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Abstract Web-scale data integration involves fully au-

tomated efforts which lack knowledge of the exact match

between data descriptions. In this paper we introduce

schema matching prediction, an assessment mechanism

to support schema matchers in the absence of an ex-

act match. Given attribute pair-wise similarity mea-

sures, a predictor predicts the success of a matcher

in identifying correct correspondences. We present a

comprehensive framework in which predictors can be

defined, designed and evaluated. We formally define

schema matching evaluation and schema matching pre-

diction using similarity spaces and discuss a set of four

desirable properties of predictors, namely correlation,

robustness, tunability, and generalization. We present

a method for constructing predictors, supporting gen-

eralization and introduce prediction models as means

of tuning prediction towards various quality measures.

We define the empirical properties of correlation and

robustness and provide concrete measures for their eval-

uation. over a set of predictors at different granularity

levels. To illustrate the usefulness of schema matching

prediction, we propose a method for ranking the rele-

vance of deep Web sources with respect to given user

needs. We show how predictors can assist in the design

of schema matching systems. Finally, we show how pre-

diction can support dynamic weight setting of matchers

in an ensemble, thus improving upon current state-of-

the-art weight setting methods. These claims are eval-

uated in an extensive empirical evaluation.

Technion – Israel Institute of Technology
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1 Introduction

The use of Web data structural features was shown to

be beneficial in the context of information seeking on

the Web [28]. In some cases, information annotation in

the form of, e.g., ontologies, can assist in overcoming the

ambiguity inherent to natural languages. In other cases,

retrieval of information depends on querying, rather

than browsing the Web. A prominent example of in-

formation seeking via querying is that of Web forms,

commonly used as portals to deep Web information

Whenever structural features are present, informa-

tion seeking on the Web is performed by using various

matching techniques over these features, ranging from

schema matching to ontology matching techniques.

Generally speaking, schema and ontology matching pro-
vide correspondences between concepts describing the

meaning of data (e.g., attributes in database schemata

and fields in Web forms) in various heterogeneous, dis-

tributed data sources. Schema matching is conceived to

be one of the basic operations required by the process

of data and schema integration [4], and thus has great

effect on its outcomes.

In its origin, schema matching was conceived to be

a preliminary process to schema mapping to serve ap-

plications such as query rewriting and database inte-

gration. A basic assumption within this field is that

schema matching provides a set of correspondences to

be then validated by some human expert before map-

ping expressions are generated.

Over the years, schema matching research has ex-

panded and specialized to answer research and applica-

tion questions in a variety of domains. Smith et. al. [42]

observe that for applications that involve large enter-

prises, such as locating relevant concepts, there is no

need for mapping expressions to be created, nor is it
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possible to provide a set of definite correspondences.

Even more important, exact matches, the outcome of a

manual validation, are rare, hard to come by and gener-

ate. A similar setting exists in searching over structured

data on the Web. Users can benefit from guidance to-

wards relevant data sources, without the need of a map-

ping expression and definite correspondences. The vast

amount of data out there also makes the task of manual

integration of data all but impossible. The dataspace

vision [15] also extends the traditional role of schema

matching in data integration. Dataspaces can assist in

reducing upfront costs for setting up a data integra-

tion system by gradually specifying schema mappings

through interaction with end users in a pay-as-you-go

fashion. In addition, the dataspace vision requires tools

for the bootstrapping of service provision, profiling, dis-

covering data sources, etc.

In the absence of an exact match, schema matchers

perform a “best effort” matching without any indica-

tion of the prospective success of their efforts. In this

work we introduce schema matching prediction, an as-

sessment mechanism to support schema matchers in the

absence of an exact match. Predictors foretell the suc-

cess of a matcher in identifying correct correspondences

by analyzing the matcher’s pair-wise similarity scores.

Prediction carries its own merit. Presenting the user

with a quality assessment of a match is a first step

towards decision making under uncertainty. Prediction

can also serve in directing the flow of data source dis-

covery. For example, it can serve as a decision factor

on whether accessing data through one Web form is

preferred over the other. Also, prediction puts schema

matchers in perspective, explaining why some matchers

work while others do not and directing the improve-

ment of existing matchers. Finally, prediction can serve

schema and ontology matching tasks such as matcher

self-configuration, matcher selection,user involvement

optimization, etc.

Predicting the quality of the outcome of a schema

matching process is a new task in schema matching

literature, a task that has been mentioned as side re-

marks in some papers but never, to the best of our

knowledge, treated in a thorough scientific manner. To-

wards this end, we offer a comprehensive examination

of schema matching prediction on the conceptual, archi-

tectural, and empirical levels. On the conceptual level

we present similarity spaces, a general model for eval-

uation of matching outcome and place prediction within

it. On the architectural level we present predictor design-

level properties and methods for constructing predic-

tors with different desired properties. We continue the

architectural discussion by showing how the similarity

spaces model can be exploited to design predictors. We

demonstrate these principles by presenting a set of pre-

dictors and by introducing the concept of prediction

models. On the empirical level we present methods for

evaluating predictors and discuss the desired empirical

properties of predictors.

To illustrate the applicability of the proposed ap-

proach to assessing the relevance of deep Web informa-

tion we introduce three applications of prediction. The

first application is in data source discovery, motivated

by the need to identify Web data sources that have a

high fit with a user’s data needs [39]. The user speci-

fies her data needs as a set of concepts, which can be

thought of as small schemata. Predictors serve as rank-

ing measures to provide the user with a manageable set

of candidate Web forms to consider. In the second ap-

plication presented, weights of schema matchers in an

ensemble are dynamically set as follows. By predicting

the quality of each match result, predictors enable the

matching system to change ensemble matcher weights

at run-time. Dynamic weight setting allows automatic

tuning of the matching task, thus allowing for fully au-

tomated processes that are more apt for Web-scale in-

tegration tasks than semi-automated iterated efforts.

The third application demonstrates how entry-level pre-

dictors support designers of schema matching systems

when designing second line matchers.

This comprehensive examination of prediction usage

scenarios is supported by an extensive empirical evalu-

ation. Our evaluation shows that carefully constructed

predictors can be a powerful tool in the hands of schema

and ontology matching researchers, practitioners, and

Web users. In particular, we show that the predictors

we propose in this work are correlated well with the

quality measures they aim to predict (e.g., precision and

recall). We also show that fine-grain predictors, based

on single attribute evaluation, correlate better with the

quality outcome than schema level predictors. Relevant

Web sources are shown to be accurately discovered us-

ing predictors and attribute-level predictors are shown

to perform well in dynamic ensemble construction.

In this work we make the following contributions:

– At the conceptual level we introduce an evaluation

model of matching result quality in the absence of

an exact match.

– We present a general method for designing predic-

tors using similarity subspaces and give examples of

predictors that can be generated using this method.

– We propose a method for tuning predictor models

to predict different quality measures.

– We offer a novel method for ranking schemata based

on relevance to user needs, using predictors.
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– We provide an extensive empirical evaluation, show-

ing the benefits of our proposed approach towards

prediction.

The rest of the paper is organized as follows. Sec-

tion 8 discusses related work and Section 2 provides

background on schema matching followed by the eval-

uation model in Section 3. A thorough exploration of

predictors and predictor models is provided in Section

4. In Section 5 we introduce three use-cases for schema

matching prediction. Section 6 provides a description of

the empirical evaluation method followed by the eval-

uation results in Section 7 and a concluding discussion

in Section 9.

2 Preliminaries

The following schema matching model is based on [16].

Let schema S = {a1, a2, . . . , an} be a finite set of at-

tributes. Attributes can be both simple and compound,

and compound attributes should not necessarily be dis-

joint. For any schemata pair {S, S′}, let S = S × S′

be the set of all possible attribute correspondences be-

tween S and S′. Let M(S, S′) be an n × n′ similarity

matrix over S, where Mi,j (typically a real number in

[0, 1]) represents a degree of similarity between the i-th

attribute of S and the j-th attribute of S′. M(S, S′)

is a binary similarity matrix if for all 1 ≤ i ≤ n and

1 ≤ j ≤ n′, Mi,j ∈ {0, 1}. A (possibly binary) similarity

matrix is the output of the matching process.

Example 1 Table 1 provides examples of two similarity

matrices between two simplified schemas, one (S0) with

four attributes and the other (S1) with three. The sim-
ilarity matrix in Table 1(a) is the outcome of a match-

ing process, using some matcher. The similarity matrix

in Table 1(b) is a binary similarity matrix, generated

as the outcome of a decision-maker matcher [16], also

known as alignments as solutions [41]. Such a matcher

applies a heuristic of choosing those attribute pairs in

which matcher confidence is above 0.5. It is worth not-

ing that the matcher prefers matching CheckInDay of

S1 with CheckInTime on S0 over arrivalDay. This may

occur, for example, whenever a string matcher is used,

giving more emphasis to the checkin component of the

attribute name.

Matching schemas is often a stepped process in

which different algorithms, rules, and constraints are

applied. Several classifications of schema matching

steps have been proposed over the years (see e.g., [24,

8]) and this work focuses on three of the steps. First,

we separate matchers that are applied directly to the

problem and matchers that are applied to the outcome

(a) A Similarity Matrix

S0 −→ 1 cardNum 2 city 3 arrivalDay 4 checkIn
Time

↓ S1

1 clientNum 0.84 0.32 0.32 0.30
2 city 0.29 1.00 0.33 0.30
3 checkInDay 0.34 0.33 0.35 0.64

(b) A Binary Similarity Matrix

S0 −→ 1 cardNum 2 city 3 arrivalDay 4 checkIn
Time

↓ S1

1 clientNum 1 0 0 0
2 city 0 1 0 0
3 checkInDay 0 0 0 1

Table 1: Similarity Matrix Examples

of other matchers, the former class of matchers is called

first-line matchers (1LM) and the latter class is termed

second-line matchers (2LM) [16]. In addition, we focus

on ensemble-based methods, combining the results of

various matchers to generate a combined match. We

dub such methods ensemble matchers.

Putting the three matching tasks in the context of

our model, 1LMs receive two schemata and return a

similarity matrix, 2LMs receive a similarity matrix and

return a (possibly binary) similarity matrix, and ensem-

ble matchers receive a schema pair and a set of similar-

ity matrices as input and return a (possibly binary) sim-

ilarity matrix representing the combined result of these

matchers. An important aspect of ensemble matchers is

the matcher combination method in an ensemble. It can

be determined statically, prior to the matching task.

Alternatively, it can be dynamically generated, using

the features of the schemata and similarity matrices at

hand.

3 Evaluation Model

We start this section with the definition of similarity

spaces in Section 3.1. In Section 3.2 we formally define

schema matching evaluation using similarity spaces.

3.1 Similarity Spaces

We propose a vector space representation of schema

matching outcome named similarity spaces.1 Vector

spaces support the functional analysis of evaluation

methods. Functional analysis is the study of vector

spaces utilizing several branches of applied mathemat-

ics [25]. Most of the principal results in functional

1 The proposed term of a similarity space should not be
confused with the one proposed by Zobel and Moffat [47] in
the context of document vector spaces.
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analysis are expressed as abstractions of intuitive geo-

metric properties of three dimensional space. However,

the same mathematical formulae hold in n-dimensional

space (n > 3) as well. For convenience, we maintain ma-

trix notation when referring to a dimension, marking a

dimension as an (i, j) coordinate.

Definition 1 Given schemata S and S′, a similarity

space VS (S, S′) = [0, 1]|S| is an |S|-dimension vector

space such that each dimension (i, j) in VS (S, S′) cor-

responds to the attribute pair (ai, aj) in S.

Whenever the referenced schemata S and S′ are clear

from the context, we use VS or V as a shorthand nota-

tion of VS (S, S′).

Each entry in a matrix M over S = S ×S′ is repre-

sented as an element of a similarity vector in V. There-

fore, a similarity vector represents the similarity of |S|
pairs of attributes.

3.1.1 Similarity Subspaces

Evaluating the similarity of a schema as a whole may

be too coarse for some matching tasks, as we show in

Section 5. Therefore, we would like to be able to make

statements over subspaces of the similarity space. For

example, we may be interested in results for some at-

tribute s ∈ S only. For each dimension (i, j) in V we de-

note by vi,j the vector (0, 0, ..., 1, ..., 0), the vector with

all 0 values except the (i, j) element, assigned with a

1 value. We use these vectors to define similarity sub-

spaces as follows.

Definition 2 V ⊆ VS (S, S′) is a subspace of VS (S, S′)

if V is generated by a set of vectors vi,j such that (i, j)

is in VS (S, S′).

Definition 3 Given a similarity matrix M over S =

S × S′ and a subspace V ⊆ VS (S, S′), a similarity

vector v (M) from the subspace V is the vector:

v (M) =
∑

(i,j) dimension in VS(S,S′)

Mi,jv
i,j (1)

The dimensionality of similarity subspaces of V ranges

from 1 to |S|. A similarity vector of dimension 1 rep-

resents a single matrix entry and one with dimension

|S| is defined over the entire vector space, representing

the whole similarity matrix. Any dimension in between

represents part of the similarity matrix. For example,

Vi = [0, 1]|S
′| is a subspace of a similarity space V,

representing the similarity of a single attribute ai from

schema S with each of the attributes of S′. We also de-

note by Vij = [0, 1]|S|+|S
′| the subspace of a similarity

space V, representing the similarity of two attributes

ai ∈ S and aj ∈ S′ with all other attributes.

(a) Similarity Matrix

3 arrivalDay 4 CheckInTime

3 checkInDay 0.35 0.64

(b) Binary Similarity Matrix

3 arrivalDay 4 CheckInTime

3 checkInDay 0 1

(c) Exact Match Matrix

3 arrivalDay 4 CheckInTime

3 checkInDay 1 1

Table 2: Partial Similarity Matrix Examples

Example 2 Consider Example 1. Let V be the vector

space representation of the schema pair in Table 1.

We define a 2-dimensional subspace V ⊂ V over a sin-

gle attribute from S1, {checkInDay} and two attributes

from S2, {arrivalDay, CheckInTime}. Tables 2(a) and

2(b) show the relevant part of the similarity matrices in

tables 1(a) and 1(b), respectively. Table 2(c) illustrates

the relevant part of an exact match for the matching

of checkInDay with arrivalDay and CheckInTime, as a

binary similarity matrix. It is worth noting that while

the decision maker chose to match checkInDay only with

arrivalDay, checkInDay is in fact a combination of both

arrivalDay and CheckInTime.

Fig. 1: Visualizing Similarity Vectors

We can now visualize the 2-dimensional similarity

vectors of the three matrices in Figure 1. Each simi-

larity vector is represented as a single point. Using the

L2 (Euclidean) norm for defining vector length, we can

visualize the vectors using straight lines from the origin

to the vector coordinates, as illustrated in Figure 1.
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3.2 Schema Matching Evaluation

Schema matching evaluation is a task aiming at assess-

ing the quality of a matching result.

Definition 4 Let VS be a similarity space over S =

S×S′ and let V ⊂ VS be a sub-space of VS . A schema

matching evaluation method is a function

g : V × ...× V → < (2)

g receives a set of similarity vectors representing

schema matching results and evaluates them to return

a single real value.

XXXXXXXXInformed?
K

0 1 2 > 2

Yes X X
No pr ed dic tors

Table 3: Evaluator classification

We now present a classification of different evalu-

ators according to the properties of their input, also

illustrated in Table 3. The first dimension involves the

availability of an exact match in the input.

Informed evaluatiors are applied on vectors with re-

spect to a given exact match.

Uninformed evaluators are applied on vectors with-

out any knowledge given on correct attribute corre-

spondences for the given schema pair.

The second dimension of classification is based upon

the cardinality of the input vector set. We identify four

classes of evaluators in this dimension:

Single Input (K = 1) evaluators g : V → < evaluate

a single similarity vector.

Double Input (K = 2) evaluators g : V × V → <
compare between two vectors of the same sub-space.

K-Input (K > 2) evaluators g : V × ...× V → < are

the general extension to the double input functions

receiving as input k > 2 vectors.

Schema Input (K = 0) evaluators g : S1 × S2 → <
are a special case that evaluate the schema matching

task without a matching result but with only the

original schemata intended to be matched. We note

that for K = 0 the definition of an evaluator does

not comply with that in Definition 4. The usefulness

of such evaluators may seem questionable at first as

they do not evaluate matching results. However, as

Tu and Yu [44] have found, they can be used to

predict matcher performance.

An overwhelming majority of the work to date on

schema matching evaluation can be categorized into the

{Informed,K = 2} category, comparing two similarity

vectors one being a match result and the other being an

exact match, representing a “correct” match, typically

provided by an expert. Whenever an exact match is

part of the input to g, the evaluation is performed with

respect to it. For example, let {v,ve} be a pair of simi-

larity vectors over VS . v is a binary vector, representing

the outcome of a decision maker schema matcher. ve is

a binary vector, representing the exact match. The well-

known precision evaluation method follows this defini-

tion and can therefore be represented as follows:

gPR (v,ve) =
v·ve

‖v‖
(3)

where ‖·‖ represents the L1 (Taxicab) norm. Recall is

similarly defined as follows:

gRE (v,ve) =
v·ve

‖ve‖
(4)

Precision and Recall serve as a basis for additional

measures such as F-Measure, Overall and Accuracy,

which also fall into this category. Sagi and Gal propose

an extension of this basic class to non-binary vector

comparison as well [38].

Other entries in this table are promising as well and

may serve a wide variety of research and application do-

mains. A few works only explored the uninformed cat-

egory so far, e.g., [44,30]. In this work, we introduce an

uninformed K-Input evaluator, which evaluates a group

of results and show its usage in data source discovery. In

particular, we focus on the case of {Uninformed,k = 1}
case.

4 Predictors

Predictors are a special class of schema matching eval-

uation methods, which evaluate one or more similarity

vectors in order to assess the quality of the matching

outcome without any knowledge on the correct cor-

respondences (i.e., exact match). Using the evaluator

classification (see Table 3), predictors are uninformed

evaluators.

In this section we first discuss the desired proper-

ties of predictors (Section 4.1), followed by a description

of two predictor types (Section 4.2), namely internaliz-

ers and idealizers. Generalization is discussed in more

details in Section 4.3. Finally, we introduce prediction

models in Section 4.4 to support tunability. To illustrate

our approach, we give examples of predictors through-

out. Predictors were selected with the aim of better

illustrating the novel aspects of this work.
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4.1 Predictor Properties

We divide our characterization of predictors into two

parts: structural properties that can be examined at de-

sign time (Section 4.1.1) and empirical properties that

should be evaluated by experimentation (Section 4.1.2).

4.1.1 Structural Properties

We define two structural properties, namely generaliza-

tion and tunability, as follows.

Generalization: Predictors may be applied to tasks

with different requirements of granularity, from predict-

ing match quality for a single attribute pair, to match

quality of a schema pair, to match quality of multiple

matchers, and everything in between, as illustrated in

Figure 2. Predictors should be based upon principles

that are applicable at several levels and can be special-

ized to several levels of granularity. In Section 4.3 we

demonstrate how generalization enables the increase of

prediction effectiveness and provide several predictors

on different levels of granularity.

Tunability: Predictors may predict different qualities,

putting more emphasis, for example, on precision or on

recall. We should be able to tune predictors towards the

desired quality in a specific scenario. In Section 4.4 we

introduce prediction models as a method for providing

tunability.

4.1.2 Empirical Properties

We define two empirical properties, namely correlation

and robustness, as follows.

Correlation: By definition, correlation is measured be-
tween two variables. Predictors should correlate well

with the quality of the matcher’s decision making and

in our case, we measure correlation between a predic-

tor’s value and a quality measure (such as precision

and recall). An accepted measure for the correlation

of continuous variables is R2 also known as Pearson

Squared. It’s result is often interpreted as the propor-

tion of variability in a dependent variable explained by

the predicting variables [43]. In our context, predictors

are the predicting variables and quality measures are

the dependent variables. Useful predictors are strongly

correlated2 with the quality measures they are designed

to predict, thus allowing designers to use their pre-

dicted values as a proxy for the unknown quality of

the result. Correlation among predictor values (inter-

correlation) indicate redundancy, leading to a selection

process among predictors.

2 According to Cohen [7], correlation values over .01 repre-
sent a small effect, over .09 a medium effect and over .25 a
large effect.

Robustness: To ensure a predictor’s robustness, its

performance should be statistically significant when

tested over a substantial number of schema pairs and

stable over varying datasets and schema matchers. We

use the following three tools to ensure ensure robust-

ness:

• Statistical significance is the probability that the ob-

served phenomenon (in this case the predictor being

sound) emanates from random noise. Our measure for

statistical significance is the one-tailed standard t-test,

measuring the hypothesis that the observed result was

generated by random noise. A low significance value

(usually a value below 0.01) is preferred since the prob-

ability that the result observed was caused by random

noise is low.

• Sample Size: A special attention should be given to

the number of schema pairs on which a predictor is

evaluated. Miles and Shevlin [?] provide scientists with

some useful rules of thumb when calculating the mini-

mal sample size by the expected size of the effect one

wishes to measure. When applied to schema matching

prediction, detecting a medium sized effect (0.3 to 0.6

correlation) on a single predictor requires 60 samples

while testing six predictors require over 100 schema

pairs. In the only evaluation of a schema matching pre-

dictor published to date [30], to the best of our knowl-

edge, correlation was examined for about 35 pairs from

a single dataset, which is lower than recommended by

Miles and Shevlin. In our experiments (detailed in Sec-

tion 7.1) the number of pairs is between 810 and 7708.

• In the field of statistics, interfering variables are fea-

tures specific to the experiment and sampled popula-

tion that may interfere with the outcome, making it

an artifact of the experiment with little implication on

more general settings [43]. In the context of schema

matching, since predictors are based on constraints or

properties that may hold only in specific datasets and

schema pairs, we wish to ensure the observed prediction

is independent of these features. To ensure robustness

in this case one should control dataset and sample fea-

tures by performing multiple regression experiments,

each time controlling for prior variables such as source

dataset and matching system. If the variance explained

by the predictor is substantial over the variance ex-

plained by dataset and matching system priors, we may

conclude that the predictor is robust.

4.2 Predictor Types

We now present and demonstrate the two predictor

types, namely internalizers and idealizers.
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Fig. 2: Visualizing granularity

4.2.1 Internalizers

Internalizers are devised by empirical analysis of high-

quality result vectors and the identification of some

shared internal structure or measurable property. For

example, consider the dominants property [16] (first

used by [45] and also dubbed later as harmony [30]).

Given a schema pair {S, S′} and a similarity matrix

M (S, S′), a pair of attributes {ai, aj} is dominant if

the similarity measure Mi,j satisfies the following dom-

inance property:

∀ak ∈ S′ Mi,k ≤Mi,j ∧ ∀ak ∈ S Mk,j ≤Mi,j (5)

Empirical analysis (Section 7) shows that similarity vec-

tors with a high ratio of dominant pairs often yield high

quality results. We therefore define a matrix predictor
DOM that measures the ratio of dominant values with

respect to the smallest schema size. Additional inter-

nalizers are described in Section 4.3.

4.2.2 Idealizers

Idealizers assume the existence of some principle that

high quality results adhere to and predict performance

based on comparing the supplied result and an ideal

vector, adhering to this principle. For example, one may

hypothesize that an ideal match vector is a vector over

{0, 1}|S×S
′|

, containing only binary values. Therefore,

one similarity vector is evaluated to be better then an-

other if it is “closer” to some binary similarity vector.

For such an idealizer in our case-study example, the

vector (0.9, 0.1) is preferred to (0.5, 0.5). (0.5, 0.5) is in

equal distance to any binary similarity vector, which is

further than the distance between (0.9, 0.1) and (1, 0).

Application of this methodology requires:

Ideal Vector: principles that result vectors should ad-

here to, formalized as constraint functions.

Comparison: a consistent method for comparing the re-

sult vectors to ideal vectors.

Selection: a method to select the ideal vector for com-

parison.

We now provide formal definitions for these three

requirements. We begin by adapting the definition of

a constraint function from [16] to support similarity

subspaces.

Definition 1 Given a subspace V ⊆ VS (S, S′), a con-

straint function over V is a boolean function:

Γ : V → {0, 1} (6)

�

Γ partitions V into valid (ideal) and invalid (non-ideal)

vectors so that ideal vectors satisfy Γ . We denote by V i

the set of all ideal vectors in subspace V . We find the

use of constraint functions in prediction to be compli-

mentary to previous approaches. Rather than using the

constraint function to modify the matcher outcome we

use it to predict the current result success. While the

former carries disadvantages such as reduced quality

outcome, the latter is useful in characterizing the abil-

ity of a matcher to successfully handle a given instance

of the matching problem.

For vector comparison, we require a match compar-

ison function defined as follows.

Definition 2 Let V ⊆ VS (S, S′) be a subspace and let

vi ∈ V i be an ideal similarity vector of a matrix M i

(vi = v
(
M i
)
). A match comparison function ι

(
M,M i

)
is a function possessing the following properties:

1. ι
(
M,M i

)
≥ 0 (non-negativity)
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2. ι
(
M,M i

)
= 1⇐⇒ v (M) = v

(
M i
)

(reflexivity)

3. ι
(
M,M i

)
= ι
(
M i,M

)
(symmetry) �

For the role of ι
(
M,M i

)
we suggest the well-known

cosine similarity function, which measures the cosine

of the angle between two vectors v (M) and v
(
M i
)

(summation is performed over all dimensions of V ):

ι
(
M,M i

)
=

v (M) ·v
(
M i
)

‖ v (M) ‖ · ‖ v (M i) ‖

=

∑
Mi,j ×M i

i,j√∑
(Mi,j)

2 ×
∑(

M i
i,j

)2 (7)

Given a similarity matrix M , ι induces a natural

partial order among ideal vectors with respect to M .

Let V ⊆ VS (S, S′) be a subspace, M a similarity ma-

trix over over S = S ×S′, and {vi,vi′} ⊆ V i two ideal

vectors of matrices M i and M i′ , respectively. Then

vi � vi′ iff ι
(
M,M i

)
≤ ι

(
M,M i′

)
. We can therefore

say that vi is minimal for a given M iff

∀vi′ ∈ V i : vi � vi′ (8)

With such a partial order, we can now formally define

an idealizer.

Definition 3 Let M be a similarity matrix and M i be

a matrix such that:

– vi = v
(
M i
)
,

– vi ∈ V i, and

– vi is minimal for M .

An idealizer gi is defined to be

gi = ι
(
M,M i

)
(9)

�

Idealizers presented in this paper share their com-

parison (Eq. 7) and selection method (using ideal vec-

tor minimality), and differ only by their constraint (Γ )

functions.

4.3 Generalization

Using the similarity space we can now generate pre-

dictors at different levels of granularity, satisfying the

generalization characteristic. Granularity of predictors

is defined by the subspace over which they provide pre-

diction. In this work we focus on with K = 1 predictors.

We briefly discusses the special case of K > 1 as part

of our future work.

Given schemata S and S′, Matrix predictors predict

some quality over a matrix, using vectors of size |S| (re-

call that S = S × S′). Attribute predictors evaluate a

vector defined over a single attribute, using vectors of

size |S′|, and entry predictors evaluate a single matrix

entry. In the rest of this section we define predictors of

three granularity levels (matrix, attribute, and entry).

In Section 7 we evaluate the effectiveness of the pro-

posed predictors, assessing them in typical usage sce-

narios against state-of-the-art schema matching tech-

niques as well as their empirical properties as defined

in Section 4.1.

4.3.1 Matrix Predictors

The Binary Matrix Converter predictor (BMC) is a

matrix idealizer, where ideal vectors are all binary vec-

tors. Effectively, the selected ideal vector is created by

rounding each dimension of a similarity vector value

to the nearest binary value. Such an idealizer is based

on earlier works (e.g., [16], Ch. 4.2) showing that non-

binary similarity matrices are, in fact, binary matrices

masked by some random noise. This predictor prefers

schema matching vectors with elements that are either

close to 0 or to 1, indicating lower noise and is expected

to yield high precision when compared with the exact

match, yet may suffer on recall. We note that BMC is

näıve, allowing trivial schema matchers, which always

return simple 0̄ or 1̄ vectors, to score high. A varia-

tion of the näıve approach presented above, dubbed

the Binary Matrix Max predictor (BMM), constrains

the number of 1 values in the ideal similarity matrix

to be k = max (|S| , |S′|). Such a constraint creates a

weak link between the size of schemata and the re-

quired matches in the idealized vector. In the absence

of additional constraints, some attributes may not be

matched while others may be matched multiple times.

We expect this predictor to support higher recall than

the näıve binary matrix converter.

The next predictor tightens the relationship between

the schemata at hand and an ideal vector. The Larger

Matched Matrix predictor (LMM) requires matching

all attributes from the larger schema. The ideal vec-

tor is thus constrained to have at least 1-value entry

for each attribute of the larger schema. Let S be the

larger schema, then the ideal (binary) vector of LMM

must adhere to the following constraint:

m∑
j=1

vi,j ≥ 1 ∀Ai ∈ S (10)

In addition to the three idealizers described above we

evaluate the following four internalizers:

– Max is an internalizer for which the maximum values

for each row and column are summed and divided
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by the total number of rows and columns. Formally,

pMax =

n∑
i=1

max
j

(vij) +
m∑
j=1

max
i

(vij)

n+m
(11)

– AvgM is a simple average of all similarity values in

non-zero entries. Formally,

pAvgM =

∑
i,j|vij>0

vij∑
i,j|vij>0

1
(12)

– STDEV is the standard deviation of the sample,

given by:√√√√ 1

N

N∑
i=1

(vi − µ) (13)

where N is the number of non-zero vector entries

and µ is the sample average.

– DOM is the dominants predictor described in detail

in Section 4.2.1.

4.3.2 Attribute Predictors

Attribute predictors evaluate vectors over a subspace

corresponding to a single attribute. We define two at-

tribute predictors that are attribute-level generaliza-

tions of the matrix predictors presented above:

– With Binary M To N Attribute predictor (BNA),

the closest binary vector is created by rounding each

element to the closest number in {0, 1}, the same

way BMC works for the whole matrix. We observe

that this predictor allows n : m correspondences.

– One-to-One Attribute Predictor (1T1) constraints

ideal binary vectors to have exactly one element

equal to 1. This vector chooses randomly an entry

among those that equal max(v) to 1 and the other

entries are set to 0. Thus 1T1 applies a similar con-

straint as LMM.

In addition to the two idealizers described above we

evaluate the following three internalizers:

– MaxA is the maximum value of the attribute vector
entries:

∀ai ∈ S : pMaxAi
= max

j
(vij)∧∀aj ∈ S′ : pMaxA = max

i
(vij)

(14)

– AvgA is the average confidence in non-zero attribute

vector entries.

∀ai ∈ S : pAvgAi
=

∑
i,j|vij>0

vij∑
i,j|vij>0

1
(15)

– STDEV is the standard deviation of the sample us-

ing Eq. 13.

– CoVar is the coefficient of variation, given by divid-

ing standard deviation (σ) by the sample mean (µ)

(
µ

σ
).

4.3.3 Entry Predictors

Entry predictors attempt to predict the value of a spe-

cific entry, yet surrounding entries can assist in assess-

ing this entry in comparison with its neighbors. The

idealizers we evaluate in this work are based on the

dominants property. For a given attribute pair {ai, aj},
dominance serves as our ideal vector. The following

three variations are predictors, based on the similarity

in the Vij subspace. Given a schema pair {S, S′} and a

similarity matrix M (S, S′), the Dominant Binary pre-

dictor (DBN) compares v (M) ∈ Vij with the vector

vi,j (recall that vi,j is a binary vector in which the only

element with a value of 1 is the (i, j) element). The

Dominant Set Max predictor (DSM) compares v (M)

with a modified vector where vi,j = max(v) and all

other elements are left unchanged. Finally, the Domi-

nant Lower All predictor (DLA) compares v (M) to a

modified vector where all elements larger than vi,j are

lowered to equal vi,j .

Entry internalizers examine the entry value with re-

spect to some vector properties. As with idealizers, we

will use the vector composed of the row and column

of the entry at hand. To avoid issues of differing scale

between matchers and datasets, we use the following

two normalization methods to evaluate the value of an

entry w.r.t the surrounding vector:

– Normalized Value (NV): Let max (v) and min (v)

be the maximum and minimum values of a given

vector v then the normalized value of each entry vi
is given by:

vi −min (v)

max (v)−min (v)
(16)

– Ranked Value (RV): Let ri be the descending rank

of element vi in a given vector. For example, given

a vector (0.1, 0.6, 0.4, 0, 4), the corresponding ranks

would be (4, 1, 2, 2). Let R = max
i

(ri). The ranked

value of ri is defined as

ri − 1

R− 1
(17)

To complete our list of entry predictors we look at

a seemingly trivial, but intriguing predictor: Val. The

Val entry predictor simply takes the confidence value

assigned by the matcher as a prediction for the qual-

ity of the entry. This predictor may actually represent
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state-of-the-art in entry predictors as matching systems

today inherently assume a correlation between the as-

signed confidence value and the actual quality (see, for

example, the monotonicity principle [?]). We evaluate

this assumption together with the correlation of other

predictors in Section 7.1.

4.4 Tunability

A single predictor may generalize well, however, its tun-

ability is limited. Therefore, we suggest the use of mul-

tiple predictors to complement each other in various

scenarios. To this effect we now define prediction mod-

els.

Definition 4 A prediction model is a set of pairs

{(g1, ω1) , ..., (gk, ωk)} where for each 1 ≤ i ≤ k, gi is a

predictor and ωi ∈ R is the weight of gi in the model.�

Loosely correlated predictors can be composed into

a model. The weights of its participating predictors

should be tuned so that their combined prediction cor-

relates well with the desired quality that we wish to

predict. To construct prediction models from individual

predictors, you may use the standard statistical method

of stepwise (multi-valued) regression [13], in which pre-

dicting variables (in our case predictors) are added to

the model if they improve model correlation with the

dependent variable (in our case the quality measure)

and removed from the model if they do not contribute

to correlation. Each predictor’s contribution to the ex-

plained variance is measured by the β values of the

constructed prediction models. A high absolute β value

is interpreted to indicate that a high portion of the vari-

ance in the quality measure is explained by this com-

ponent. It is worth noting that a predictor may not

be significant on its own, yet when combined into the

prediction model it becomes significant and contributes

substantially to model correlation. When performing

step-wise regression one should use the Adjusted R2

measure which is adjusted to account for the minus-

cule increase in R2 caused by simply adding additional

predictors to the model.

5 Putting predictors into action

Having introduced predictors, their formal model, clas-

sification, and several examples of each type, we now

show, through three different examples, the benefit po-

tential in their usage. Section 5.1 introduces an analy-

sis of schema matchers using entry predictors. We show

how attribute predictors can be used to improve match-

ing effectiveness in Section 5.2. Finally, in Section 5.3

we show a case study of deep Web source ranking using

multiple predictors.

5.1 Analyziung Second-line Matchers

Entry predictors provide a unique value for each sim-

ilarity vector element (or similarity matrix entry). For

well correlated predictors, this value can be used as an

indication of the quality of this entry. We observe that

the plethora of second-line matchers designed to-date

operate on these indications. Those matchers which are

designed as decision makers are required to analyze an

entry and decide whether to include it in the final result

as a correct correspondence. Previously, when evaluat-

ing a new second-line matcher, designers had to make-

do with compiling experiment results and comparing

precision and recall results of the proposed matcher

against other matchers. Little insight was available into

the mechanism in which the decision maker chooses

matches.

To illustrate the benefit of using predictors to gain

insights into second-line matching, consider the Dom-

inants property, described in Section 4.2.1. The domi-

nants property was previously used as a decision maker

(e.g., [45,16]) by simply selecting those entries that

demonstrate this property for the final result. To bet-

ter understand the dominants property we examined

the distribution of the NV entry predictor values (see

Section 4.3.3) for true matches, i.e., where the exact

match vector element value is 1.0, versus non-matches.

Recall that the NV predictor gives the normed value

of an entry with respect to its surrounding vector (row

and column of the entry). Thus, for a fully dominant

entry the normed value is 1.

Fig. 3: Entry Predictor Distribution on Matches

Figure 3 presents the distribution of true matches

and non-matches with respect to the predicted values

for 32,000 entries from eight similarity vectors. For a
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complete description of our empirical setup, see Sec-

tion 7. Since the dominants property requires a value

to fully dominate its row and column entries, it identi-

fies correctly only about 25% of the true matches (and

none of the non-matches). Moreover, Figure 3 highlights

the observation that high values (indicating high, al-

though not absolute, dominance) also indicate correct

correspondences. Therefore, the use of dominants in its

strictest form works well towards precision but does

poorly on recall. A more judicial use of the dominants

property could be to select those pairs with dominance

of over 0.9, accounting for almost 60% of the correct

matches. Thus, our analysis of entry predictors leads

to better strategies in second-line matching, namely:

choosing pairs with 90% dominance rather than 100%

dominance.

5.2 Improving Match Effectiveness

Schema 1 Schema 2

First Name: * First Name:

Last Name: * Last Name:

Gender: * Gender:

What are your favourite
Hobbies...

List the causes...

Requested Password: * Password:

Password Confirma-
tion:

* Retype Password:

Yes I agree to the terms

REGISTER Sign Up Now

Table 4: Exact Match Example

Table 4 lists some terms from an exact match be-

tween two schemata, extracted from Web forms in the

forums domain. For the majority of cases, a simple term

matcher suffices to identify the correct correspondences

with relative ease. Therefore, such a matcher is ex-

pected to score high with matrix predictors. However,

for attribute pairs such as (Yes, I Agree to the terms)
and (REGISTER, Sign Up Now), a term matcher would

have no insight while a data type matcher would cor-

rectly identify that both attributes in the first pair are

check mark controls and in the second pair command

buttons.

Table 5 illustrates the outcome of comparing the

REGISTER attribute with all other attributes in the sec-

ond schema for both a term and data type matchers.

In such scenarios, it would be best to use attribute pre-

dictors, leading to more emphasis on the Data Type

matcher vector for these two attribute pairs.

Attribute 1 Attribute 2 Term Data-type

REGISTER * First Name: 0 0
REGISTER * Last Name: 0 0
REGISTER * Gender: 0.1 0
REGISTER List the causes... 0.01 0
REGISTER * Password: 0 0
REGISTER * Retype Password: 0.01 0
REGISTER I agree to... 0.01 0
REGISTER Sign Up Now 0 1

Table 5: Correspondence vectors

Section 7.1 provides an empirical support to the ex-

ample shown above, demonstrating the superiority of

attribute level prediction over matrix level prediction.

5.3 Data-source Lookup

To illustrate the use of multiple vectors in predictors

we show a method where several prediction methods

are combined to improve performance. The strategy,

named mult, seeks to exploit the notion of unique do-

main expressions as an indicator for relevance. In the

field of Information Retrieval, it is a common practice

to place higher emphasis on those terms that are unique

to a document with respect to the document corpus us-

ing measures such as TF/IDF in which the weight of a

term is reduced if the term is abundant in other doc-

uments and thus rare terms have a higher impact in

document comparisons. Applying a similar approach to

data-source lookup requires quantification of the rela-

tive rarity of attributes in the schema corpus. We do so

by using attribute predictors.

In the proposed method, prediction values are com-

bined using a linear transformation of the similarity

space, such that dimensions of attributes covered by

many schemas are de-emphasized. This process is fol-

lowed by applying a matrix prediction using the new

dimensions to rank the candidate schemata by descend-

ing predicted quality of their similarity vectors with the

target schema.

Algorithm 1 provides details of the mult method.

Similarity vectors are first generated by matching target

schema S0 with each of the candidate schemata, using

a Match operator (lines 3-5).

In lines 6-10, an attribute-schema prediction matrix

is constructed by predicting the precision of each can-

didate schema Sj with respect to each attribute Ai in

the target schema (using APredictPrecision). Predic-

tion is done using an attribute predictor model tuned

on precision. To illustrate this step, consider Table 1(a)

of Example 1, taking S0 to be the target schema and

S1 to be a candidate schema together with four other
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Algorithm 1 mult

1: Input: S0: target schema ; (S1, S2, . . . , Sm): candidate
schemata

2: Output:
(
S(1), S(2), . . . , S(m)

)
: ranked list of candidate

schemata
3: for j = 1→ m do . Match schemata
4: vj ←Match (S0, Sj)
5: end for
6: for i = 1→ n do . Attribute prediction
7: for j = 1→ m do

8: pij ← APredictPrecision
(
Ai,v

Ai
j

)
9: end for

10: end for
11: for i = 1→ n do . Compute reduction factor

12: wi ←
m∑

j=1

pij

13: end for
14: for i = 1→ n do . Normalize weights

15: wi ←
wi −min (w)

max (w)−min (w)
16: end for
17: for j = 1→ m do . Transform and predict
18: for i = 1→ n do

19: v̄
Ai
j ← v

Ai
j · wi

20: pSj ←MPredictPrecision (v̄1, . . . , v̄m)
21: end for

22: end for
23: return

(
S(1), S(2), . . . , S(m)

)
← Rank ({S1, . . . , Sm},pS)

schemata (not shown here). Assume, for sake of simplic-

ity, the use of MaxA as the attribute predictor (Eq. 14).

Follows this step of the algorithm, each column in Table

1(a) is reduced to an entry in the S1 column of Table 6.

Target attribute S1 S2 S3 S4 S5

cardNum 0.84 0.83 0.72 0.11 0.13
city 1.00 0.82 0.89 0.68 0.82
arrivalDay 0.35 0.14 0.15 0.73 0.21
checkInTime 0.64 0.23 0.34 0.46 0.13

Table 6: Attribute-schema prediction matrix example

Normalized dimensional reduction weights are gen-

erated in lines 11-16 by taking the L1 (Taxicab) norm of

each row as a reduction factor for the corresponding tar-

get attribute. For example, in Table 6 city weights are

reduced to a great magnitude since all schemata cover

it well, resulting in greater relevant importance to at-

tributes such as arrivalDay and checkInTime, which are

more representative of the hotel search domain. There-

fore, the weight of city values will be reduced to zero

while arrivalDay, with the lowest L1 norm, will retain

the weight of 1. Similarly, cardNum will be reduced

by .397 while checkInTime remain relatively unchanged

with a weight of .874. Table 7 represents the weighted

version of Table 1(a) in which each entry is multiplied

by the target term weight.

S0 −→ 1 cardNum 2 city 3 arrivalDay 4 checkIn
Time

↓ S1

1 clientNum 0.33 0.0 0.32 0.26
2 city 0.12 0.0 0.33 0.26
3 checkInDate 0.13 0.0 0.35 0.56

Table 7: Weighted Similarity Matrix

Finally, in lines 17 to 23, each similarity vector is

transformed using the new weights and a matrix pre-

dictor model is used to rank the new vectors and return

an ordered set of candidate schemas. The de-emphasis

of city and cardNum makes S1 and S4 the highest ranked

candidate schemas due to their strong coverage of ar-
rivalDay and checkInTime.

The mult method is put into use in Section 7.4,

where we experiment with it to rank Web-form schemata

using various ranking strategies.

6 Empirical Evaluation Method

In this section we present our empirical evaluation

method. The setup of our experiments and the mea-

sures used are detailed in Section 6.1. The evaluation

methodology is discussed in Section 6.2. Section 7 is

devoted to the experiment results and analysis.

6.1 Experimental setup

Evaluations were conducted on an Intel(R) Core(TM)2

Quad CPU Q8200 @ 2.33GHz. An experiment system

was coded in Java, JDK version 1.6.0. JVM was initi-

ated with 2.00GB heap-memory.

We used three datasets with very different char-

acteristics to facilitate the evaluation of robustness.

All datasets are available for download.3 Webform is

a dataset containing 247 schemata, automatically ex-

tracted from Web forms using the OntoBuilder extrac-

tor. Each schema was classified to one of 21 domains

(Table 8). There are 60,762 possible schema pairs, out

of which an exact match was defined manually for 149

pairs. Web forms are small, with 10-30 attributes each

and an overwhelming majority of 1 : 1 correspondences.

The P.O. (Purchase order) dataset was introduced

by Madhavan et. al. [26] and extended by our group.

The dataset contains 12 XML documents describing

3 https://bitbucket.org/tomers77/ontobuilder-research-
environment/downloads/datasets.zip
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DomainID DomainName Web-Forms

1 Aviation 13
2 Betting 12
3 Book Shops 6
4 Car Rental 14
5 Complaint Form 12
6 Cosmetics 4
7 Date Matching 24
8 Forums 16
9 Fan Clubs 12
10 Hotel Search 10
11 Hotels 30
12 Job Find 5
13 Magazine Subscription 19
14 Moving 2
15 News 7
16 Search Engines 5
17 Shoe Stores 12
18 Ticket Stores 2
19 Vacation Time-Sharing 2
20 Web-Mail 24
21 Finance 16

Table 8: Web-form domains

purchase orders extracted from various systems and

matched into pairs. Schemas are medium scaled with

50-400 attributes each. Some attributes have a 1 : n

match.

The Univ. (University) dataset contains 15 univer-

sity application forms from various US universities,

collected as part of the NisB project4 and converted

to XSD. Schemas are medium scaled with 50-150 at-

tributes each. 180 exact correspondences were identified

manually overall. Cases of n : m matching are frequent

in this dataset.

We used a variety of matching algorithms from two

matching systems, namely AMC and OntoBuilder, as

follows. Auto Mapping Core (AMC) [35] is an SAP

schema matching research prototype. Its matchers are

designed to explore various features and dependencies

that exist in business schemata. We used the following

AMC matchers in the evaluations: NAME, TOKEN-

PATH, DATA-TYPE, PATH and SIBLING. Onto-

Builder is a research prototype, developed for match-

ing schemata that represent deep Web data. The fol-

lowing OntoBuilder first-line matchers were used in the

evaluation (for a detailed description, see [16]): Term,

Value, Composition (Graph), Precedence, and Similar-

ity Flooding (a re-implementation of the algorithm pre-

sented in [31]). The decision makers used for all match-

ers are Stable Marriage(SM),Threshold(t) which sim-

ply chooses all vector elements such that vij ≥ t; and

MaxDelta(δ) which takes for each row / column at-

4 http://www.nisb-project.eu/

tributes which are within δ of the max value in that

row / column.

6.2 Evaluation Methodology

Evaluating evaluation measures poses a unique chal-

lenge. Instead of comparing the outcome of a matcher

to some exact match (using precision and recall for ex-

ample), predictors need to be evaluated on the quality

of their, well, prediction. In order to evaluate the use-

fulness of our proposed predictors we require statistical

measures which were explained in detail in Section ??.

Also, to ensure validity, evaluation is done using unbi-

ased instance selection protocols as described herein.

6.2.1 Quality Measures

Whenever predictors are used to improve results of

schema matching, they are evaluated using match qual-

ity measures. When matching two schemata we use pre-

cision (P ) and recall (R) with the Harmonic F-Measure

(F1) as a combined schema-pair measure. Extending

such measures to varying levels of granularity requires

careful analysis.

To evaluate an attribute predictor (defined in Sec-

tion 4.3.2) we require a quality measure for a sub-space

defined over a single similarity matrix row. Using the

vector space representation of these measures (Eqs. 3

and 4) makes this extension trivial by limiting the re-

sult vector v and the exact match vector ve to those

dimensions corresponding with the required attribute.

Taking the same approach towards entry level pre-

dictors proves to be problematic. When reducing the

vector ve to a single dimension and using Eq. 4, vector-

based Recall is reduced to one (1.0) if the entry is true

and ∞ (division by 0) if the entry is false. Even if false

entry prediction value is set to some arbitrary value,

these results hamper regression methods by introduc-

ing non-smooth variables. To overcome this limitation

we propose to evaluate entry predictors by classifying

each entry into one of the four set-comparison options:

True Positive (TP) if both match result and exact

match are true.

False Positive (FP) if match result is true and exact

match is false.

True Negative (TN) If both match result and exact

match are false.

False Negative (FN) If match result is false and exact

match is true.

Distribution of prediction values in each of these

categories can then be compared. We demonstrate both
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visual comparison and statistical analysis of distribu-

tion parameters (mean and standard deviation) in Sec-

tion 7.1.

(a) Macro vs. micro averaging, part I

Pair v·ve ‖v‖ ‖ve‖ P R

1 5 10 6 0.50 0.83
2 25 50 60 0.50 0.42
3 2 2 3 1.00 0.67

Average 0.67 0.64
Median 0.50 0.67
µAvg 0.52 0.46

(b) Macro vs. micro averaging, part II

Pair v·ve ‖v‖ ‖ve‖ P R

1 5 10 6 0.50 0.83
2 26 50 60 0.52 0.43
3 1 2 3 0.50 0.33

Average 0.51 0.53
Median 0.50 0.43
µAvg 0.52 0.46

Table 9: Macro vs. micro averaging

Aggregation of match quality results over multiple

experiments should also be done with care. Using a sim-

ple average over P , R, and F1 is sensitive to outliers.

Replacing average values with median values deal with

outliers better but is still considered macro-averaging,

giving an equal weight to each schema pair and thus

rendering it sensitive to differences in pair properties.

To demonstrate the drawbacks of macro-averaging, con-

sider Table 9. Each of the two tables contains the out-

come of a match experiment where a matcher configu-

ration is run on three pairs. Each pair is represented

by a row in the table. For each pair, P and R are

calculated using their constituent vector components.

Careful comparison of the results reveals that the per-

formance of the two configurations is identical on the

first pair and differs by one match on the second and

third pair. Macro-averaging measures (average and me-

dian in this example) are highly skewed towards the

smaller schema pair. This is highlighted by this exam-

ple as the loss of one match in the smaller pair by the

second configuration is heavily penalized both in terms

of P and R by averaging and for R only when using

median. This loss is not compensated by the gain of a

match in the larger schema pair.

Micro-averaging measures give equal weight to each

attribute pair. In Table 9, micro-averaged P and R are

calculated over the sum of the vector components and

the result is presented in the µAvg row. As far as the

micro-averaged measures are concerned, the loss of one

match in the third pair is exactly offset by the gain

of another match in the second pair. However, micro-

averaging is thus skewed towards larger schema pairs

that dominate the result of a collection.

Given the biases in micro- and macro-averaging, in

our ensemble experiments we chose to employ ranking

as a method to report on the relative quality of each

method with respect to all other methods in the exper-

iment. Ranking prevents biases towards larger schemata

to which macro-averaging is sensitive and still gives

each pair an equal weight, unlike micro-averaging. Rank-

ing is, therefore, preferred for comparing methods over

diverse pairs from several datasets.

Data source discovery experiments require different

quality measures. In these experiments, schemata are

retrieved from a collection and judged for relevance.

Though it may be argued that relevance is not a bi-

nary property, for the sake of simplicity we use bi-

nary relevance and can therefore employ standard rel-

evance quality metrics, originating from the field of In-

formation Retrieval. The first family of metrics is Pre-

cision@K (P@K) (with K = 1, 5, 10). P@K is used to

judge a single experiment, in which a ranked list of can-

didate schemas is presented for a given target schema.

For candidate schema Si, let I (Si) be an indicator such

that I (Si) equals 1 iff Si is relevant and 0 otherwise,

then:

P@K =

∑
i

I (Si)

K
(18)

While P@K is simple to calculate and understand, it is

often criticized for being limited by the arbitrary selec-

tion of K. Furthermore, when comparing several experi-

ments, an underlying assumption is that the proportion
of relevant and irrelevant examples is maintained the

same over all experiments. Since in our case, propor-

tions vary (between 0.015 and 0.12), we report results

using the R-Precision (R-Pr) measure as well. R-Pr

judges an experiment by setting the parameter K in

Eq. 18 to be the number of relevant samples in the col-

lection. R-Pr values are often lower than P@K values

as the number of relevant samples is often higher than

typical K choices.

7 Evaluation Results

Following our characterization of desired predictor prop-

erties we evaluate the empirical properties (correlation

and robustness) of the predictors and prediction models

presented in Section 4 and the practical applications of

prediction presented in Section 5.

In Section 7.1 we evaluate the correlations between

the proposed matrix and attribute-level predictors and
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various quality measures. All predictors were found to

be significantly correlated with both precision and re-

call yet attribute level predictors were better corre-

lated with their quality measures than matrix predic-

tors. Correlation tests are accompanied by significance

tests on various datasets and matching algorithms to

evaluate robustness. Section 7.2 evaluates prediction

models, our proposed solution to tunability, by evaluat-

ing their correlation with different qualities. Prediction

models are shown to be superior to individual predic-

tors both by virtue of their ability to be tuned towards

different quality measures and by presenting improved

correlation with these measures. The rest of the sec-

tion evaluates the three usage examples for prediction

detailed in Section 5: Entry predictors are shown to

be useful in improving match selection of in Section

7.3. Relevant data sources are shown to be accurately

ranked using attribute and matrix predictors in Section

7.4. Finally, in Section 7.5 attribute predictors are used

for ensemble construction and the approach is shown

to outperform the state-of-the-art technique that uses

matrix predictors.

7.1 Correlation and Robustness

In this section we evaluate the correlation and robust-

ness of matrix and attribute-level predictors. Matrix-

level correlation experiments were conducted on 810

similarity vectors. 270 vectors were generated by ap-

plying nine first-line matchers from both AMC and On-

toBuilder on 30 schema pairs randomly selected from

the three datasets. On each vector, matrix predictors

(described in Section 4.3.1) of which three are ideal-

izers and four are internalizers were applied. Vectors

were then selected using one of three second-line match-

ers (Threshold(0.5), MaxDelta(0) and MaxDelta(0.05))

generating binary vectors on which P and R were cal-

culated.

Table 10 summarizes correlation results between

matrix predictors and quality measures. With respect

to P , all predictor correlations, excluding LMM and

Max, were significant (p < .001), meaning that the cor-

relation observed is with high probability a real phe-

nomenon rather than random noise. Recall that, ac-

cording to Cohen [7], correlation values over .01 repre-

sent a small effect, over .09 a medium effect and over

.25 a large effect. Predictors best correlated with P are

(in descending order): DOM, BMM, AvgM, BMC, and

STDEV. The negative correlation between STDEV and

P means that increased values of STDEV predict lower

quality in terms of P . While correlation values are low,

they are significant over a large and diverse dataset.

We improve on these results using prediction models

Predictor Measure P R

BMC R2 .039 .054
sig. .000 .000

BMM R2 .049 .065
sig. .000 .000

LMM R2 .000 .222
sig. .925 .000

STDEV R2 -.037 .322
sig. .000 .000

AvgM R2 .043 .080
sig. .000 .000

Max R2 -.002 .238
sig. .220 .000

DOM R2 .126 .083
sig. .000 .000

Table 10: Matrix predictor correlation (N=810)

in the following section. As for R, all predictor corre-

lations are found significant. Correlations are substan-

tially higher, with STDEV, Max, and LMM presenting

correlation values over .2 and DOM, AvgM, BMM, and

BMC presenting values around .05. The fact that some

predictors are well correlated with P , while others with

R is encouraging in the context of prediction models, as

it allows us to construct models that are tuned towards

different quality measures.

To further understand the relationships among pre-

dictors, we performed inter-correlation analysis. Pre-

dictors that are highly correlated may be redundant,

while low correlation between predictors may be used

to identify predictors that base their prediction on dif-

ferent phenomena in the data.

Results are presented in Table 11. Recall that signif-

icance values of less than .01 are desirable, showing the

correlation values are significant. The strong correla-

tion between BMC, BMM, and LMM is to be expected

as they are consecutive refinements of the same princi-

ples. The weak correlation between DOM and all other

predictors is encouraging as it indicates that it may be

combined successfully with other predictors to create

an improved prediction model. In general, internalizers

seem to be weakly correlated with idealizers, which is,

again, encouraging. The large number of significant cor-

relations (significance of less than 0.01) is an expected

result and can be traced to their common correlation

with the quality measures.

A similar protocol to the one described above was

followed for attribute predictors. Table 12 summarizes

correlation results for attribute predictors over 7708 at-

tribute vectors from five schema pairs matched using

four different matchers from OntoBuilder and AMC.

All predictors were significant (p < .05). Results show

that all predictors correlate well with the quality mea-

sures. 1T1 is the best matcher to correlate with P while
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Predictor Measure BMC BMM LMM STDEV AvgConf Max DOM

BMC R2 1 .692 .447 .137 .446 .107 .048
sig. .000 .000 .000 .000 .000 .000

BMM R2 .692 1 .656 .186 .606 .217 .119
sig. .000 .000 .000 .000 .000 .000

LMM R2 .447 .656 1 .400 .398 .452 .133
sig. .000 .000 .000 .000 .000 .000

STDEV R2 .137 .186 .400 1 .388 .537 .000
sig. .000 .000 .000 .000 .000 .621

AvgM R2 .446 .606 .398 .388 1 .288 .017
sig. .000 .000 .000 .000 .000 .000

Max R2 .107 .217 .452 .537 .288 1 .144
sig. .000 .000 .000 .000 .000 .000

DOM R2 .048 .119 .133 .000 .017 .144 1
sig. .000 .000 .000 .621 .000 .000

Table 11: Matrix predictor inter-correlation (N=810)

Predictor Result P R

1T1 R2 .32 .14
BNA R2 .21 .45
AVG R2 -.08 .20
MAX R2 .20 .51
STDEV R2 .24 .34
CoVar R2 .15 -.04

Table 12: Attribute predictor correlation (N=7708)

MAX is the best matcher to correlate with R. We note

that AV G has negative correlation with P and positive

correlation with R. Inter-correlation results (omitted

for brevity) are similar and indicate that idealizers are

distinctly different from internalizers.

7.2 Tunability using Prediction Models

We now present an evaluation of the prediction model

construction method, presented in Section 4.4. To mea-

sure robustness of predictors over dataset types, step-

wise regression was initialized with a dummy variable

indicating dataset type (-1 for small web forms, +1 for

large XML-Schema datasets: purchase-order and uni-

versity). We then added, one by one, predictors in a

decreasing order of explained variance (R2) and remove

predictors rendered insignificant or non-contributing by

the addition of a predictor. At each step, the model’s

Adjusted R2 and significance are measured. Table 13

presents the R matrix-level prediction model evolution,

step by step. The effect size of adding (or removing)

each predictor is measured using Cohen’s f2 [7] which

measures the incremental effect of adding a predictor

in multiple regression. An accepted convention is that

effect sizes of 0.02, 0.15, and 0.35 are considered small,

medium, and large, respectively.

Step Added Removed Adj. R2 f2 (Effect Size)

1 DS .038 0.04
2 STDEV .342 0.46
3 DOM .409 0.11
4 AvgM .424 0.03
5 LMM .434 0.02
6 BMM .444 0.02
7 AvgM .444 0.00
8 Max .447 0.01

Table 13: R matrix-predictor model construction

Examining results of the step-wise regression leads

to several conclusions. The small effect size of the dataset

(DS) dummy variable and the large effect size of the

predictor entered directly after it, lead to the conclu-

sion that the correlation of the prediction model is ro-

bust with respect to dataset type, since the contribu-

tion of the schema size to explaining the variability

in the results is small (0.04). Similar results were ob-

tained when controlling for matching system and dur-

ing the construction of the P prediction model. The two

major contributors to prediction model correlation are

STDEV and DOM, which is expected due to the large

individual correlations. The addition of BMM caused

AvgM to become insignificant in the model, this is due

to the substantial inter-correlation between these two

variables. The minuscule effect size of adding Max al-

lows us to settle for the model after step 7 as our final

model.

The weight of each predictor within the model is

illustrated in Figure 4. The composition of the con-

structed matrix-level prediction models for both P and

R is given in Figure 4(a) and Figure 4(b), respectively.

Though it may seem that STDEV has the same role

in both models, it should be noted that in the preci-

sion model its weight is with a negative sign (increased

STDEV values predict decreased P values and increased
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(a) P Prediction Model

(b) R Prediction Model

Fig. 4: Matrix-Prediction Model Composition

R values). It is worth noting that the individual per-

formance of each of the predictors is not the only mea-

sure when determining the prediction ability within a

prediction model. Therefore, even though LMM has an

insignificant individual correlation with P , it still con-

tributes substantially to the P prediction model. This

phenomenon indicates that LMM contributes to refine

the predictions made by the other predictors, by sep-

arating those cases in which the combined score is the

same but P still differs. Thus, using prediction mod-

els allows us to tune our prediction separately towards

different quality measures.

Granularity Measure Model R2 Best Predictor R2

Matrix R 0.44 0.32
Matrix P 0.35 0.13
Attribute R 0.67 0.51
Attribute P 0.47 0.32

Table 14: Prediction Models R2

Combining the various predictors using prediction

models can also be used to boost prediction ability. Ta-

ble 14 presents the correlation (labeled Model R2) of

the different granularity level prediction models show-

ing a significant improvement over best individual pre-

dictor correlation (rightmost column). Here, as in the

individual predictor correlations, it is obvious that attribute-

level predictor models are better correlated with the

predicted quality than matrix-level predictors and that

R models are better correlated than P models. Figure 5

provides a visualization of prediction model correlation

for the matrix-level R prediction model. It shows a clear

correlation, where increased R prediction (X-axis) is ac-

companied by an increased R value (Y-axis). We can

conclude that prediction models correlate well with the

measure that they intend to predict. Their correlation

is much higher than that of individual matchers and

taking into account the large amount of schema-pairs

used (810 and 7708 for matrix and attribute predictors

respectively), represent a high degree of correlation.

Fig. 5: R Model Correlation

7.3 Schema Matching Design Application: Entry

Predictors

In this section, the usage of entry-level predictors as

a basis for second-line matchers is evaluated. As ex-

plained in Section 5.1, the correlation between entry

predictors and quality measures can be exploited to

perform entry level tasks such as match selection.

Correlation of entry predictors is examined via a

comparison of predictor value distribution over the four

set-inclusion categories (True Positive (TP), False Posi-

tive (FP), True Negative (TN) and False Negative (FN)).
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A well correlated entry predictor should exhibit higher

values for TP versus FP and for FN versus TN. The dif-

ference in distributions allows schema matching tasks

to perform better in match selection. To examine cor-

relation, four schema pairs (two from the Web-Form

dataset and two from the Purchase Order dataset) where

matched using four first-line matchers: Term and Prece-

dence from the Ontobuilder matching system, and TO-

KENPATH and SIBLING from the AMC matching sys-

tem. Each entry of the 16 vectors was given a prediction

score using all entry predictors. Subsequently, each vec-

tor was fed into a decision-maker second-line matcher

and the result compared to the exact match vector to

allow each entry to be assigned to one of the four set-

inclusion categories. The process described generated

106,700 examples for which the distribution of predic-

tion values could be compared across set inclusion cat-

egories.

To illustrate the notion of distribution comparison,

consider figures 6 and 7, comparing the distribution

of three entry predictors described in Section 4.3.3,

namely Normed Value (NV), Ranked Value (RV), and

Value (Val) over two pairs of set-inclusion categories:

TP versus FP in Figure 6 and TN versus FN in Figure

7.

The difference in distributions between categories

can be exploited to improve matching results. For ex-

ample, to improve P in the system examined here we

can filter out positive results by removing those with

a normed value of 0.9 or less. The gain in P should

be substantial with only a minor loss of R. Similarly,

improving R can be achieved by adding results with a

value higher than 0.6 or a normed value of over 0.8.

These distributions remain stable when adding and re-

moving pairs from different datasets, suggesting that

the behavior is inherent in the matchers used in this

case. To evaluate which predictors present better cor-

relation we use a two-tailed t-test between the means

of TP and FP and between the means of TN and FN.

Recall that a lower t-test significance value (sig.) indi-

cates a lower probability that the difference in means

emanates from random noise, and therefore represents

a higher significance of the result.

Reviewing the results in Table 15(a), all predictors,

excluding DSM, present significance over 99%. While

DBN, DLA and Val have bigger differences in means,

the larger standard deviation indicates a substantial

overlap between the distributions. Following this line

of thought makes NV a preferred candidate with a sub-

stantial part of the distribution non-overlapping. Re-

sults for the negative categories (Table 15(b)) are sim-

ilar with DSM the only non-significant predictor and

NV showing the best separation.

(a) Positive Categories

Predictor Cat. Mean Std. Deviation sig.

DBN TP .397 .403 .000
FP .147 .204

DSM TP 1.000 .001 .588
FP 1.000 .001

DLA TP .672 .389 .000
FP .872 .251

NV TP .992 .033 .001
FP .974 .064

RV TP .999 .005 .000
FP .994 .020

Val TP .604 .143 .010
FP .554 .159

(b) Negative Categories

Predictor Cat. Mean Std. Deviation sig.

DBN TN .039 .026 .000
FN .061 .069

DSM TN .946 .129 .703
FN .943 .137

DLA TN .979 .084 .002
FN .954 .123

NV TN .393 .292 .000
FN .661 .370

RV TN .571 .327 .000
FN .827 .257

Val TN .297 .186 .000
FN .398 .248

Table 15: Predictor Distribution Parameters

7.4 Deep Web Application: Data Source Discovery

In the following experiment we used prediction to as-

sess the relevance of schemata that represent deep Web

data sources. Recall that the Web-Form dataset con-

tains 247 such schemata, separated into 21 domains

(Table 8). Each experiment entailed choosing one such

domain and for each schema in this domain (dubbed

the target schema) perform schema matching with all

other schemata and calculating various predictors. Pre-

dictor results where used to subsequently rank the list

of 246 retrieved schemas by decreasing order of pre-

dicted relevance. Each (candidate) schema in the list

was assigned a binary relevance score, based on whether

the candidate schema was of the same domain as the

target schema. Table 16 provides an example, where the

top-10 predicted matches are assigned with a binary rel-

evance (last column). P@1, P@5, P@10 and R-Pr were

calculated on the results.

Evaluation compared the following prediction strate-

gies:

– R Matrix Prediction Model (RMat): Candi-

date schemata were ranked by a matrix prediction

model. The model was constructed using step-wise

regression targeting R. Regression was performed
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(a) Normed Value (b) Ranked Value (c) Value

Fig. 6: Entry Predictor Distribution on Positive Entries

(a) Normed Value (b) Ranked Value (c) Value

Fig. 7: Entry Predictor Distribution on Negative Entries

Target Target Domain Candidate Prediction Value Candidate Domain Relevant
regman.freeze.com WebMail mail01.mail.com 0.62 WebMail 1
regman.freeze.com WebMail www.postmaster.co.uk 0.60 WebMail 1
regman.freeze.com WebMail fanclub.wd40.com 0.57 FanClubs 0
regman.freeze.com WebMail login.myspace.com 0.56 Forums 0
regman.freeze.com WebMail registration.excite.com 0.54 WebMail 1
regman.freeze.com WebMail www.arabia.com 0.55 WebMail 1
regman.freeze.com WebMail www.bbking.com 0.54 FanClubs 0
regman.freeze.com WebMail www.linuxmail.com 0.54 WebMail 1
regman.freeze.com WebMail auth.ivillage.co.uk 0.54 WebMail 1
regman.freeze.com WebMail wp.eurobet.com 0.50 Betting 0

Table 16: Retrieval example with relevance judgement

over 149 web-form schema pairs for which an exact

match is available (out of 60762 pairs participating

in the experiment).

– P Matrix Prediction Model (PMat): Candidate

schemata were ranked by a prediction model, con-

structed in the same manner, but targeting P rather

than R as in RMat.

– Multi Predictor (mult): For each target schema,

all candidates where matched with result vectors fed

into the multi-predictor method as detailed in Al-

gorithm 1.

– Combined Predictor (Comb): A simple average

of PMat and mult ranks was used, after scaling

mult to match the value distribution of PMat.

– Pmat Top30 Re-Ranked by mult (RR30): Can-

didate schemata were ranked by PMat and the top

30 results where consequently re-ranked by mult.

The strategies detailed above represent an initial

foray into the task of data source ranking and are,

by no means, an exhaustive exploration of all predic-

tion methods or prediction score combination methods.

We defer additional exploration to future work. Due to

the sensitivity of P@K to the amount of relevant doc-

uments, P@K for a given K was calculated only for

domains with at least 1 + 2K schemata.

Strategy Pr@1 Pr@5 Pr@10 R-Pr

RMat .113 .095 .125 .079
PMat .631 .472 .457 .246
Mult .577 .482 .442 .251
Comb .631 .518 .500 0.268

RR30 .626 .511 .538 .260

Table 17: Performance of alternative prediction strate-

gies
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Table 17 presents the results of this set of experi-

ments. Overall strategy results are micro-averaged (each

target schema is equally weighted). While no strategy is

dominant on all measures, Comb and RR30, which com-

bine the P prediction model (PMat) with the multi-

predictor (mult) outperform independent usage of ei-

ther one. The striking failure of RMat is probably due

to the disparity between the quality measure on which

it is tuned and the measures targeted in this applica-

tion.

As a concluding remark we note that a closer exam-

ination of Table 16 reveals some of the limitations of

the relevance assignment method that was employed.

For example, consider myspace.com, assigned to the

Forums domain, and therefore judged as irrelevant

to freeze.com, which is assigned to the Web-Mail do-

main. At the time of the crawl and domain assign-

ment, freeze.com was a Web-portal providing free email

and targeted promotions to this email. Registration to

freeze, as reflected by the extracted schema, contained

details such as “Marital Status”, which may seem ir-

relevant for a Web-mail service but is reasonable for

targeted promotions. This and other similar form fields

cause freeze to seem similar to a social network such as

myspace. It is therefore acknowledged that actual rele-

vance is uncertain to some extent. Therefore, perform-

ing multi-judge non-binary relevance judgments may

prove to be more realistic. In the context of this obser-

vation, P results should be considered as conservative.

7.5 Schema Matching Application: Dynamic Ensemble

Weighting

In this experiment we evaluate the performance of a

prediction model based on attribute predictors to the

dynamic weight setting of matcher ensembles. Recall

that in Section 4.1 we desired predictors to be gener-

alizable to different granularity levels. We exploit this

property of well-designed predictors to provide predic-

tions on single attributes, thus allowing the matching

system to dynamically construct a different matcher en-

semble for each attribute. We have compared the per-

formance of 10 individual matchers with two methods

for dynamic ensemble weight setting on 25 randomly

selected schema pairs from the three datasets. Each en-

semble is combined of the 10 matchers with weights be-

ing set dynamically using the specific weighing scheme.

AWeighted uses a prediction model with attribute pre-

dictors. MWeighted uses DOM, a matrix predictor, to

set weights for the different matchers. MWeighted rep-

resents the current state-of-the-art, as was presented by

Mao et. al. [30].

Matcher WebForm P.O. Univ. Total

AWeighted 2.9 2.3 1.8 2.4

MWeighted 2.4 3.6 3.5 3.1

Term Match 1.6 5.3 3.0 3.3
AMC Name 2.9 3.7 3.3 3.3
AMC Token
Path

4.1 4.0 2.5 3.7

AMC Path 2.7 4.8 6.0 4.2
Precedence 3.0 6.3 4.2 4.5
Graph 4.4 7.2 5.7 5.7
AMC Sibling 5.9 8.9 6.3 7.1
Value Match 6.5 10.7 8.2 8.4
AMC
DataType

7.4 9.7 8.3 8.4

Similarity
Flooding

8.0 10.8 8.2 9.0

Table 18: Average Rank of Matchers on R

Table 18 summarizes the results of the experiment.

For each matcher, the average rank of its R result with

respect to all other matchers on the same schema pair

is calculated. Tie breaking was done using P . Best per-

former results are marked with boldface. AWeighted is

ranked, on average, higher than MWeighted. For the

Web-form dataset, the Term matcher proves to be very

dominant and no combination of matchers can defeat

it.

Matcher WebForm P.O. Univ. Total

AWeighted 9 8 6 23

MWeighted 10 7 5 22

AMC Name 8 7 4 19
Term Match 10 3 5 18
AMC Token
Path

6 5 6 17

Precedence 9 2 4 15
AMC Path 9 4 1 14
Graph 5 0 0 5
AMC Sibling 2 0 1 3
AMC
DataType

1 0 0 1

Value Match 0 0 0 0
Similarity
Flooding

0 0 0 0

Table 19: # of Times Ranked in Top-3

Table 19 reports on the number of times a matcher

was ranked in the top-3 results. AWeighted is best with

23 out of 25 cases ranked at the top-3 best performers.

Combining the results in tables 18 and 19, we conclude

that while individual matchers effectiveness varies over

different datasets, prediction-based ensembles present

superior performance by allowing the matching system

to identify those matchers that perform better on a spe-

cific task. We thus show the robustness of our predic-
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tors as they are able to predict performance on a wide

variety of datasets and matching algorithms. In the ab-

sence of any other a-priori information, AWeighted, us-

ing attribute predictors and thus taking the best of each

matcher, is preferred over MWeighted and any individ-

ual matcher.

8 Related work

Schema and ontology matching research has been go-

ing on for more than 25 years now. With its roots

in database integration, schema matching research has

since expanded to include deep web and XML integra-

tion (e.g. [21,?,?]) and is now widely recognized as a

standalone research field (see surveys [1,40,37,41] and

books [14,16,2]). Over the years, a significant body of

work has been devoted to the identification of match-

ers, aimed at providing correspondences that will be

effective from the user’s point of view. Examples of al-

gorithmic tools include COMA [9], Cupid [27], Onto-

Builder [19], DIXSE [?], Similarity Flooding [31], Clio

[32], Glue [11], and others [3,5,34,23,46,22]. These have

come out of a variety of research communities, including

database management, information retrieval, the infor-

mation sciences, data semantics and the semantic Web,

and others. Benchmarks, such as the OAEI,5 were de-

veloped to assess the effectiveness of matchers.

Over the years, a realization has emerged that

schema matchers are inherently uncertain. A matcher

may consider several possible correspondences as prob-

able, and when it needs to choose, it may choose wrong

[16]. A prime reason for the uncertainty of the matching

process is the enormous ambiguity and heterogeneity of

data description concepts: It is unrealistic to expect a

single matcher to identify the correct mapping for any

possible concept in a set. Since 2003, work on the un-

certainty in schema matching has picked up, along with

research on uncertainty in other areas of data manage-

ment [17,29,12,18,6].

Matcher performance prediction serves as an un-

certainty management tool and is useful in scenarios

requiring uncertainty management, including that of

bootstrapping [39]. We are unaware of any thorough

methodological treatment of prediction in schema match-

ing. However, recent papers show the need for better

tools for prediction and a deeper analysis of the qual-

ities of good predictors. We next review some first at-

tempts to utilize prediction in the schema matching

process.

The application of a-priori evaluation of schema fea-

tures to direct and influence the execution of schema

5 http://oaei.ontologymatching.org/

matching was first suggested by Tu and Yu [44], which

used schema features to select execution strategies. Sim-

ilar work was done by Peukert et. al. [36], using ma-

trix features, calculated on the matching outcome, and

schema features to influence matcher selection.

Our proposed application of prediction to dynami-

cally set ensemble weights should be viewed in the con-

text of ensemble construction. Contemporary ensemble

tools such as LSD [10] and SMB [20] perform off-line

learning of matcher weights in an ensemble. Mao et.

al. [30] presented a method (HADAPT) (also used by

Ngo et. al. [33]) of setting ensemble weights based on

a single measure dubbed harmony (also known in the

literature as dominants [16]). HADAPT dynamically

assigns weights based on the matching outcome of indi-

vidual matchers and their success prediction. However,

this approach lacks methodological analysis of predic-

tion properties. For example, reliance on a single predic-

tion measure that assumes a 1 : 1 matching, as done by

HADAPT, limits the usefulness of the approach. The

use of prediction models (Section 4.4), which combine

the input from several predictors, allows a more flexi-

ble treatment of a schema matching problem instance.

Also, prediction models allows the prediction of differ-

ent qualities for different needs.

Both Mao et. al. and Peukert et. al. calculate pre-

diction over a complete similarity matrix. This intro-

duces an implicit assumption into matcher result eval-

uation. By assigning a single score to the matcher re-

sult, HADAPT implicitly assumes that poor results on

some of the schema attributes mandate poor results for

all attributes. In this work we hypothesize that some

matchers may work well on some parts of the schema

and others may work well on other parts. This hypothe-

sis is validated empirically both by superior correlation

of attribute-level predictors over matrix-level predictors

(Section 7.1) and by the success of dynamic ensemble

weight setting based on attribute predictors (Section

7.5). Therefore, by presenting predictors that general-

ize to schema fragments (and in particular to individual

attributes), we allow combining the best results of each

matcher.

This is the first thorough analysis of prediction as a

stand-alone technique in schema matching that we are

aware of. We find that the closest work to date is the one

of Mao et. al. which provide a limited analysis of Har-

mony (which we identify as a predictor) over a mono-

lithic dataset and a small number of schema pairs. This

manuscript provides a general framework in which pre-

dictors may be conceptualized (Section 3), designed and

evaluated (Section 4). Our evaluation of the proposed

predictors (including Harmony, named Dominants in

this manuscript) is extensive over a variety of datasets
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and matching algorithms from disparate matching sys-

tems. We hope this work will serve as an impetus for fu-

ture work to suggest new predictors and refine existing

ones using the conceptual, architectural and empirical

tools we have presented.

9 Conclusions

We have introduced a new schema matching task called

prediction, a subset of the more general evaluation task,

assessing the quality of matching outcome in the ab-

sence of an exact match. We have provided a formal

model for prediction using similarity spaces, shown a

set of desirable properties of predictors, and demon-

strated how to create predictors that satisfy these prop-

erties based on the similarity matrix abstraction. We

have also shown the usage of predictors in three use-

cases: We have shown how entry predictors can be used

to enhance performance of second-line matchers. We

have shown how match effectiveness can be improved

using attribute predictors to dynamically set ensemble

weights and we proposed an effective methodology for

ranking Web sources, as part of a discovery task, using

a combination of attribute and matrix predictors.

The empirical analysis validates the following four

claims: 1) generalization allows attribute predictors to

perform better than state-of-the-art methods in dynam-

ically setting weights for ensembles; 2) predictor mod-

els improve on individual predictors by allowing tuning

towards specific matching qualities and increasing cor-

relation with predicted quality measures; and 3) predic-

tors perform well in ranking the relevance of Web forms.

4) entry predictors can be used to improve match se-

lection of second-line matchers.

This work is just a first step in analyzing predictors

and their properties. Much of this work can serve as a

guideline for the future development of different predic-

tors of all granularity levels. In terms of future work, we

intend on identifying new predictors, especially K > 1

predictors that were not examined in this work. Us-

ing the categorization of evaluators, presented in Sec-

tion 3.2, the cases of K = 2 and K > 2 use more than

one similarity vector defined over the same similarity

space VS . Looking back at Figure 2, prediction based

on multiple vectors is illustrated at the right-hand-side

of the figure, where multiple similarity matrices of the

same schema pair are used for the prediction. K = 2

provides the opportunity to predict the degree of simi-

larity between similarity vectors or the amount of infor-

mation gain one vector represents over the other. A col-

lection of similarity vectors (K > 2) may be evaluated

to predict cluster related properties such as silhouette.

An additional direction of future research involves

the investigation of the choice of distance measures and

selection methods in idealizers and extending the simi-

larity space into multi-schema matching scenarios.
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