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Abstract. In this work we extend the commonly used binary evalua-
tion of schema matching to support evaluation methods for non-binary
matching results as well. We motivate our work with some new appli-
cations of schema matching. Non-binary evaluation is formally defined
together with a set of three new, non-binary evaluation measures using a
vector-space representation of schema matching outcome. We provide an
empirical evaluation to support the usefulness of non-binary evaluation
and show its superiority to its binary counterpart.

1 Introduction

Schema matching is the task of providing correspondences between concepts de-
scribing the meaning of data in various heterogeneous, distributed data sources
(e.g. attributes in database schemata and tags in XML DTDs). In its origin,
schema matching was conceived to be a preliminary process to schema mapping.
A basic assumption that accompanied this research field from its inception is
that schema matching provides a set of definite (true or false) correspondences
to be then validated by some human expert before mapping expressions are
generated. The evaluation scheme for schema matching follows this assumption
closely, making an extensive use of Precision and Recall [14] that were borrowed
from the field of Information Retrieval. These measures provide a common-sense
interpretation to our intuition of what is a “correct” matching by comparing a
selected set of attribute correspondences against a set of attribute correspon-
dences that is compiled by some domain expert.

Over the years, schema matching research has expanded and specialized to
answer research and application questions in a variety of domains. Recent re-
search is shifting focus from identifying new matching algorithms to methods
for using the various matchers to efficiently and effectively solve a specific prob-
lem at hand. Thus, recent work focuses on selecting appropriate matchers [7],
evaluating matchers with respect to a specific schema pair at hand [20,15], tun-
ing matcher parameters [13,15], and ensembling results from different matchers
[1,12]. These changes create a major focus shift for schema matching evaluation
as well: from providing a final judgement of quality at the end of the matching
process to a tool for intermediate assessment in the construction and application
of matching tasks.

Existing measures no longer suffice when the need arises to evaluate non-
binary intermediate results, with limited (and possibly non-existing) expert in-
put. In particular, since existing evaluation measures are defined over binary



results, system designers are forced to evaluate the final outcome with no in-
sight towards the impact of intermediate results on its performance.

In this work we propose new evaluation measures for non-binary schema
matching outcomes. We devise these measures using an extension of the exist-
ing similarity matrix representation [9] onto a finite real vector space. Two of
the measures extend, in a natural manner, the traditional Precision and Re-
call measures while the third measure provides a new perspective, called Drift,
which measures the ability of a matcher to improve on the performance of other
matchers. We have experimented with the proposed measures and report on their
performance using real-world data. We thereby make the following contributions:

– At the conceptual level we introduce a framework for assessing the quality
of a non-binary matching result.

– We propose three new non-binary evaluation measures for schema matching,
formally analysing their properties.

– We provide an empirical evaluation, showing the benefits of using non-binary
measures in common schema matching tasks.

The rest of the paper is organized as follows. Background on schema matching
(Section 2) is followed by a schema matching evaluation model (Section 3). We
introduce new measures in Section 4, followed by empirical evaluation (Section
5). We conclude with related work (Section 6) and summary (Section 7).

2 Preliminaries

The following schema matching model is based on [9]. Let schema S =
{a1, a2, . . . , an} be a finite set of attributes. Attributes can be both simple and
compound, compound attributes should not necessarily be disjoint, etc. For any
schema pair {S, S′}, let S = S × S′ be the set of all possible attribute corre-
spondences between S and S′.

Let M(S, S′) be an n× n′ similarity matrix over S, where Mi,j (typically a
real number in [0, 1]) represents a degree of similarity between the i-th attribute
of S and the j-th attribute of S′. M(S, S′) is a binary similarity matrix if for
all 1 ≤ i ≤ n and 1 ≤ j ≤ n0, Mi,j ∈ {0, 1}. A (possibly binary) similarity
matrix is the output of the matching process. For any schema pair (S, S′), let
the power-set Σ = 2S be the set of all possible schema matches between this
pair of schemata.

Example 1. Table 1 presents two similarity matrices between two simplified
schemata, with four and three attributes, respectively. The similarity matrix
on the left is the outcome of a matching process, using some matcher. The simi-
larity matrix on the right is a binary similarity matrix, generated as the outcome
of a decision-maker matcher [9] . This matcher enforces a binary decision while
requiring participation of each attribute in at most one correspondence. �



S1 −→ 1 cardNum 2 city 3 arrivalDay 4 checkIn
Time

↓ S2

1 clientNum 0.84 0.32 0.32 0.30

2 city 0.29 1.00 0.33 0.30

3 checkInDate 0.34 0.33 0.35 0.64

S1 −→ 1 cardNum 2 city 3 arrivalDay 4 checkIn
Time

↓ S2

1 clientNum 1 0 0 0

2 city 0 1 0 0

3 checkInDate 0 0 0 1

Table 1: A Similarity Matrix Example

Matching schemas is often a stepped process in which different algorithms,
rules, and constraints are applied. Several classifications of schema matching
steps have been proposed over the years (see e.g., [13,4]). Following Gal and Sagi
[12], we separate matchers into those that are applied directly to the problem
(first-line matchers (1LM)) and those that are applied to the outcome of other
matchers (second-line matchers (2LM)). 1LMs receive two schemata and return
a similarity matrix. 2LMs, which are often decision makers, receive a similarity
matrix and return a (usually binary) similarity matrix.

In this work we tackle the limitation of current evaluation measures, re-
stricted to evaluating binary 2LM results.

3 Schema Matching Evaluation

In this section we formally define similarity spaces (Section 3.1) and schema
matching evaluation (Section 3.2).

3.1 Similarity Spaces

We propose a vector space representation of schema matching outcome to sup-
port the evaluation task. The notion of a similarity space is adopted from Zobel
and Moffat [21] in the context of document vector spaces, where cosine similarity
was used as a measure of similarity between document vectors. For convenience,
we maintain matrix notation when referring to a dimension, marking a dimension
as an (i, j) coordinate.

Definition 1. Given schemata S and S′, a similarity space VS (S, S′) = [0, 1]|S|

is an |S|-dimension vector space such that each dimension (i, j) in VS (S, S′)
corresponds to the attribute pair (ai, aj) in S.
For each dimension (i, j) in VS (S, S′) let vi,j = (0, 0, ..., 1, ..., 0) be a vector with
all 0 values except the (i, j) element, assigned with a 1 value.
Given a similarity matrix M over S = S × S′ and a similarity space VS (S, S′),
a similarity vector v (M) from the space S is the vector:

v (M) =
∑

(i,j) dimension in VS(S,S′)

Mi,jv
i,j (1)

Whenever the referenced schemata S and S′ and the similarity matrix M are
clear from the context we use V as a shorthand notation of VS (S, S′) and v as
a shorthand notation of v (M).



3 arrivalDay 4 CheckInTime

3 checkInDay 0.35 0.64

(a) Similarity Matrix

3 arrivalDay 4 CheckInTime

3 checkInDay 0 1

(b) Binary Similarity Matrix

3 arrivalDay 4 CheckInTime

3 checkInDay 1 1

(c) Exact Match Matrix

Table 2: Partial Similarity Matrix Examples

Each entry in a matrix M over S is represented as a similarity vector in V.
Therefore, a similarity vector represents the similarity of pairs of attributes.

Example 2. Consider Example 1. Let V be the vector space representa-
tion of the schema pair in Table 1. We present a simplified space defined
over a single attribute from S1, {checkInDay} and two attributes from S2,
{arrivalDay, CheckInTime}. Tables 2(a) and 2(b) show the relevant part of the
similarity matrices in Table 1, respectively. Table 2(c) illustrates the relevant
part of an exact match for the matching of checkInDay with arrivalDay and
CheckInTime, as a binary similarity matrix. It is worth noting that while the
decision maker chose to match checkInDay only with arrivalDay, the exact match
matches checkInDay with both arrivalDay and CheckInTime. We can now visualize
the 2-dimensional similarity vectors of the three matrices in Figure 1a. Each sim-
ilarity vector is represented as a single point where vectors r, b, and x represent
the matrices in tables 2(a), 2(b) and 2(c) respectively. �

(a) (b) (c)

Fig. 1: 2-Dimensional example

Example 2 demonstrates the basic elements of similarity spaces. Using a
similarity space, we can measure the distance between two vectors by using
standard distance functions. To do so, we use norms, functions that assign a
strictly positive length or size to all vectors in a vector space, other than the



zero vector. We now present a formal definition of a similarity norm, adapted
from the general definition of norms [3].

Definition 2. Given a similarity space VS over S, a similarity norm (or simply
a norm) on VS is a function p : VS → [0, 1] with the following properties:

1. ∀a ∈ [0, 1] ∧ ∀u,v ∈ VS ; p(av) = |a|p(v) (positive scalability).
2. p(u + v) ≤ p(u) + p(v) (subadditivity).
3. If p(v) = 0 then v is the zero vector.

A consequence of positive scalability and subaddivity is that p(0) = 0 and
p(v) ≥ 0, known as the positivity property. Every norm gives rise to a distance
measure by defining: d(x,y) = ‖x− y‖. Well known examples are:

1. Manhattan distance, based upon the Manhattan norm (L1) where the dis-
tance between any two vectors, is the sum of the differences between corre-

sponding coordinates: dM (x, y) = ‖x− y‖1 =
n∑

i=1

|xi − yi|

2. Euclidean Norm (L2) gives rise to the Euclidean distance:

dE (x, y) = ‖x− y‖2 =

√√√√ n∑
i=1

(xi − yi)2

3. Maximum norm, gives rise to the Chebyshev distance: dChebyshev (x, y) =
‖x− y‖∞ = max

i
(xi − yi)

The decision of a specific norm to determine vector lengths allows us to define
distance measures between vectors. The difference in norms impacts the distance
computation as shown in the following example.

Example 3. Returning to our running example, figures 1c and 1b illustrate the
length of vectors b,r and x using the Manhattan (L1) and Euclidean (L2) norms
respectively. Comparing the figures, it is apparent that the choice of norm im-
pacts the relative length of vectors. Using L1 the lengths of b ,r and x are 1, 1,
and 2 respectively. Using L2 results in the lengths of b ,r and x being 1, 0.72,
and 1.41 respectively. As demonstrated by this simple example, when using L1,
the lengths of r (the result vector) and b (the binary vector generated from
it using a constraint function) are the same while when using L2 their lengths
differ. �

3.2 Schema Matching Evaluation

Schema matching evaluation is a task aiming at assessing the quality of a match-
ing result.

Definition 3. Let M = {M1,M2, ...,Mn} be a set of similarity matrices over
S = S × S′. A schema matching evaluation method is a function

g :M×M× ...×M→ R



g receives a set of similarity matrices representing schema matching results
and evaluates them to return a single real value. We can designate one of the
similarity matrices to be an exact match, representing some “correct” match,
typically provided by an expert. Such an exact match can be encoded as a binary
similarity matrix, where “correct” correspondences are assigned the value of 1
and incorrect correspondences are assigned a value of 0.

Whenever an exact match is part of the input to g, the evaluation is per-
formed with respect to it. For example, let M = {M,Me} be a pair of two
similarity matrices over S = S×S′. M is a binary matrix, representing the out-
come of a decision maker schema matcher. Me is a binary matrix, representing
the exact match. Let gBR (M,Me) be the well-known Recall evaluation method,
computed as follows:

gBR (M,Me) =
v (M) ·v (Me)

‖v (Me)‖1
(2)

where v (·) is a binary similarity vector over VS (S, S′) and ‖·‖1 represents the
Manhatten (L1) norm.

4 Non-Binary Evaluation Measures

Evaluators evaluate similarity between vectors that are not necessarily binary.
In this section we introduce three new, non-binary evaluators.

The first two non-binary evaluators extend common schema matching eval-
uators, namely Precision and Recall, to support non-binary values as well. A
natural extension is achieved by simply removing the requirement of v (M) to
be a binary vector. This simple extension enables evaluation of non-binary sim-
ilarity vectors generated by 1LMs without applying any match selection rule
or constraint and thus allowing for independent evaluation of 1LMs. We define
these measures as follows:

Definition 4 (Non-binary Precision and Recall). Let VS (S, S′) be a sim-
ilarity space and let v (Me) be a similarity vector over VS , where Me represents
an exact match.
NBPrecision is defined to be

gNBP (M,Me) =
v (M) ·v (Me)

‖v (M)‖1
(3)

NBRecall is defined to be

gNBR (M,Me) =
v (M) ·v (Me)

‖v (Me)‖1
(4)

In both cases, v (M) is a non binary similarity vector over V.



Note that Eq. 2 and Eq. 4 differ in the type of their input vector v (M). A
further relaxation of the evaluation measure can be done by removing the re-
quirement that v (Me) be a binary similarity vector. Such relaxation can support
probabilistic schema matching [5,10], where probabilistically correct correspon-
dences are assigned non-0 values in the similarity matrix and the matrix value as
a whole represents a probability space over the set of attribute correspondences.
We defer a discussion of this relaxation to future work.

To investigate the relationship between the binary and non-binary variations
we consider next a special type of 2LMs we term filters. Such matchers decide for
each entry of the similarity matrix whether its value should remain unchanged
or reduced to 0. Filters are the non-binary equivalent to decision maker 2LMs
in the binary world. Formally,

Definition 5 (Filters). Let v (M) be a similarity vector, and let v
(
M b
)

be a

similarity vector returned by a 2LM. v
(
M b
)

is filtered if

v
(
M b
)
i,j

=

{
v (M)i,j decision: unchanged

0 decision: filtered

The following proposition shows that NBRecall behavior in the non-binary
setting is similar to that of Recall in its binary counterpart. For both, removing
correspondences (by setting their similarity to 0) cannot improve performance.

Proposition 6. Let M be some similarity matrix resulting from the application
of some 1LM and let M b be the result of a filter 2LM. Let Me be an exact match.
Then, for v (M) and v (Me) the following holds:

gNBR (M,Me) ≥ gNBR
(
M b,Me

)
Proof. gNBR (M,Me) = v(M)·v(Me)

‖v(Me)‖1
by Definition 4 gNBR

(
M b,Me

)
=

v(Mb)·v(Me)

‖v(Me)‖1
by Definition 4 By way of contradiction, assume that

v
(
M b
)
·v (Me) > v (M) ·v (Me)

⇒ ∃ (i, j) |v (Me)i,j = 1 ∧ v (M)i,j = 0 ∧ v
(
M b
)
i,j
> 0

which contradicts the assumption that v
(
M b
)

is zero biased. Therefore,

v
(
M b
)
·v (Me) ≤ v (M) ·v (Me)

⇒
v
(
M b
)
·v (Me)

‖v (Me)‖1
≤ v (M) ·v (Me)

‖v (Me)‖1
since ‖x‖ > 1

Our third evaluator is designed to give further insight into the effects of
applying various 2LM on 1LM results. NBPrecision and NBRecall evaluate the
performance of 1LM irrespective of the application of subsequent 2LM. Classic
Precision and Recall evaluate the combined effect of 1LM and 2LM. However,
we cannot differentiate the impact each one has on the final outcome. To this
effect we now present a new measure, which we name Drift.



Fig. 2: Illustration of Drift based on Euclidean distance

Definition 7 (Drift). Let VS (S, S′) be a similarity space and let v (Me) be a
similarity vector over VS , where Me represents an exact match.
Let v (M1) and v (M2) be similarity vectors such that v (M1) is the result of
some 1LM and v (M2) is the result of the application of some 2LM on v (M1).
Let dp be a distance measure defined over a similarity norm p. Drift is defined as:

gDLp (v (M1) ,v (M2) ,v (Me)) = dp (v (M2) ,v (Me))− dp (v (M1) ,v (Me))

For example, Euclidean Drift is defined as:

gDL2 (v (M1) ,v (M2) ,v (Me)) = dE (v (M2) ,v (Me))− dE (v (M1) ,v (Me))

Drift is designed to evaluate the effect a 2LM has on the results of a 1LM.
Some 2LM may consistently cause the result to drift away from (towards) the
correct result, i.e., the distance between the 2LM result vector and the exact
match vector is larger than the distance between the 1LM result and the exact
match vector when following specific 1LMs. To facilitate this evaluation we re-
quire the results of evaluating the 1LM and the 2LM to be consistent with each
other and therefore require a distance measure (for example Euclidean distance)
based on a similarity norm that ensures subadditivity.

Returning to our running example. In Figure 2, gDL2 is visualized by
taking the exact match vector x as the center of a circle of radius d1=√

(1−0.35)2+(1−0.65)2=0.545 which is the distance between vector r and the ex-
act match vector. The arc of this circle crosses the line denoting the distance
between vector b and the exact match vector. The length of this line is given
by d2=

√
(1−1)2+(1−0)2=1. Drift in this case equals 0.455 and is positive, meaning

the 2LM has taken us farther away from the exact match with respect to the
previous distance achieved by the 1LM.

5 Empirical Evaluation

We empirically evaluated non-binary evaluation measures in two usage scenarios.
Section 5.1 details the setup of our experiments. We then evaluate the behavior
of non-binary vs. binary Precision and Recall in Section 5.2 and evaluate the
usage of L2 distance measures to determine 2LM drift in Section 5.3.



5.1 Setup

Evaluations were conducted on an Intel(R) Core(TM)2 Quad CPU Q8200 @
2.33GHz. An experiment system was coded in Java, JDK version 1.6.0. JVM
was initiated with 1.00GB heap-memory.

We use the webform dataset1 containing 249 ontologies, automatically ex-
tracted from Web forms using the OntoBuilder Extractor [11] and matched into
pairs. For each pair, an exact match was defined manually.

We use matching algorithms from the OntoBuilder matching system. On-
toBuilder is a research prototype, developed for matching ontologies from the
deep Web. The following OntoBuilder 1LMs are used in the evaluation (for a de-
tailed description, see [11,16]): Term, Value, Composition(Graph), Precedence,
and Similarity Flooding (a re-implementation of the algorithm presented in [17]).
The 2LM decision makers used in the evaluation where maximum weighted bipar-
tite graph (MWBG), stable marriage (SM) , and Threshold(t), a simple threshold
rule eliminating all correspondences with similarity measure less then t.

5.2 Using Non-Binary Measures for Tuning

To better understand the impact of using NBPrecision and NBRecal on the
assessment of 1LMs we look into the tuning of a 1LM called Term, which calcu-
lates string similarity between fields of Web forms. Each score is based on two
string elements, the field name (name score) and the field label (label score).
The weight of each score is a tunable parameter. Current approaches, such as
eTuner [13] use machine learning on test datasets to learn the optimal values
for such parameters. Learning requires the matcher to return a binary similarity
matrix and therefore, a 2LM of type decision maker is applied. In our case, we
use Stable Marriage (SM) and Threshold to perform match selection.

Figure 3 illustrates how binary and non-binary measures change in one
schema pair when the weight of the label sub-matcher (X axis) is varied between
0 and 1. Figures 3a and 3c show how application of 2LMs SM and Threshold
with 0.2 and 0.25 paint a different picture w.r.t. the effect of using label score
than their non-binary counterparts (Figures 3b and 3d). The difference between
line shapes is due to the fact that results of the 2LMs are evaluated using binary
Precision and Recall and therefore jump between values as correspondences are
either added or removed. Analyzing the variance reveals that differences between
the results of the three 2LMs were due to one or two borderline correspondences
that were added or removed by the arbitrary cut-off of threshold or the com-
bined score of SM. Direct analysis of the 1LMs using non-binary measures, is
insensitive to these small scale interactions and therefore provides a clear and
consistent view of result quality.

An additional complication in matcher tuning is the requirement for an ex-
act match, which is hard to come by. Generating an exact match between two
schemata of considerable size is a daunting task. Furthermore, often the param-
eter being tuned may vary between datasets, requiring it to be tuned for each

1 https://bitbucket.org/tomers77/ontobuilder/wiki/Downloads



(a) Tuning by Precision (b) Tuning by NBPrecision

(c) Tuning by Recall (d) Tuning by NBRecall

Fig. 3: Using various measures to tune term algorithm

dataset anew. These realities often cause designers to have very few exact pairs
to work with. These designers would want the measure used to be robust to
small sample sizes and its behavior to be stable even when only few pairs are
available. In Figures 4a and 4b we present results of an experiment testing this
stability. In the experiment we again varied the label score and compared Preci-
sion and NBPrecision over an increasing number of pairs. An outlier result in the
second pair threw Precision completely off the trend and not until we reached
10 pairs did the Precision line converge back to the actual behavior. In contrast,
NBPRecision maintained a stable line shape, varying in scale but not in form.
These results demonstrate how binary measures mask the actual effect of using
label score due to noise from small scale interactions between scores of differ-
ent attribute correspondences. When compared to the smooth curve obtained
from using NBPrecision and NBRecall, one immediately identifies the strength
of these measures for tuning. Unsupervised learning as well as other automated
tuning procedures benefit substantially from smooth curves creating a topology
of performance which can be optimized.

5.3 2LM Drift

The following experiment aims at validating the performance of a 2LM, given
an input of a 1LM. We hypothesize that some 2LMs consistently cause a drift



(a) (b)

Fig. 4: Impact of number of pairs on Precision vs. NBPrecision

from the correct result when following specific 1LMs. This drift if manifested
as consistently increased distance between the result of the 2LM and the exact
match vector dE (v (M2) ,v (Me)) than the distance between the 1LM result and
the exact match vector dE (v (M1) ,v (Me)). We could then use this observation
to correct the 2LM or search for one with a smaller drift.

We randomly chose 10 pairs from the web-form dataset and ran five 1LMs.
The distance of these 1LM result vectors from the exact match vector is cal-
culated and saved as d1. We then run four 2LMs over the result vectors and
save the distance of the 2LM result vectors from the exact match vector d2. The
difference between d2 and d1 represents the improvement (for negative values)
or worsening (for positive values) caused by the 2LM over the 1LM result.

Results are presented in Figure 5 as box plots showing the distribution of
Drift for different combinations of 1LMs and 2LMs. Stars and circles denote
outlier schema pairs. Recall that negative values are more desirable since they
indicate the 2LM has brought us closer to the exact match vector. From the
2LM perspective we observe that MWBG consistently reduces the distance from
the exact match vector when coupled with all 1LMs except Similarity Flooding.
Similar behavior is observed for Threshold and somewhat less consistently for
Union. Dominants 2LM seems to present both inconsistent behavior and poor
results, as it’s distributions are wide and tend to be positive. SM presents mixed
behavior, improving upon Precedence and Graph but causing an increase in
distance when coupled with Value, Term and Similarity flooding. Examining the
results from the 1LM perspective, Term achieves the best results when paired
with Threshold and to a lesser extent MWBG. Value is best paired with Union,
Threshold and MWBG. It seems that no 2LM is able to substantially improve the
result of Similarity Flooding, this result indicates that the similarity matrices,
generated by the 1LM are rather poor with little information for the 2LM to
use. Precedence and Graph are easily improved by all 2LM, except Dominants,



Fig. 5: Ontobuilder Pairs Box Plots

indicating that these two 1LMs provide noisy but rich results in which there is
much information to be gained.

6 Related Work

The overwhelming majority of current schema matching evaluation measures are
based upon Precision and Recall, first introduced to schema matching by Li and
Clifton [14]. These measures and their derivatives have served the classic role
of schema matching as a preceding step to mapping expression generation and
served well in evaluating various matching systems. The emergence of new appli-
cations and research domains challenged their universal adequacy and spawned
attempts to provide additional measures for additional needs. F-measure, bor-
rowed from IR by Berlin and Motro [2], Error, borrowed from IR by Modica et.
al. [19], and Information Loss, suggested by Mena et. al. [18] all provide methods
to aggregate the results of Precision and Recall and evaluate algorithms on a
single measure. Overall/Accuracy [17] and HSR [6] assume that schema match-
ing is followed by a manual effort to validate correspondences and therefore are
suggested as a better measure for post-match effort. A thorough comparison of
the use of Precision, Recall, and their derivatives appears in [9], Ch. 3.4.



The above-mentioned measures all assume that evaluating schema matching
entails comparing an absolute correspondence list with a similarly absolute ex-
act match. Work done by Ehrig and Euzenat [8] progresses in the direction of
relaxing this assumption by proposing additional alternative semantics to the
set-inclusion semantics at the basis of classic Precision and Recall definitions.
For example, to facilitate semantics of subsumption, a weight function is as-
signed to value tree distance between two terms of the source schema, where
one was matched by the matcher and the other is the exact match. However,
these semantics are still based upon valuation of binary relationships between
the attributes matched. To the best of our knowledge, our work is the first to
suggest a method for the assessment of non-binary matching results.

7 Conclusions

We have introduced non-binary schema matching evaluation, a tool in the hands
of a matching system designer that can asses the quality of interim match results
with no need for arbitrary match selection. We provide a formal model for schema
matching evaluation using similarity spaces, offer three new non-binary measures
and demonstrate how these new measures provide designers with capabilities
that were previously unavailable.

In terms of future research we aim to continue and investigate different mea-
sures on various normed vector spaces. In addition, we intend to investigate the
performance of different evaluation methods with respect to additional schema
matching tasks. Finally, we shall also investigate non-binary reference vectors
and the impact of using our new measures on schema matching problems where
these vectors occur.
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