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Abstract

Mappings between related ontologies are increasingly used to support
data integration and analysis tasks. Changes in the ontologies also require
the adaptation of ontology mappings. So far the evolution of ontology
mappings has received little attention albeit ontologies change continu-
ously especially in the life sciences. We therefore analyze how mappings
between popular life science ontologies evolve for different match algo-
rithms. We also evaluate which semantic ontology changes primarily affect
the mappings. We further investigate alternatives to predict or estimate
the degree of future mapping changes based on previous ontology and
mapping transitions.
Keywords: mapping evolution, ontology matching, ontology evolution

1 Introduction

Ontologies have become increasingly important in the life sciences [4, 18]. They
are used to semantically annotate molecular-biological objects such as proteins
or pathways [27]. Different ontologies of the same domain often contain over-
lapping and related information. For instance, information about mammalian
anatomy can be found in NCI Thesaurus [19] and Adult Mouse Anatomy [1].
Ontology mappings are used to express the semantic relationships between dif-
ferent but related ontologies, e.g., by linking equivalent concepts of two ontolo-
gies.

Mappings between related ontologies are useful in many ways, in particular
for data integration and enhanced analysis [21, 15]. In particular, such map-
pings are needed to merge ontologies, e.g., to create an integrated cross-species
anatomy ontology such as the Uber ontology [29]. Anatomy ontology mappings
may also be useful to transfer knowledge from different experiments between
species [3]. Furthermore, mappings can help finding objects with similar on-
tological properties as interesting targets for a comparative analysis. Ontology
curators can further find missing ontology annotations and get recommendations
for possible ontology enhancements based on mappings to other ontologies.

Ontologies underly continuous modifications so that new ontology versions
are released periodically [13]. New versions typically incorporate enhanced
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knowledge, such as additional concepts, relationships, and attribute values. Ex-
isting information can also be revised or even deleted. Such ontology changes can
invalidate previously determined ontology mappings so that they may have to be
re-determined to remain useful. Unfortunately, determining ontology mappings
is an expensive process even with the help of semi-automatic ontology match-
ing techniques [7, 24] that still involve a manual verification of correspondences
and a parametrization effort. The importance on determining and adapting on-
tology mappings is underlined by the popular Ontology Alignment Evaluation
Initiative (OAEI) [22]. OAEI provides real-world test data sets, in particular
for matching the Adult Mouse Anatomy Ontology against the anatomy part of
NCI Thesaurus. Unfortunately, the reference mapping of the anatomy task is
based on 5 year old ontology versions1 so that its quality for the current ontology
versions remains unclear.

The evolution of ontology mappings has received very little attention so far,
especially for the life science domain. For example it is unknown to what de-
gree and how mappings between popular life science ontologies change and how
ontology changes affect ontology mappings. There are many ways to compute
mappings and it is not clear to what degree different match methods result
in differently stable ontology mappings. Finally, we would like to investigate
to what degree one can predict future mapping changes based on previously
observed ontology and mapping changes. Such information is expected to be
useful for deciding about whether a previous ontology mapping is still reliable
and up-to-date or whether one has to perform an expensive adaptation of the
mapping.

To address these questions and issues we make the following contributions:

• We introduce a generic model for ontology and mapping evolution as well
as for their inter-dependencies. The model supports analyzing the impact
of ontology evolution on mapping evolution, e.g., what ontology changes
lead to the addition or deletion of correspondences in the mapping. (Sec. 3)

• We apply our model to three life science scenarios and evaluate how map-
pings between popular life science ontologies evolve. We also investigate
mapping evolution for different match techniques. (Sec. 4)

• We propose and evaluate two approaches to estimate the number of map-
ping changes based on previous ontology and mapping changes. (Sec. 5)

In Sec. 2 we present preliminaries and outline the general scenario. We
describe related work in Sec. 6 and conclude in Sec. 7.

2 Preliminaries

2.1 Ontology, Mapping, and Matching

In general an ontology O = (C,R,A) consists of concepts C which are interre-
lated by directed relationships R. Each concept has an unambiguous identifier
such as an accession number. A concept typically has further attributes a ∈ A to
describe the concept, e.g., name, synonyms, or definition. A relationship r ∈ R

1As of 2012, the current reference ontology mapping has been created in 2007.
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Figure 1: General evolution scheme with multiple ontology and mapping ver-
sions

forms a directed connection between two concepts and has a specific type, e.g.,
is a or part of. An ontology mapping MO1,O2 is a set of correspondences
(c1, c2) whereby each correspondence interconnects two concepts c1 ∈ O1 and
c2 ∈ O2 of the two ontologies. The mapping semantics depends on the intended
use case but we assume that all correspondences of a mapping express the same
semantic type, e.g., is-equivalent-to or is-related-to.

Since a purely manual creation of ontology mappings is a tedious and labor-
intensive task such mappings are usually determined by semi-automatic ontol-
ogy matching techniques (see Sec. 6 for Related Work). Most matching ap-
proaches are metadata-based, i.e., they use the ontology representations them-
selves to find related concepts, in particular the names of concepts and con-
textual information like the names of the parent or child concepts within the
ontologies. In our evaluation, we will analyze mapping changes for three typical
metadata-based matchers (Sec. 4).

2.2 Versioning Scheme

We define an ontology version Ov = (Cv, Rv, Av) as a snapshot of an ontology
O released at a specific point in time. For simplicity we enumerate the versions
with ascending numbers v = 1, 2, . . . rather than using the actual release dates.

Ontology changes affect previously determined ontology mappings so that
these mappings should be continuously adapted. Fig. 1 illustrates the general
versioning scheme we adopt in this paper. There is a series of versions (v =
1 . . . k) for a pair of ontologies O1 and O2 that are connected by an ontology
mapping MO1,O2. For simplicity we determine ontology mappings only between
ontologies of the same version number, i.e., we create mappings Mv only between
ontology versions O1v and O2v referring to the same specific point in time.

The difference between two ontology and mapping versions is denoted by
diff(Ov, Ov+1) and mdiff(Mv,Mv+1), respectively. The next section explains
diff and mdiff in more detail.
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Change operation Type

Insertion of a new concept to Ov+1

Information extension
Insertion of a subgraph to a concept
Insertion of new relationship in Ov+1

Addition of an attribute (to an existing concept)
Mark concept as non-obsolete
Deletion of a concept in Ov

Information reduction
Removal of a subgraph
Deletion of an relationship in Ov

Deletion of an existing attribute
Mark concept as obsolete
Split concept of Ov into multiple concepts in Ov+1

Information revision
Merge concepts of Ov into a single concept in Ov+1

Concept substitution
Move concept
Change attribute value

Table 1: COntoDiff change operations (including their categorization in three
groups) for ontology evolution Ov 7→ Ov+1.

3 Change Model for Ontologies and Mappings

We first describe our change model for ontologies and mappings and categorize
the changes into different groups. We also propose simple change ratio indica-
tors to assess the evolution intensity between successive ontology and mapping
versions. We then propose indicators to assess the impact of ontology changes
on ontology mappings.

3.1 Ontology Changes

We start by defining what changes can occur between successive ontology ver-
sions Ov and Ov+1. Our model is based on the COntoDiff algorithm described
in [12]. COntoDiff computes the difference diff(Ov, Ov+1) between an old and
a new version of an ontology and consists of the set of change operations that
– when applied to Ov – transform the old into the new version. Basic change
operations are concept and attribute additions or deletions. COntoDiff also de-
termines more complex changes such as merging or splitting of concepts or the
addition/deletion of subgraphs.

Table 1 lists all considered change operations and additionally categorizes
them into one of three groups. The first group contains information extending
operations that add information in Ov such as new concepts, relationships or
attribute values. The second group, information reduction, includes change op-
erations that remove information from Ov. All other operations including split
and merge changes belong to the revise group.

For a quantitative change analysis we assign concepts both from Ov and
Ov+1 based on their change operations to one of the following sets:
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Figure 2: left: Example evolution of two ontologies and a mapping. Concepts
b1 and e2 have been revised, d2 ∈ O2 has been removed, and g1, f1, and f2
have been added during the evolution from version v = 1 7→ 2. The map-
ping change between O1 and O2 comprises two new correspondences ((b1, b2),
(f1, f2)) and two removed correspondences ((b1, c1), (d1, d2)). right: Impact
matrix of ontology and mapping changes.

• Extension set: Ext(Ov 7→v+1) = set of concepts in Ov ∪ Ov+1 where all
concept-related change operations are information extending.

• Reduction set: Red(Ov 7→v+1) = set of concepts in Ov ∪Ov+1 where all
concept-related change operations are information reducing.

• Revision set: Rev(Ov 7→v+1) = set of concepts in Ov ∪ Ov+1 that are
involved in at least one change operation but belong neither to Ext nor
to Red. Each concept is thus related to a revise operation or is related to
both extending and reducing operations.

All other concepts remain unchanged, i.e., they are not affected by any
change operation. Fig. 2 illustrates an evolution example for two ontologies O1
and O2. For example, the evolution from O21 to O22 might contain three change
operations: insertion of concept f2, deletion of concept d2, and an attribute
value change for concept e2. The three concepts are thus assigned to Ext,
Red, and Rev, respectively, i.e., Ext(O21 7→2) = {f2}, Red(O217→2) = {d2}, and
Rev(O217→2) = {e2}. All other concepts of Fig. 2 are not affected by the change
operations.

The size of the three concept sets Ext, Red, and Rev quantitatively charac-
terizes the degree of change during the evolution from Ov to Ov+1. We therefore
define the ontology change ratio as follows:

OCR(Ov 7→v+1) =
|Ext(Ov 7→v+1) ∪Red(Ov 7→v+1) ∪Rev(Ov 7→v+1)|

|Ov ∪Ov+1|

The ontology change ratio for O2 of our running example (Fig. 2) is thus
OCR(O21 7→2) = |{f2, d2, e2}|/|{a2, b2, c2, d2, e2, f2}| = 0.5.

3.2 Mapping Changes

For ontology mapping evolution we employ a simple model that distinguishes
between the addition and deletion of correspondences. Thus, between two con-
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secutive mapping versions Mv and Mv+1 we consider whether a new correspon-
dence has been added (Add) or a previous one has been removed (Del). We
group changed correspondences into the following sets:

• Addition set: Add(Mv 7→v+1) = Mv+1\Mv

• Deletion set: Del(Mv 7→v+1) = Mv\Mv+1

All other correspondences appear in both mapping versions and are thus
unchanged. Based on the introduced sets we define the mapping change
ratio as follows:

MCR(Mv 7→v+1) =
|Add(Mv 7→v+1) ∪Del(Mv 7→v+1)|

|Mv ∪Mv+1|
In the example of Fig. 2 there are two new correspondences, i.e., Add(M17→2) =

{(b1, b2), (f1, f2)}. and two deleted correspondences, (b1, c2) and (d1, d2). Since
there is one unchanged correspondence (a1, a2), the mapping change ratio
MCR(M1 7→2) equals 4/5.

3.3 Impact of Ontology on Mapping Changes

To determine how ontology changes influence or trigger mapping changes it
is useful to interrelate the different kinds of ontology changes and mapping
changes. For this purpose, we interrelate the three sets of changed concepts
(Ext, Red, Rev) with the two sets of changed correspondences (Add, Del).
We will define six corresponding indicators and use them for both analyzing
mapping evolution (see Sec. 4) as well as for predicting mapping changes for
new ontology versions (see Sec. 5).

The impact ratio is the share of changed concepts that actually had an
impact on the correspondences. For any set of ontology changes OCh (Ext,
Red, or Rev) and mapping changes MCh (Add or Del) it is defined as follows:

IR(OCh,MCh) =
|{c ∈ OCh|∃c′ : (c, c′) ∈MCh ∨ (c′, c) ∈MCh}|

|OCh|
For example, to determine which fraction of additive ontology changes led to

new correspondences we determine the impact ratio for OCh = Ext(O117→2) ∪
Ext(O217→2) and MCh = Add(M1 7→2). For the example in Fig. 2, two (f1 and
f2) out of the three Ext-concepts appear in the set of added correspondences,
i.e., the changes in these two concepts had an impact on the mapping. Therefore
IR(Ext,Add) equals 2

3 .
One would expect that Ext concepts mostly lead to correspondence additions

whereas Red concepts usually account for correspondence deletions. However,
as we will see in our evaluation (see Sec. 4), Ext concepts may also trigger
correspondence deletions and Red concepts may lead to new correspondences
depending on the match technique.

4 Analysis of Mapping Evolution

After introducing the experimental setup, we analyze ontology and mapping
evolution for different life science scenarios. We then compare mapping evolution
for different match strategies and evaluate the impact of ontology changes on
mapping changes.
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|C2006-06| growth |M2006-06| growth |M2006-06| growth |M2006-06| growth |M2006-06| growth

Anatomy 8,806 1.1 1,496 1.1 1,636 1.1 1,264 1.1 1,272 1.0

Molecular Biology 18,974 1.6 852 1.1 1,531 1.7 251 1.6 465 1.6

Chemistry 69,005 1.7 1,353 3.9 3,242 3.2 1,930 3.7 277 6.1

ontologies Name 0.6 NameSyn 0.6 NameSyn 0.8 Context 0.6

Figure 3: Ontology and mapping growth factors. Number of concepts
(|C2006−06|) and number of mapping correspondences (|M2006−06|) in the first
considered version. |C| is the sum of domain and range ontology size for each
match problem. Growth factors compare the first (2006-06) and last (2010-12)
considered version.

4.1 Setup

We consider three mapping scenarios:

• Anatomy : map Adult Mouse Anatomy Ontology (MA) to the anatomy
part of NCI Thesaurus (NCITa)

• Molecular Biology : map the two Gene Ontology[9] sub-ontologies Molec-
ular Functions (MF) and Biological Processes (BP)

• Chemistry : map Chemical Entities of Biological Interest (ChEBI) [5] to
NCI Thesaurus (NCIT)

For each input ontology we map 10 versions on a half year basis between 2006-06
and 2010-12 with each other. We use the following meta-data based matchers
to compute the confidence (similarity) for any concept pair of two ontologies:

• Name: String (trigram) similarity of concept names

• NameSyn: Maximal string (trigram) similarity of names and synonyms

• Context : String (trigram) similarity of the concatenated parent, concept,
and children names

In this study we focus on the evolution of ontology mappings and do not
evaluate the quality of matching. The choice of match strategies is based on
previous studies where matching on concept names and synonyms achieved high
quality especially for anatomy ontologies [10, 11]. To obtain precise results we
need to select the most likely correspondences exceeding a certain confidence
threshold. We applied a default confidence threshold of 0.6 ; for the NameSyn
matcher, we also considered a stricter threshold of 0.8. Moreover, for each input
ontology concept, we only select the top correspondences in a small delta range
(MaxDelta selection [6]).

4.2 Ontology and Mapping Evolution

Fig. 3 gives an overview about the ontology and mapping sizes as well as their
growth between June 2006 and Dec. 2010. For Anatomy, the combined size of
concepts in domain and range ontology (|C|) grew only slightly by a factor 1.1
to almost 10,000 concepts. By contrast, |C| increased by 60 - 70 % to 30,000
and 120,000 concepts for Molecular Biology and Chemistry. In two of the three
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scenarios (Anatomy and Molecular Biology), the mappings grow similarly strong
as the ontologies while the Chemistry mappings grew by up to a factor 6. The
especially high mapping growth for the Context matcher seems influenced by
its very small mapping size which in turn is caused by its need to find similar
names not only for the concepts but also for their parent and child concepts.
Comparing the results for NameSyn with two different thresholds, we find that
a higher threshold produces smaller mappings and achieves only a relatively
small coverage, especially for Molecular Biology. For Molecular Biology, the
Name matcher proved to determine the most stable mappings.

Fig. 4(a) shows ontology change factors (see Sec.3.3) between succeeding ver-
sions for the three domains during the 5-year observation period. For Anatomy
there were only few changes over time compared to the other two domains.
Molecular Biology shows high change rates until 2007 (nearly 40%). From 2008
on, change rates are comparable to those of Chemistry (around 20%). Fig. 4(b)
illustrates more detailed mapping evolution results for NameSyn 0.6 in Molec-
ular Biology. In general, correspondence additions dominate leading to a final
mapping size of more than 2,500 correspondences. But there has also been a
considerable number of deletions. In 2007-12 nearly 500 correspondences were
removed from the mapping. This shows that there can be very heavy mapping
changes.

4.3 Comparison of Match Strategies

To analyze the mapping stability for different match strategies in more detail, we
examine a possible correlation between ontology and mapping changes over time.
We therefore compute ontology and mapping change factors for all three match
scenarios and the four match strategies (Fig. 5 a-c). For Anatomy, ontologies
and mappings only slightly changed (see y-axis range), while the other two
scenarios experience a surprisingly high degree of mapping changes between 10
and 80 %. Except for Chemistry we observe a strong correlation between the
ontology change factor (black continuous line) and the mapping change factors
of the different match strategies(colored dashed lines). The Name matcher
was relatively stable in general while the Context matcher was most heavily
influenced by ontology evolution. This especially holds for Chemistry where 80%
of the Context mappings changed in 2008. The reason for the relative instability
of Context is mainly in its use of more ontological information that can change,
i.e., changes on both parent and child concepts have an influence. For instance,
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Figure 4: (a) Ontology change factors. (b) Mapping evolution for NameSyn 0.6
matcher in Molecular Biology example.
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Figure 5: Ontology and mapping change factors for three life science domain
examples (a) Anatomy, (b) Molecular Biology, (c) Chemistry

moving a concept from one parent concept to another might completely change a
concept’s context. For Molecular Biology the mappings, (especially NameSyn),
changed heavily in 2007-12, although the maximum ontology evolution already
occurred in 2007-06. This results from successive modification of GO-BP and
GO-MF in 2007. The combined changes in both sub-ontologies seem to have
led to numerous mapping changes in 2007-12.

4.4 Impact of Ontology on Mapping Changes

Fig. 6 illustrates the real impact of ontology changes (Ext, Red, Rev) on map-
ping changes (Add, Del). We exemplarily show results for NameSyn 0.6 and
computed the average over all versions. The table shows the number of changed
concepts as well as the ratio having impact on mapping changes (IR). First,
we can observe that a high number of ontology extensions, reductions and revi-
sions has no impact on the ontology mappings (>80%). This is due to a limited
match coverage since changed ontology parts that are not covered by the on-
tology mapping do not result in mapping changes. Second, extending ontology
changes (Ext) primarily cause correspondence additions and no or only few cor-
respondence deletions for all three scenarios. Third, Red concepts are primarily
involved in correspondence deletions but also in some additions. The latter
might result from specific matcher characteristics. Imagine a concept loses a
synonym and also the correspondence based on this synonym. This can enable
a new correspondence by relating the concept to another one than before. Thus,
a synonym deletion can lead to a correspondence deletion and addition in one
evolution step. Finally, revised concepts (Rev) trigger both, Add and Del. This

→→→→Add →→→→Del →→→→Add →→→→Del →→→→Add →→→→Del

Anatomy 95 18.7% 0.1% 7 0.0% 7.8% 89 6.8% 4.1%

Molecular Biology 2,359 4.6% 0.7% 223 2.4% 8.8% 2,209 3.5% 2.1%

Chemistry 8,377 11.7% 1.2% 366 3.5% 5.3% 6,441 8.1% 4.0%

IR Rev
|Ext|

IR Ext
|Red |

IR Red
|Rev |

Figure 6: Impact of ontology concept changes (Ext, Red, Rev) on mapping
changes (Add, Del) for NameSyn 0.6. Average values for absolute change num-
ber (|Ext|, |Red|, |Rev|) and impact association ratios (IR(OCh,MCh) displayed
as percentage) over all considered versions

9



i→i+1 |Ext| IR(Ext,Add) |Red| IR(Red,Add) |Rev| IR(Rev,Add) |Add|

1→2 60 0.3 10 0.1 15 0.2 20

2→3 30 0.4 2 0 10 0.1 10

3→4 40 ? 4 ? 12 ? ?

Table 2: Example prediction scenario.

is intuitive since revised concepts might have been extended and reduced in
one evolution step (e.g., attribute addition and deletion). In general, ontology
revisions account for a high share of mapping changes while deletions play only
a minor role.

4.5 Summary

We evaluated ontology and mapping evolution for three real-world life science
domains (Anatomy, Molecular Biology and Chemistry) and took four match-
strategies into account. The analysis results show that especially Molecular Bi-
ology and Chemistry underlie heavy ontology extensions and revisions whereas
Anatomy is relatively stable. Since existing knowledge is mainly extended or
revised, we find only few ontology reducing changes for all domains. Ontology
evolution heavily influenced mappings computed by different metadata-based
match strategies. Especially, the structural matcher Context produced rather
unstable results whereas mappings based on the Name matcher are relatively
stable. As expected, ontology extensions primarily lead to correspondence addi-
tions and information reducing ontology changes primarily lead to the removal
of correspondences. Ontology revisions play an important role and result in
both the addition and deletion of correspondences.

5 Mapping Change Estimation

We now present two methods to estimate the number of changes in a new map-
ping version. By predicting future mapping changes we can give recommenda-
tions to users if it might be necessary to recompute their mappings. This seems
especially useful when one must decide about performing an expensive manual
mapping adaption or not. We first describe the methods and then comparatively
evaluate their quality on our mapping problems.

5.1 Prediction Methods

The general task of estimating mapping changes is the following. After the
release of two new ontology versions O1k/O2k we like to predict the number of
mapping changes (|Add(Mk-1 7→k|,|Del(Mk-1 7→k|) which will occur between the
mapping versions Mk-1 and Mk, i.e., we like to know how strong mapping M
is likely to change due to modifications in O1/O2. For this estimation we can
access the content of the previous h ontology/mapping versions (v=k-h,. . . ,k-
1 ) and their diff results. In the following we describe two prediction methods,
namely Mapping-based Estimation (ME) and Impact-based Estimation (IE). The
synthetic example in Table 2 will be used for illustration.
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Figure 7: Prediction analysis (a) Example for predicting the successor version
(red dotted line) on the basis of a window of 5 predecessor versions (h=5), (b)
Average error sum (avg(errSum)) of false predictions for h = 2 . . . 5 for three
methods MEavg, MEw2, IEw2

Mapping-based Estimation In this approach the prediction only uses infor-
mation about previous mapping changes but not about the underlying ontology
changes. The estimation for |Add(Mk-1 7→k)| and |Del(Mk-1 7→k)| is the weighted
average of the number of changes observed in the last h-1 version changes of the
mapping. We can use different functions w to weight the version changes:

|Add(Mk-1 7→k)| =
∑k−1

v=k−h+1 wi · |Add(Mv-17→v)|
|Del(Mk-1 7→k)| =

∑k−1
v=k−h+1 wi · |Del(Mv-1 7→v)|

For our example in Table 2 we like to make a prediction for the number of added
correspondences between version 3 and 4 (|Add(M37→4)|) using the versions 1–3
(h=3 ). We use a quadratic weighting function with the following weights for the
two previous version changes: 1

5 and 4
5 . We would thus estimate |Add(M37→4)|

= 1
5 · 20 + 4

5 · 10 = 12 with the ME method.
Impact-based Estimation The idea behind impact-based estimation is to use

knowledge about the impact of ontology on mapping changes to estimate the
number of correspondence changes. We assume that the number of added/deleted
correspondences can be expressed as a linear combination of the observed on-
tology changes having an impact:

|Add(Mk-1 7→k)| = β · (agg(IR(Ext,Add)) · |Ext(Ok-1 7→k)|
+ agg(IR(Red,Add)) · |Red(Ok-1 7→k)|
+ agg(IR(Rev,Add)) · |Rev(Ok-17→k)|)

|Del(Mk-1 7→k)| = β · (agg(IR(Ext,Del)) · |Ext(Ok-1 7→k)|
+ agg(IR(Red,Del)) · |Red(Ok-1 7→k)|
+ agg(IR(Rev,Del)) · |Rev(Ok-1 7→k)|)

For both formulas we need two specify two parameters. First, we need to de-
termine the impact ratios (IR) which indicate how strong ontology changes will
influence the mapping in the current version change. Since we consider the last
h-1 version changes, we need to aggregate the observed impact ratios into a
common value (agg function), e.g., by a normal or weighted average. Second,
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we need to determine the β parameter which performs an error correction on
the result. In particular, for each version change we calculate the estimated
value using the linear combination formula with the impact ratios observed.
We then compare the estimation with the correct result and compute an error
ratio between both. We finally take the average of all computed error ratios as
our β.

For our example we need to determine three impact ratios. We will use the
same quadratic weighting as for ME to compute a weighted average. Thus, for
IR(Ext,Add) we would determine a value of 1

5 ·0.3+ 4
5 ·0.4 = 0.38 (IR(Red,Add) =

0.02 and IR(Rev,Add) = 0.12). We further calculate the error ratio for each
version change, e.g., for 1 7→ 2 the estimated result is 0.3 · 60 + 0.1 · 10 + 0.2 ·
15 = 22. A comparison with the correct number of correspondence additions
(|Add(M17→2)| = 20) results in a ratio of 20

22 ≈ 0.91 (2 7→ 3 : 0.77). Thus, the
average error ratio over all version changes is β = 0.84 resulting in an estimation
of |Add(M37→4)| = 0.84 · (0.38 · 40 + 0.02 · 4 + 0.12 · 12) ≈ 14.

5.2 Evaluation

We now apply our two estimation methods to predict how many correspondence
additions and deletions might occur in a future mapping. We use the same
datasets as before (see Sec. 4). For the map-based method (ME ), we applied
two different weight functions: average (avg) and quadratic weighting average
(w2). For the Impact-based method (IE ), we only show results for w2 since this
showed to be more effective. To get an overview how accurate both methods
are and how many versions are required for good estimation, we performed the
following experiment.

We predict the last five mapping versions using several numbers of predeces-
sor versions (h = 2 . . . 5). Fig. 7(a) exemplarily shows the experimental scenario
for h = 5. We produce five results per h for the ME avg, ME w2 and IE w2 pre-
diction methods. For each h and method we compute an error sum (errSum:
sum of absolute differences between correct (CR) and predicted result (PR))
over all prediction results for three matchers (Name 0.6, NameSyn 0.6, Context
0.6 ) and all match scenarios. To better compare the methods and to study the
influence of h we compute average error sums which are displayed in Fig. 7(b).
For h = 2, ME avg and ME w2 produce the same results since they only consider
one mapping version diff. For a higher number of predecessor versions (h > 2)
ME w2 produces smaller errors. Overall IE w2 is more effective than both ME
methods, i.e., using information about ontology evolution as well, seems to be
more informative and thus leads to more accurate results. Especially, only con-
sidering the recent past (small h) suffices to make a good estimation with our
impact-based method IE.

To get an impression how many change operations we predict for ME w2 and
IE w2, we selected the following case. Considering the change factors in Fig.5
we would expect that it is hard to predict version 2009-06 based on 2008-06 and
2008-12 for all three match scenarios. In particular, for Anatomy and Chemistry
we see a strong decrease in their change factors whereas for Molecular Biology
an increase occurred. Fig. 8 shows detailed results of the prediction case. The
error rate err gives the absolute difference of PR and CR divided by the re-
spective mapping size for the predicted version (|M2009−06|). To get an better
overview we illustrate err on a red green scale. Overall both methods produce
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CR PR err PR err CR PR err PR err

Name 0.6 1,592 8 81 0.05 13 0.00 6 16 0.01 2 0.00

NameSyn 0.6 1,757 13 85 0.04 14 0.00 8 14 0.00 2 0.00

Context 0.6 1,285 11 67 0.04 11 0.00 15 40 0.02 6 0.01

Name 0.6 781 74 22 0.07 54 0.03 54 27 0.03 26 0.04

NameSyn 0.6 2,166 168 63 0.05 150 0.01 117 81 0.02 66 0.02

Context 0.6 576 114 21 0.16 50 0.11 72 22 0.09 53 0.03

Name 0.6 3,934 555 1,785 0.31 685 0.03 141 724 0.15 269 0.03

NameSyn 0.6 7,868 1,036 3,010 0.25 1,151 0.01 243 1,193 0.12 442 0.03

Context 0.6 1,230 237 758 0.42 293 0.05 124 642 0.42 236 0.09

|M2009-06|

AddCorr DelCorr

MEw
2

IEw
2

MEw
2

IEw
2

Anatomy

Molecular

Biology

Chemistry

matcher

Figure 8: Number of correct and estimated AddCorr and DelCorr operations
using mapping versions M2008−06-M2008−12 to predict changes in M2009−06.
Comparison of two methods (MEw2, IEw2), for three life science domains
and the three matchers. CR (PR) - number of correct (predicted) result, err -
error rate on a red (high err) green (small err) scale

relatively good results (green err values) for correspondence deletions. By con-
trast, estimating additions seems more complicated. IE w2 produces only small
errors for additions whereas ME w2 either estimates too high (for Anatomy and
Chemistry) or too low (for Molecular Biology) values (yellow to red err values).
This is triggered by the previous trend of mapping evolution, as we have seen
in Fig.5. Thus, if the pattern of mapping evolution suddenly changes, methods
making an estimation solely on the basis of previous mapping changes fail.

By contrast, IEw2 involves knowledge about ontology evolution as well as its
impact on mapping evolution which leads to more accurate prediction results.
Especially considering the overall mapping sizes, the predicted results (PR)
for Anatomy are very close to the correct results (CR) (e.g., 8–13, 13–14, 11–
11 for correspondences additions). In general, it seems very difficult to predict
mapping changes for Chemistry and the context 0.6 matcher. For Chemistry one
and the same ontology change factor can lead to mapping changes of different
magnitude so that change prediction becomes a complex task. For context 0.6,
there are several different influences as the evolution of the concept itself, its
parents and its children, making it difficult to correctly predict mapping changes.

In general we can recommend that the OAEI Anatomy mapping is still
feasible and reliable as there were relatively few ontology changes since 2007.
Thus, we would expect only few mapping adaptations. By contrast, knowledge
in the Molecular Biology or Chemistry domains changed dramatically in the last
5 years. Thus, mapping adaptation is strongly recommended to obtain useful
mappings.

6 Related Work

In the last decade, ontology matching to semi-automatically create ontology
mappings has become an active research field (see [7, 23] for overviews). In
the life sciences especially the matching of anatomy ontologies [30] and molec-
ular biological ontologies [2] has attracted considerable interest. Most match
approaches focus on improving the quality of computed mappings by applying
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different matchers (e.g., based on the name/synonyms of concepts, the ontology
structure or associated instances) in a workflow-like manner. For comparing
available match systems w.r.t. their quality the OAEI [22] provides gold stan-
dard mappings, e.g., between MA and NCIT.

Previous work on ontology evolution (see [8, 14] for surveys) focused on on-
tology versioning [17], the evolution process itself [25] as well as the detection of
changes between ontology versions [20]. Few approaches investigate how changes
in ontologies should be propagated to dependent artifacts such as instances or
annotations. For example, the ontology evolution process proposed in [26] in-
cludes a change propagation phase where performed changes are propagated to
other ontologies that are based on the modified ontology.

The evolution of ontology mappings has received only little attention so far.
In our previous work [13] we studied the evolution of ontologies, annotations
and ontology mappings. We analyzed mapping evolution for one match problem
and noticed dramatic increases in the number of correspondences especially for
instance-based matchers. In a further study [28] we focused on the stability of
correspondences created by an instance-based matcher and proposed measures
which allow for a classification of (un)stable correspondences.

In contrast to previous work this study focuses on the impact of ontology
on mapping changes, i.e., we investigate (1) how ontology mappings change and
(2) study how ontology changes correlate with mapping changes for different
matchers. Furthermore, we use the knowledge from the correlation between
ontology and mapping changes to estimate the cardinality of future mapping
changes. The mapping versions under investigation were created with previ-
ously evaluated matchers such as name or name/synonym using the GOMMA
system [16].

7 Conclusion and Future Work

We studied the evolution of ontology mappings and analyzed the ontology
changes triggering mapping changes as well as the influence of different match
techniques. Our analysis covered three life science mappings and three match
strategies. Furthermore we proposed two prediction methods for estimating the
cardinality of future mapping changes. Except for anatomy ontologies, we ob-
served that ontology mappings based on common match strategies using name
and synonym information often experience heavy changes. Our prediction meth-
ods were quite effective and could reasonably estimate the number of correspon-
dence additions and removals in a new mapping version. In future work, we plan
to investigate how known ontology changes can be used to semi-automatically
adapt ontology mappings without a completely new mapping determination.
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