfortunately, in many cases an evaluation of the proposed matching techniques
is lacking. And, if available, each experimental evaluation uses its own corpus,
making an objective judgement about their merits very cumbersome.

In the next section, we survey the prevalent styles of web service matching
and review key research results for each of them. Section 3 then introduces a novel
web service matching approach that draws upon existing approaches and serves
to highlight the basic workings of hybrid matching. Next, Section 4 evaluates
this new approach and compares it to other related matching techniques using
a similar WSDL corpus. Based on these evaluations, Section 5 then proposes
a customizable approach towards hybrid service matching. Section 6 concludes
this paper by summarizing our main findings and exploring new research areas.

2 Related Work

We may discern between two streams in web service matching for the purpose
of web service discovery: those based on WSDL using classical information re-
trieval techniques, such as the keyword-based search, and those assuming seman-
tic descriptions of web services in semantically enriched versions of WSDL, most
notably WSDL-S. The first category is predominantly applied in many commer-
cial discovery techologies, relying on standards such as UDDI and ebXML. The
second category is experimented in the domain of the Semantic Web.

UDDI registries3, the dominating technological backbone for web service dis-
covery, rely mainly on the exhaustive categorization of the advertised services
by their providers. The UDDI Registries’ API supports only simple keyword-
based matching, facilities which have proven to be insufficient due to their low
precision (a fraction of retrieved documents that are relevant) and low recall (a
fraction of relevant documents that have been retrieved). Several Information
Retrieval (IR) techniques have been proposed as a way to improve the efficacy
of service matching in UDDI. Sajjanhar et al. [3] have studied Latent Semantic
Indexing (LSI), the prevailing method for small document collections, to capture
3
http://www.uddi.org

the semantic associations between short textual advertisements of registered web
services. Recently Corella et al. [4] have developed a heuristic approach for the
semi-automatic classification of web services, assuming that a corpus of previ-
ously classified services is available.

EbXML registries4 provide an alternative way to register, locate and access
information about offered web services. This information largely exceeds the
level of service definitions as captured in WSDL documents, and allows trad-
ing partners to advertise their business processes, core components and context
descriptions (e.g., access/control constraints). The ebXML registry is equipped
with a more sophisticated query model than UDDI, allowing the usage of custom
ad-hoc and filtered queries (in SQL-92 syntax).

Now, we will outline several contemporary approaches to assess the similarity
of web services based on WSDL specifications as they are the de-facto vehicle for
representing services, although WSDL does not (yet) provide advanded means
to capture semantic information. In fact, WSDL’s only means to describe se-
mantic information is using the documentation tag that may embrace service
documentation, while assuming that tag descriptors of WSDL constructs such
as operations and data types, are semantically meaningful.

In particular, Bruno et al. [5] have experimented with automated classifica-
tion of WSDL files using Support Vector Machines (SVM). Moreover, Stroulia
and Wang [6] have developed a suite of algorithms for WSDL similarity assess-
ment. To enable semantic matching of web service specifications, the WordNet
lexicon [7] was employed. WordNet entails a lexical database with words orga-
nized into synonym sets representing a lexical concept. The main drawback of
this method is that poor, unnormalized heuristics in assigning weights for term
similarity are used. Dong et al. [8] present a search engine focused on retrieval
of WSDL operations. The underlying assumption of their method is that para-
meters tend to reflect the same concept if they often occur together. In [9] web
service similarity is determined using a WordNet-based distance metric. Zhuang
et al. [10] apply a conceptually similar approach. Key shortcomings of this work
however include the lack of automated preprocessing of WSDL files, complex
name handling and structural information analysis. In [11], the COSMOS ap-
proach is introduced that is built on top of WordNet, adopts the Vector-Space
Model (VSM) [12] and incorporates pre-processing techniques to clean-up ter-
minology, stem WSDL elements, and the such.

Striving for the automated web service discovery and composition has lead
to the idea of annotating services with semantic information. Two main propo-
nents of semantic annotation entail WSDL-S and OWL-S. WSDL-S [13] provides
a way to inject more real-world semantics to service specifications, being closely
aligned to WSDL 2.0. Semantic descriptions are maintained outside of WSDL
documents and referenced to using extensibility elements. OWL-S on the other
hand, attaches description logic based meta-data to web services. Possible se-
mantic meta-data include preconditions, inputs, outputs and effects of service
operations. In fact ontological meta-data is not restricted to the just mentioned

4
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrim.pdf

categories, but also includes information about domain-specific service capabil-
ities, available resources, security and transactional behavior, and the like.

The METEOR-S [14] project combines semantic web technology (seman-
tic annotation) with classical IR, providing a solution that extends UDDI reg-
istries with semantic information to leverage matching of web services in a P2P-
environment. This solution also allows for semi-automatically mapping of WSDL
elements to ontological concepts. This is achieved in the following manner. First,
the linguistic similarity between concepts and elements is calculated. Then, the
structural similarity between sub-trees of the concepts and elements is deter-
mined, after which the overall similarity is computed as the geometric mean of
the structural and linguistic similarities.

The above demonstrates the existence of many techniques to match web
services. Unfortunately, in many cases empirical experiments to validate their
efficacy are lacking. Clearly, in some cases precision and recall of matching al-
gorithms has been determined, but, unfortunately, no uniform corpus of WSDL
documents has been used, making a comparison between them infeasible.

3 The WSDL Matching Method (WSDL-M2)

In this section we propose a web service matching algorithm, named WSDL-
M2, that was inspired by several existing discovery methods. It combines two
techniques: lexical matching to calculate the linguistic similarity between concept
descriptions, and structural matching to evaluate the overall similarity between
composite concepts.

Fig. 1. Steps of WSDL-M2

The overall matching process is shown in Figure 1. First, all files from the
collection of WSDL specifications are parsed (by means of wsdl4j library5) in
order to allow extraction of their structured content. In the second step, the
parsed document is tagged to enable lexical analysis. The method considers five
WSDL concepts that are supposed to contain meaningful information: services,
operations, messages, parts and data types. Each element has a description, i.e., a
vector that contains semantic information about this element extracted from the
specification. To obtain concept descriptions from compound terms we excerpt
5
http://sourceforge.net/projects/wsdl4j

(i) sequences of an uppercase letter and following lowercase letters, (ii) sequences
of more than one uppercase letters in a row, (iii) sequences between two non-
word symbols. For example, from tns:GetDNSInfoByWebAddressResponse we
get the following set of words: tns, get, dns, info, by, web, address, response.

In the third step, the tagged WSDL specifications can be further analyzed
and subsequently indexed using different IR models. The most widely-used IR
technique constitutes the Vector-Space Model [12]. It weights indexed terms to
enhance retrieval of relevant WSDL documents and then computes a similar-
ity coefficient after which they may be ranked. Traditionally, term weights are
assigned using the tf-idf (term frequency-inverse document frequency) measure.
The Lucene library6 was tailored to allow assigning relative coefficients. After
this assignment, the similarity between descriptions is determined using associa-
tive coefficients based on the inner product of the description vectors.

To address the major shortcoming of VSM, the fact that VSM considers
words at the syntactic level only, our method expands both the query and the
WSDL concept descriptions using synonyms that are extracted from WordNet.
Next, we compare the obtained word tuples as in VSM.

Finally, we used a measure that reflects the semantic relation between two
concepts using the WordNet lexicon7. Formally, it is defined as sim(c1, c2) =
1 − (

icwn(c1) + icwn(c2)
)
/2 + maxc∈S(c1,c2) icws(c), where icwn(c) denotes in-

formation content value of a concept c and S(c1, c2) is a set of concepts that
subsume c1 and c2. More details of this algorithm are outlined in [15]. Please
note that in principle any other algorithm could have been chosen instead.

In the remainder of this article, we will refer to the above metrics as to
A1 (VSM), A2 (VSM+WordNet) and A3 (Semantic). Using these metrics, the
matching phase then continues with the comparison of service descriptions and
the set of service operations, which are later combined in a single-number mea-
sure. The similarity between operations, in their turn, is assessed based on the
descriptions of operations and their input/output messages. To compare mes-
sage pairs we again evaluate similarity of their descriptions and parts. Since
one part with a complex data type or several parts with primitive data types
can describe the same concept, we compare message parts with subelements of
complex data types as well. We rely on “relaxed” two-level structural match-
ing of data types since too strict comparison can significantly reduce recall. At
the first level, description of complex types are compared. At the second one,
all atomic subelements of the complex type are compared. For each element,
names of higher-level organizational tags such as complexType or simpleType
and composers such as all or sequence are included in the element description.
Order constraints are ignored since parser implementations often do not observe
them. This does not harm well-behaved clients and offers some margin for errors.

The structural matching is treated as Maximum Weight Bipartite Matching
problem that can be solved in polynomial time using, for example, Kuhn’s Hun-

6
http://lucene.apache.org/

7
Java implementation of the algorithm that defines the semantic similarity of two terms is available
on http://wordnet.princeton.edu/links.shtml.

garian method [16]. We use this method for two purposes: (i) to calculate seman-
tic similarity between concept descriptions, (ii) to compute similarity of complex
WSDL concepts taking into account their constituents (sub-types). Weight wij

of each edge is defined as a lexical similarity between elements i and j. The total
weight of the maximum weight assignment depends on the dimensions of the
graph parts. There are many strategies to acquire a single-number dimension-
independent measure in order to compare sets of matching pairs. The simplest
of them is to calculate the matching average. Alternatively, we can consider two
elements i ∈ X, j ∈ Y to be similar if wij > γ for some parameter γ ∈ [0, 1]. In
this case, Dice, Simpson, and Jaccard coefficients may be applied.

Due to space reasons, we were not able to include the entire formal details
of the matching algorithm. We refer to [17] for a detailed formal treatment.

4 Comparative Analysis of WSDL Matching Algorithms

In this section we report on a series of experiments that we have conducted
to evaluate the efficacy of the presented matching method. Further, we compare
the efficacy of the tf-idf heuristic, its WordNet-based extension and the semantic
similarity metric presented in the previous section.

We ran our experiments using a collection of 40 XMethods’ web services
classified into five categories [9]: ZIP(11), Weather(6), DNA(6), Currency (5)
and SMS (12). Services from each group were verified manually to provide at
least one common operation. In addition, we have experimented with a larger
collection to increase confidence in some of our initial observations. For these
purpose we decided to reuse the WSDL corpus that was developed by Stroulia
and Wang [6]. It consists of 447 services8 divided into 68 groups.

For each service we queried the complete data set for the relevant services
(i.e., services classified in the same group). The matching results for different
thresholds are shown in Figure 2. The similarity assigned to different files with
respect to the query can be treated as a level of the algorithm confidence. It
ranges from 0 (no match) to 1 (WSDL documents contain all concepts from the
query regardless of the order). To avoid dependency from the chosen similar-
ity threshold, the efficacy of the matching algorithm was accessed by average
precision that combines precision, relevance ranking, and overall recall [18]. For
each group, average precision value among all queries is given in Figure 3(a). A
comparison of processing times is presented in Figure 3(b).

As can be seen from our experimental results, the VSM was the most ef-
fective method for the overwhelming majority of the queries. Yet please note
that it is limited to syntactic matching only. In contradiction to our intuition,
application of the tf-idf heuristic applied on the WSDL specifications enriched
with synonyms from the WordNet lexicon, did not improve the quality of the
matching results for the first collection. This can be observed in Figures 2(a)-
2(d): the same files are classified as relevant by both methods. For the sec-

8
Stroulia and Wang describe a collection of 814 services. However, we excluded a group of 366
unclassified WSDL specifications and 1 WSDL file was not parsed correctly.

(a) VSM: simA1(x, y) ≥ 10% (b) VSM: simA1(x, y) ≥ 15%

(c) VSM+WordNet: simA2(x, y) ≥ 10% (d) VSM+WordNet: simA2(x, y) ≥ 15%

(e) Semantic: simA3(x, y) ≥ 40% (f) Semantic: simA3(x, y) ≥ 45%

Fig. 2. Results of WSDL matching

(a) Average precision (b) Processing time

Fig. 3. Performance on the first data set

Fig. 4. Average precision of
four hybrid algorithms on
the first data set

ond data set, a slight gain in the average precision for 8 groups, along with
notable decrease for 28 groups from the 68 examined, was observed [17]. We
carried out statistical analysis in order to further analyze the performance re-
sults. Wilcoxon signed rank tests [19] indicate that they are significantly different
(p-value = 0.00693 < 0.01) and prove that the average precision of the A1 is
consistently better (p-value = 0.003465 < 0.01) than the average precision of
the A2. The semantic correlations between WSDL concepts found with the help
of the WordNet-based semantic similarity measure in most cases are wrong or
too weak. As a result many irrelevant files for the query have a high similarity
score. This can be seen in Figure 2(e), where many off-diagonal elements corre-
sponding to irrelevant services appear. Aside from the efficacy of this particular
application of tf-idf, the semantic matching approach has a significantly lower
performance than the previous two approaches.

Enriching element descriptions by synonyms from the WordNet lexicon leads
to significant increase in index size (170% for the first collection and 80% for
the second one) with no gain in average precision. We believe that the rea-
son of this result is caused by an excessive generality of the WordNet9. At the
same time, WordNet is restricted to a fixed set of six semantic relationships (in-
cluding: hypernyms, synonyms, entailment, etc.). As a consequence, words “cur-
rency” and “country” are not recognized as related concepts, and the operations
getRateRequest(country1, country2) and conversionRate(fromCurrency,
toCurrency) had significantly lower similarity score than they were expected to
have. Nevertheless, given a country the user can get the currency used in this
country and invoke a service to exchange money that accepts currency codes as
input. The similarity measure that we need is the relation “can be converted”
rather than the general lexical (synonymy) similarity between concepts from the
WordNet database. In addition, most of documentation tags in WSDL descrip-
tions are empty. Since significantly more efforts are required to provide formal
ontology-based descriptions of web services, this argues against our belief that
semantic web services will be widely used.

For the collection of the classified web services WSDL-M2 proved to be very
effective (46-100%). For several categories of the second collection average pre-
cision was dramatically low (15-40%) reaching 100% for the other groups in the
same time. This can be explained by the fact that the most categories in the cor-
pus were very coarse-grained and too generic in nature. As claimed before, due to
the absence of a standard corpus in combination with the usage of different data
models, WSDL-M2 method cannot be compared quantitatively with the existing
approaches for which some empirical validations are available, notably, [6][8][9].
A challenging anomaly occurs: groups with better precision in [9] correspond to
the groups with worse average precision in our experiments. This may be caused
by a different proportion (weight) of structure vs. semantic similarity impact on
the final similarity score. Further, our experiments do not support the conclu-

9
E.g., the following set of synonyms corresponds to the term batch: {deal, flock, hatful, spate,
lot, muckle, great, deal, wad, mickle, mint, clutch, mass, quite a little, good, deal, heap, peck,
stack, pile, plenty, mess, raft, pot, whole, lot, sight, slew, tidy sum, whole slew}. However, none
of them is likely to be used in the context of concise web service specifications.

sions by Stroulia and Wang [6] that enriching of the WSDL descriptions with
synonyms from the WordNet leads to a better matching precision.

The above provides empirical evidence that one of the key factors that in-
fluence on the performance of the matching methods that we studied this far,
is the quality of the vocabulary which was used in different categories. So, for
categories “currency” and “weather” the semantic matching algorithm is quite
effective while for “DNA” syntactic matching shows the better result. These ob-
servations point towards the idea that a customizable hybrid matching is needed
to increase confidence in matching results. Hybrid matching can help to reduce
the processing time of semantic matching (see Figure 3(b)), using structural
matching to reduce the number of WSDL documents to be compared.

5 Customizable Hybrid Matching Approaches

In this section, we introduce a customizable hybrid approach towards matching
of web services. The significance of customization lies in the fact that it caters for
composition of a new hybrid approach from various existing techniques. Hence,
this approach may in fact be perceived as a meta-matching strategy, which is
very flexible as it is not restricted to any matching technique, but enables ad-
hoc composition of several (pre-existing) matching approaches.

It is of critical importance to make matching methods customizable so that
they may be tailored to meet organization-, domain- and/or context-specific
constraints and needs, including, (non-)absence of domain-specific taxonomies,
quality of the request/available web service descriptions, availability of textual
descriptions, number of available services, usage of topic-specific terminology
and the such. For example, hybrid matching seems a viable solution in case one
has more confidence in structural than semantic matching due to the fact that
WSDL labels carry poor semantics and service descriptions are lacking. The level
of confidence may be expressed by parameterizing the hybrid algorithm so that
more weight can be assigned to structural and less weight to semantic matching.

Let us illustrate our approach using a simple example. Suppose that two
kinds of matching algorithms are available: Sy, which compares service descrip-
tions using syntax driven techniques and Se, that relies on semantic matching.
Let simSy(q, x) designate a similarity score between query q and web service
(operation) x defined by the syntactic matching algorithm, and simSe(q, x)
be a similarity score between query q and web service (operation) x defined
by the semantic matching algorithm. Given query q and threshold γ > 0, let
XA(q, γ) = {x|simA(q, x) > γ} denote a set of services (operations) found by
the algorithm A. Now, we propose three compositional operators to combine
matching approaches:

– Mixed - a series of matching techniques are executed in parallel. In fact,
these matching techniques may be homogenous (e.g., all of them of the same
type) or heterogenous (various types of matching, e.g., a mixture of semantic
and syntactic matching). This type of composition combines sets of services

found by the different matching techniques in a single list. For example,
syntactic and semantic matching algorithms are grouped in a single rank-
ing list, i.e., XH1a(q, γ) = {x|simH1a(q, x) > γ}, where simH1a(q, x) =
f{simSy(q, x), simSe(q, x)} such that f = {max,min}. Alternatively, the
results of the two approaches are fused based on weights allocated to each
matching constituent, i.e., XH1b(q, γ) = {x|simH1b(q, x) > γ} such that
simH1b(q, x) = w1sim

Sy(q, x)+w2sim
Se(q, x) |w1+w2 = 1, 0 ≤ w1, w2 ≤ 1.

– Cascade - each matching technique that is part of the composite matching
algorithm reduces the searching space of relevant service specifications. In
other words, each subsequent matching algorithm refines the matching re-
sults of the previous one. For example, given a set of services found by the
syntactic matching algorithm, choose those services whose similarity that is
computed by the semantic matching algorithm is higher than a predefined
threshold, i.e., XH2a(q, γ1) = {x|simH2a(q, x) > γ1}, where simH2a(q, x) =
simSy(q, x) |x ∈ XSe(q, γ2). Alternately, from the set of services found
by the semantic matching algorithm, we select those services whose syn-
tactic similarity is higher than a predefined threshold, i.e., XH2b(q, γ2) =
{x|simH2b(q, x) > γ2}, where simH2b(q, x) = simSe(q, x) |x ∈ XSy(q, γ1).

– Switching - this category of composition allows to switch between different
matching algorithms. In principle, the decision to switch to another matching
technique is driven by predefined criteria. For example, based on the number
of the found services for a query after using a uniform algorithms we can
alter between cascade and mixed combinations.

Parametrization entails a prime mechanism to allow for customization. Prin-
cipally, the weights may be applied to hybrid matching techniques, being assem-
bled using mixed, cascading and switching styles of composition. In fact, config-
uration of hybrid matching may not only be achieved at the level of matching
techniques, but also at the level of the data models underlying them. There exist
two fundamental choices to combine data-models underpinning hybrid matching:

– Combination - different data models are combined by a single matching
algorithm. For example, a hybrid matching technique may inject a cocktail
of syntactic and semantic data that is extracted from WSDL files.

– Augmentation - denotes an alternate combination strategy in which various
data-models are used sequentially to enrich the information that serves as an
input to the matching process. This style of data-model combination is most
effective for cascading or switching style of composition. For example, in the
first step of the matching process pure syntactic data may be considered,
after which lexical information is extracted from WSDL interfaces, which
in the next step is enriched by OWL-S descriptions, and then even further
with domain- or community specific knowledge. Typically, this combination
strategy involves interaction with the service requester and/or information
that is gathered from a service monitor.

We have experimented with a combination of the approaches presented in
Section 3 to increase confidence in matching results and demonstrate the po-
tential of parameterizing hybrid matching more in general. Some preliminary

experiments using the same corpus as before, yielded the outcome drawn in Fig-
ure 4. Four mixed algorithms were tested: in the first two approaches different
weights for structural matching were assigned, 60% and 80% correspondingly.
Other two methods experimented with ranking of the retrieved services using
maximum and minimum similarity scores between those assigned by the seman-
tic and syntactic uniform algorithms. As this figure shows, for several categories
hybrid approaches over-perform the purely semantic matching.

6 Conclusions and Outlook

Web service discovery plays a pivotal role in the SOC paradigm. In this paper,
we have reviewed various ways of web service matching, assessing their merits
and disadvantages. In addition, we have introduced the WSDL-M2 matching
algorithm that was implemented in a prototypical toolset. We have conducted a
comparative analysis of WSDL-M2 with three lexical similarity measures: tf-idf
and two WordNet-based metrics, using a uniform corpus.

To leverage WSDL matching, we have proposed a multi-dimensional com-
position model, having matching techniques and data models as its main con-
stituents. The research findings that were presented in this paper are core results
in nature. More research is needed in various directions. Though promising in
nature, empirical evidence for hybrid matching is in need of experimentation in
larger settings. We intend to conduct more experiments with hybrid matching
approaches, equipping them with learning strategies.

Also, we believe that the augmentation strategy towards data model compo-
sition of matching approaches is a promising research direction. This composition
model assumes that extra information may be gathered from monitoring tools. In
particular, we plan to scrutinize application of the following types of knowledge:

– Service knowledge - knowledge about the existing services and their features,
such as service documentation, interface description, ontology-based seman-
tic extensions, service reputation and monitored information.

– Client knowledge - client’s profile that includes his/her area of expertise,
location, history of searches and previously used web services.

– Functional knowledge - knowledge required by the matching algorithm to
map between the client needs and the services that might satisfy those
needs. The chain query → knowledge-based reasoning → response is im-
plied. For example, if the client asks for a currency exchange web service,
and the algorithm knows that given a particular currency the client can
define the country where this currency is used, it may recommend service
conversionRate(fromCurrency, toCurrency).

Additionally, in future work we are going to consolidate and extend our current
empirical study with other IR models such as Latent Semantic Indexing. Further
experiments should be conducted to evaluate the composition model of hybrid
methods. Lastly, we plan to develop a case tool to support composition of- and
experimentation with matching techniques.

References

1. Papazoglou, M., Georgakapoulos, G.: Introduction to the special issue about
service-oriented computing. Communications of the ACM 46(10) (2003) 24–29

2. Dan, A., Davis, D., Kearney, R.e.a.: Web services on demand: Wsla-driven auto-
mated management. IBM Systems Journal 43(1) (2004) 136–158

3. Sajjanhar, A., Hou, J., Zhang, Y.: Algorithm for web services matching. In: Proc.
of APWeb. Volume 3007 of LNCS., Springer (2004) 665–670

4. Corella, M.A., Castells, P.: Semi-automatic semantic-based web service classifi-
cation. In: Proc. of the International Conference on Knowledge-Based Intelligent
Information and Engineering Systems. LNAI, Springer (2006)

5. Bruno, M., Canfora, G., Penta, M.D., Scognamiglio, R.: An approach to support
web service classification and annotation. In: Proc. of IEEE International Confer-
ence on e-Technology, e-Commerce and e-Service. (2005) 138–143

6. Stroulia, E., Wang, Y.: Structural and semantic matching for accessing web service
similarity. International Journal of Cooperative Information Systems 14(4) (2005)
407–437

7. Miller, G.: Wordnet: A lexical database for english. Communications of the ACM
38(11) (1995) 39–41

8. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for
web services. In: Proc. of the 30th VLDB Conference. (2004) 372–383

9. Wu, Z., Wu, Z.: Similarity-based web service matchmaking. In: Proc. of the IEEE
International Conference on Services Computing. Volume 1. (2005) 287–294

10. Zhuang, Z., Mitra, P., Jaiswal, A.: Corpus-based web services matchmaking. In:
Workshop on Exploring Planning and Scheduling for Web Services, Grid and Au-
tonomic Computing. (2005) 46–52

11. Van den Heuvel, W.: Aligning Modern Business Processes and Legacy Systems: A
Component-based Approach. MIT Press (2006) to appear.

12. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley
(1999)

13. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A., Verma,
K.: Web service semantics - WSDL-S. Technical note, International Business
Machines Corporation and University of Georgia (2005)

14. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.:
Meteors wsdi: A scalable p2p infrastructure of registries for semantic publication
and discovery of web services. Journal of Information Technology and Management.
Special Issue on Universal Global Integration 6(1) (2005) 17–39

15. Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for se-
mantic similarity in wordnet. In: Proc. of the European Conference on Artificial
Intelligence, IOS Press (2004) 1089–1090

16. Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM
Computing Surveys 18(1) (1986) 23–38

17. Kokash, N.: A comparison of web service interface similarity measures. Technical
Report DIT-06-025, DIT-University of Trento (2006)

18. Buckley, C., Voorhees, E.M.: Evaluating evaluation measure stability. In: Proc. of
SIGIR. (2000) 33–40

19. Hollander, M., Wolfe, D.A.: Nonparametric statistical inference. John Wiley and
Sons (1973)

