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Abstract
The explosion of available data along with the need
to integrate and utilize that data has led to a press-
ing interest in data integration techniques. In terms
of Semantic Web technologies, Ontology Align-
ment is a key step in the process of integrating
heterogeneous knowledge bases. In this paper, we
present the Edge Confidence technique, a modifica-
tion and improvement over the popular Similarity
Flooding technique for Ontology Alignment.

1 INTRODUCTION
As database technologies become increasingly

diverse, the need to integrate those technologies
has become ever more important. The heteroge-
neous data problem describes a common situation
in which multiple data sources with incompatible
descriptions and data types must be integrated for
use by a single application. This problem is often
encountered in the Semantic Web, which attempts
to view the entire Internet as a unified database. A
fundamental step in solving the heterogeneous data
problem is the production of analignmentthat can
tell the client how to equate the descriptions of two
heterogeneous data sources.

An ontology alignment may be informally de-
scribed as a set of correspondences between seman-
tically related terms in two heterogeneous input on-
tologies. Each correspondence is qualified with a
confidence level,[0,1]. Alignment is useful in data
integration tasks dealing with what is sometimes
referred to as the semantic heterogeneity problem.
It helps in the automation of various important
tasks, most important of which is schema merging,

enabling the knowledge and data expressed in the
input ontologies to inter-operate.

Ontology alignment algorithms are typically
aggregations of multiple basic techniques, which
may be classified as lexical, semantic, structural
etc [5]. In this paper, we consider the structural
technique of Similarity Flooding and present an
improvement to that technique.

The rest of this paper is organized as follows: the
remainder of this section will cover some of the
background material related to the Semantic Web
and ontologies, the cases for fully automated align-
ment, and some of the background material on the
statistical methods used in this paper; Section 3
outlines the approach and implementation details;
the evaluation and benchmarks are explained in
Section 4; results are presented in Section 5; and,
conclusions and possible future work are outlined
in Section 6.

1.1. Semantic Web and Ontologies
First, we define some key terms around the Se-

mantic Web and Ontology Alignment.
A knowledge baseis a kind of database that is

designed for decision support systems and expert
systems. It specifically allows machines to perform
deductive reasoning over its elements. For exam-
ple, given the instance data “John is a farmer” and
“Farmers wear overalls”, a knowledge base rea-
soner could deduce the new information that “John
wears overalls”.

Knowledge bases (KBs) consist ofentitiesand
relations between those entities. They are often
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represented as sets of triples, that is, a set of two en-
tities and a relationship between those entities. For
example, the triple{teachers, lessonplans,write}
defines the relationship that “teachers write les-
sonplans”.

Ontologiesdescribe the relationships between
elements in a knowledge base. Similar to the no-
tion of schemas in relational databases, ontologies
specify the structural relationships amongst the en-
tities and classes of the ontology.

Frequently, queries must be performed across
multiple knowledge bases. This is the case when
departments in a large enterprise maintain their
own knowledge bases, but must also share in-
formation with other departments. This also hap-
pens in scientific computing, especially in the
more domain-specific Informatics areas such as
Bioinformatics and Energy Informatics [3]. It is
also a fundamental requirement of the Semantic
Web; users perform queries against the web, and
those queries must be performed against knowl-
edge bases that may belong to entities on oppo-
site sides of the globe. This leads us to the problem
of heterogeneous data. When knowledge bases are
maintained by different organizations, the ontolo-
gies used to describe them will usually be differ-
ent. For instance, one ontology may keep track of
‘cars’ while another keeps track of ‘automobiles’
and still another keeps track of ‘autoProducts’. In
fact, the list could go on and on.

Ontology Alignmentis the process of equating
two heterogeneous ontologies by finding valid cor-
respondences between their sets of elements. For
instance, an alignment between an auto parts man-
ufacturer and an auto dealership might tell us with
85% certainty that “antilock brakes” and “ABS”
represent the same thing.

This is important because it allows a query man-
agement system to translate the terminology of a
user’s query into the terminology used by many
different ontologies and thereby to query heteroge-
neous knowledge bases.

1.2. Why do we need fully automated align-
ment?

Fully-automated alignment techniques (i.e., on-
tology alignment performed without any input or
approval from a human user) represent the ideal
scenario for many of the use cases already dis-
cussed. For example, in a Semantic Web query, the
details of equating ontology elements across het-
erogeneous KBs should remain completely invis-
ible to the user, who simply wants to know the
show-times of movies in his or her zip code, which
star actors with a maximum Kevin-Bacon-Distance
of three [6]. On the other hand, in an Enterprise
Integration context much of the information to be
integrated is extremely domain specific and even
organization specific, and possibly only known by
a handful of organization veterans. In such a case, a
fully-automated alignment process may not be en-
tirely feasible.

In any case, fully-automated alignment is an as-
yet-unattained goal. In this paper we present an
improvement to Similarity Flooding, a structural
alignment technique. However, both the original al-
gorithm and our improvement rely on comparison
against an ideal alignment, produced by a human,
for evaluation of the quality of the alignment. For
our evaluation, we have used the Semantic Evalu-
ation At Large Scale (SEALS) automated testing
platform, which subjects an algorithm to a battery
of alignment test, and producesprecisionandrecall
scores based on a comparison of its results against
an ideal alignment result.

2 RELATED WORK
Although the problem of fully-automated ontol-

ogy alignment is far from being solved, there has
been much work accomplished around fundamen-
tal techniques for element matching and aggrega-
tion of those matching techniques [5]. One class of
approaches attempts to find element matches based
on the relative similarity or dissimilarity of the ac-
tual labels given to those elements. Some exam-
ples of these string-matching techniques are the



Jaro-Winkler measure [15], the Levenshtein Dis-
tance [17] and Latent Semantic Indexing [2]. While
useful in many situations, string-based matching
techniques suffer from a common shortcoming;
similar real-world objects often have very dissimi-
lar names. The words “car” and “automobile” pro-
vide a good example.

Another class of techniques makes use of outside
resources as aids in the search for good matches
between elements. Such outside resources include
dictionaries or taxonomies such as the WordNet
taxonomy [10]. These classes of techniques at-
tempt to produce correspondences between ele-
ments that may likely refer to the same real-world
objects, but that have very dissimilar names, such
as “car” and “automobile”. Some examples of these
semantic approaches include Information-theoretic
similarity [8]. The use of outside taxonomies can
greatly improve the quality of matching results, but
such outside resources are not always readily avail-
able.

Yet a third class of matching techniques attempts
to exploit the structure of the ontology itself. For
example, Similarity Flooding [9] takes a directed
graph representation of an ontology and uses neigh-
bor relations between the elements to find match-
ing correspondences between them. The idea is
that if two elements in heterogeneous ontologies
are very similar, then their neighboring elements
should also be very similar.

The Similarity Flooding algorithm operates by
producing a new graph that represents relationships
amongst the entities in each input ontology. The al-
gorithm first takes the cross-product of all nodes
in both ontologies, producing a single node in the
result graph for each pairing of nodes in the in-
put ontologies. Edges in the result graph are pro-
duced if and only if the original nodes from the in-
put ontologies both shared an edge. This results in a
Pairwise Connectivity Graph. Finally, weights are
added to the edges such all outbound edges from a
given node have equal weight, and sum to one. The
result is aPropagation Graph.

Once the Propagation Graph has been generated,
the similarity score of each node is generated as
follows: each node is assigned an arbitrary initial
similarity score which is refined through an iter-
ative fix-point computation. At each iteration the
new similarity is equal to the old similarity plus the
weighted sum of the similarity of all its neighbors
in the propagation graph. This fix-point computa-
tion proceeds until the new similarity converges
to a fixed value. Similarity flooding has been use-
ful as a foundation in other structure-based match-
ing techniques such as anchor flooding, but suf-
fers from a few limitations. First, it requires that
the edges of the edge-labeled graph representa-
tion have identically named labels. In the case that
corresponding edge labels do not have exactly the
same name, but mean the same thing (for example
“hasA” and “hasa”) that information is completely
lost to the flooding algorithm.

3 APPROACH & IMPLEMENTATION
The following sections outline and present the

details about the model as well as many of the im-
plementation details.

3.1. Levenshtein Edit Distance
The Levenshtein distance is a string similarity

metric for measuring the difference between two
character sequences. The distance between two se-
quences is equal to the number of single-character
operations required to transform one sequence into
the other [17]. The single-character operations are
insertion, deletion, and substitution.

Definition 1. Let x and y be terms in a single on-
tology. The label setΛ(x,y) is the set of all labels
between hierarchical properties and object proper-
ties where x and y are the domain and range of a
property, respectively.

3.2. Edge Confidence
These lexical similarity techniques give us a way

of assessing the similarity of two entities regard-
less of any structural relationships they may have
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within an ontology. Recall that one limitation of
the Similarity Flooding technique is the necessity
that predicates (edge labels when the ontology is
represented as a graph) must have names that cor-
respond exactly. But this is an unrealistic require-
ment. It is easy to imagine that two unrelated on-
tologies might, for instance, use predicates labeled
“appearsIn” and “actsIn” to describe the relation-
ship that a certain actor has been in a movie (possi-
bly with Kevin Bacon).

We propose using lexical similarity to quantify
a degree of similarity between predicate levels. If
the similarity is above some arbitrary threshold, we
will consider the two predicates to mean the same
thing. In this way, we can include more edges in the
propagation graph, which provides more informa-
tion about structural relationships to the alignment
algorithm.

Next we are faced with the problem of assigning
an actual value to the edge similarity. In the propa-
gation graph for similarity flooding, each outbound
edge from a node is given the same weight as all of
the other edges from that node, and those weights
all sum to one. This allows the graph to be de-
scribed by a row-stochastic matrix. We would like
to keep that row-stochastic property for our edge

confidence implementation, but we would also like
to have different weights on each outbound edge,
proportionate to the degree of similarity (and thus
the confidence) shared by the ontology predicates
represented by the edge in the propagation graph.

To this end, we start with a dissimilarity metric,
such as one provided by the Levenshtein distance
algorithm. Next we derive a complement for this
weight by taking its difference from the sum of all
outbound edge weights for a particular node. Fi-
nally, the edge weight is given as the ratio of that
complement, and the sum of all complements for
outbound edges of a particular node.

This concept is formalized in the definitions that
follow.

Definition 2. Let γ be some threshold. Edge confi-
denceΓ(α,β) is the similarity score between the
labels of two edgesα and β if that similarity is
greater thanγ, otherwise0. That is,

Γ(α,β) =

{

1
σ(α,β) : |σ(α,β) | ≥ γ
0 : otherwise

3.3. Unnormalized Pairwise Markov Chain
In the definitions that follow, consider the input

ontologies presented in Figure 3.



A Markov Chain is a mathematical model that
represents a system as a set of states and a set
of probabilistic transitions between those states.
Most importantly, Markov processes adhere to the
Markov Property, that is, a system’s next state de-
pends only on its current state, and not on any of
its previous states. In that sense, Markov processes
are called “memoryless” [1].

Definition 3. An Unnormalized Pairwise
Markov Chain is a not-necessarily stochastic
Markov Chain that satisfies the following property.
For every pairwise grouping of ontological terms
between the two input ontologies, there exists a
transition in the UPMC

(x,y)→ (x′,y′)

with probabilityΓ(Λ(x,y),Λ(x′,y′)) if and only if

• there exists an edge from x to x′, and

• there exists an edge from y to y′.

The creation of a UPMC creates a directed graph
between pairs of concepts that relate pairs based on
their structural similarity. The idea is that a pair of
concepts are more likely to be similar if they are
structurally similar. Each pair of ontological terms
is connected to other pairs of ontological terms via
directed edges that are proportional to similarity of
the edges that exist in the input ontologies.

3.4. Normalized Pairwise Markov Chain
In order to take advantage of the convergence

properties outlined earlier in this paper, the UPMC
needs to have its probability transition matrix con-
verted into a row stochastic form. This is done by
normalizing the row sums of the matrix such that
they sum to one.

Definition 4. a Normalized Pairwise Markov
Chain (NPMC) is defined as the Markov Chain
generated from a UPMC by normalizing the row
sums of the matrix such that they sum to one. Let
P be the1-step probability transition matrix for an

UPMC. First, determine the sum of the current re-
ciprocal row sums.

Mi = ∑ 1
Pi

Then, add the reciprocal row sums to each value
in the matrix, storing each value in a temporary
matrix T .

Ti, j =−
1

Pi, j
+Mi

Normalize each value by dividing each value in T
by its row sum.

Pi, j =
Ti, j

∑Ti

The matrix that results from applying the transfor-
mation described in Definition 4 isrow stochastic
(its rows sum to one). When viewed as the 1-step
probability transition matrix for a Markov Chain,
it is easy to see that the weights on the outgoing
edges for each state sum to one. After the transfor-
mation, a NPMC represents a Markov Chain where
each pair of ontological terms has a certain proba-
bility of being related to other pairs in the chain in
proportion to the edge confidences that were calcu-
lated earlier.

3.5. Iterative Approach
Once approach to finding the stationary distribu-

tion of the NPMC is to compute the limiting proba-
bilistic state limk→∞ πPk in an iterative fashion. Let
ε be some threshold.

A= πt : πtP± ε = πt−1

The values for the initial similarity distributionπ0

are taken from the non-structural similarity scores
for the ontological terms corresponding to each
state.
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3.6. Steady-State Approach
Another approach to finding the stationary dis-

tribution of the NPMC is to compute the limiting
probabilistic state limk→∞ πPk directly. This can be
done by solving a left eigenvalue problem:

π = πP⇒ π(P− I) = 0

where the eigenvalue is 1 andI is the identity
matrix. Simply solve forπ by computing the left
nullspace of theP− I matrix (appropriately sliced)
and then normalizingπ so that||π||= 1. In order to
accomplish this in an easy fashion, the ScalaTion
library was used [11]. ScalaTion is an Domain-
Specific Emebedded Language (DSEL) for Mod-
eling & Simulation, written in the Scala program-
ming language [13].

3.7. Notes on Convergence
Since the NPMC model is a MC, certain things

can be said about the alignment (stationary distri-
bution), such as [12]:

• If the stochastic probability transition matrix P
is symmetric then the MC has a unique align-
ment/stationary distribution.

• If P is irreducible (but not necessarily aperi-
odic), then for any 0 ¡ a ¡ 1, the matrix P’ = aP
+ (1 - a)I is stochastic, irreducible and aperi-
odic, and has the same stationary distribution
as P. Note: I is the identity matrix. Since P’
is finite, irreducible, and aperiodic, it’s also
ergodic and therefore has a unique station-
ary distribution! If we can generate such a P’

from our NPMC, then we know it has a unique
alignment, according to our model.

3.8. Refining Results
The results generated from using either the itera-

tive approach or the steady-state approach are only
somewhat meaningful. The output of both proce-
dures produces a two-dimensional distribution of
similarity scores between the two input ontologies.
Although this satisfies the definition of an align-
ment as presented earlier in this paper, a user is
likely more interested in the set of similarities that
yield the best correspondence between the two in-
put ontologies.

Take the alignment distribution generated by ei-
ther the iterative or steady-state approach and de-
compose it into anm× n matrix. Consider this
matrix to be representative of a weighted bipartite
graph. Now, finding the set of similarities that yield
the best correspondence between the two ontolo-
gies is simply a matter of solving the maximum-
weighted bipartite graph matching problem using
the generated graph. In order to accomplish this
task, the Hungarian algorithm is used [7].

4 EVALUATION
In order to evaluate the model presented in this

paper, the bibliographic ontology benchmark pro-
vided by the Ontology Alignment Evaluation Ini-
tiative (OAEI) was used. This benchmark test li-
brary consists of data sets that are built from
the bibliographic reference ontology. Each test in-
cludes a reference alignment in order to facilitate
the calculation of precision and recall.



In order to evaluate the ontology alignment mod-
els presented in this paper, the Semantic Evaluation
At Large Scale (SEALS) Platform was used [4, 16].
The SEALS Platform is an extensible infrastruc-
ture that facilitates the remote evaluation of vari-
ous semantic technologies. In our evaluation, the
SEALS Platform was used to easily compare the
models presented in this paper using the OAEI
benchmark. We compared the reference implemen-
tation of Similarity Flooding available from Stan-
ford University to our modified version with the
Edge Confidence implementation.

5 RESULTS
We compared our Edge Confidence algorithm to

the stock Similarity Flooding algorithm using the
SEALS Benchmark 1 version 2.0 suite of tests.
The SEALS platform subjects each algorithm to a
battery of alignment tests, then compares the re-
sult alignment generated by the algorithm to an
ideal alignment, which is included as part of the
suite. For each alignment test, the platform pro-
duces scores forprecisionandrecall.

Precision is defined (Def 5 as the ratio of the
number of correct correspondences to the total
number of correspondences returned by the algo-
rithm. It should be noted that precision is mainly
a penalty against false positives, with no penalty
against false negatives. For example if there were
100 valid correspondences between two ontolo-
gies, a given algorithm could returned only a single
correspondence and, if that correspondence were
correct, would score a 100% precision.

Definition 5. Precision

precision=
|{valid}∩{returned}|

|{returned}|

The converse of the precision metric is the recall
metric (Def 6, which provides a penalty for false
negatives, but not for false positives. Recall consid-
ers the ratio of the correct correspondences to the
total number of correspondences that should have
been returned by the algorithm.

Definition 6. Recall

recall =
|{valid}∩{returned}|

|{valid}|

Finally, we consider the F-measure (Def 7), a
metric that provides a balance between precision
and recall [14]..

Definition 7. F-measure

F = 2∗
precision∗ recall
precision+ recall

When comparing Similarity Flooding and Edge
Confidence on the basis of precision, Similarity
Flooding typically outperforms Edge Confidence,
as can be seen in Figure 4. This reflects the con-
servative nature of Similarity Flooding. Because
Edge Confidence is more aggressive about includ-
ing edges, it generates a larger propagation graph,
which leads to more correspondences on average,
although this will typically include more incorrect
results, thus lowering the precision score.

By the same reasoning, Edge Flooding typically
outperforms Similarity Flooding on the basis of re-
call. Because Edge Flooding return more results, it
has more correct results, which gives a higher recall
score. This is evident in Figure 5.

The real question is: does the more aggressive
approach pay off in the F-measure score, or does
it extract too much of a penalty because of its lack
of precision? Figure 6 shows that the Edge Flood-
ing technique performs very well against Similar-
ity Flooding, performing orders of magnitude bet-
ter on many of the tests.

6 CONCLUSIONS & FUTURE WORK
In this paper, we have shown an improvement

to the popular Similarity Flooding technique for
producing ontology alignment. Our evaluation on
the SEALS platform has shown promising results.
While the overall scores for both algorithms are
very low, it should be noted that these algorithms
are not intended for stand-alone use, but rather as



building blocks in more sophisticated suites of on-
tology alignment tools. There is also more work to
be done in the future. One avenue for improvement
is to adjust the definition of edge confidence so
that it includes information about the structural re-
lationships between different object properties. For
example, object properties have parent-child rela-
tionships similar to ontological terms. A new edge
confidence function could take advantage of these
relationships in order to consider a more structural
approach to the alignment problem.
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