
Ontology matching based on Probabilistic Description Logic∗

∗ This work is supported by National Natural Science Foundation of China (No. 60473052) and Zhejiang Provincial
Natural Science Foundation of China (No.Y106427)

ZhiMing Li
College of Computer Science

Zhejiang University
Hangzhou, P.R.China 310027

zeiming@126.com

Shanping Li
College of Computer Science

Zhejiang University
Hangzhou, P.R.China 310027

shan@cs.zju.edu.cn

Zhiyu Peng
College of Computer Science

Zhejiang University
Hangzhou, P.R.China 310027

pzy202@163.com

Abstract: - A lot of attention has been devoted to probabilistic methods for discovering semantic mappings
between ontologies. Despite impressive theory foundation, these methods usually require massive data instances
to learn the mappings, which are not always available in practice. In this paper we present the Probabilistic
Description Logic based Ontology Matcher (PDLOM) for discovering such mappings using the inference
service provided by Probabilistic Description Logic (P-CLASSIC), which allows for computing the probability
of a concept description in an ontology. Unlike other probability based approaches, PDLOM only needs a
probability distribution over primitive concepts instead of massive data instances of all concepts in the
ontologies. We propose to exploit a search engine to get the probability distribution required by Probabilistic
Description Logic. We evaluate our algorithm and compare against the schema matching tool COMA++.
PDLOM shows an average improvement of 6% in quality over COMA++.

Key-Words: - Ontology matching, Probabilistic Description Logic, Bayesian networks, Search engine, Page
count

1 Introduction
Ontologies play a crucial role in the emerging
Semantic Web. However, there always exist multiple
ontologies for overlapped domains and even for the
same domain due to the decentralized nature of the
Web. Therefore, ontology matching, or ontology
alignment, is necessary to establish interoperation
between Web applications using different ontologies.
Informally, the ontology matching problem can be
stated as: given two ontologies O1 and O2, determine
correspondences between entities (classes, properties,
and individuals) in the two ontologies.

Many diverse solutions to the matching problem
have been proposed so far [13]. Among them
methods based on probability become prevalent in
concept mapping between two ontologies. Semantic
similarities between concepts are difficult to be
represented logically, but can easily be represented
probabilistically. This has motivated development of
ontology mapping taking probabilistic approaches
(HICAL [5], GLUE [3], oPLMap [11]). However,
these approaches need massive data instances of the
ontologies to learn the mappings. But unfortunately,
sometimes the ontologies do not come along with
that many data instances. This makes all these
approaches not always applicable.

This paper proposes a new approach called
Probabilistic Description Logic based Ontology

Matcher (PDLOM), for automatically discovering
the mappings among ontologies. Our approach is
based on Probabilistic Description Logic
(P-CLASSIC) [7]. Using Probabilistic Description
Logic bears some nice features: First, in many cases
mappings are not absolutely correct, but hold only
with a certain probability. Like other probability
based approach, defining mappings by means of
probabilistic rules is a natural solution to this
problem. Second, Probabilistic Description Logic
provide inference services to compute the probability
P(C) of a concept description C, which defines the
probability of instances in the domain belong to the
concept C, from the probability distribution over
primitive concepts. Unlike other probability based
approaches, it does not require massive data
instances of all the concepts in the ontologies but
only a probability distribution over the primitive
concepts.

The contributions of this paper are as follows:
1. We first propose to employ the inference

service of Probabilistic Description Logic to compute
the semantic similarity between concepts from
different ontologies.

2. We propose to exploit a search engine to
extend the ontologies with p-classes defined in
Probabilistic Description Logic.

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 122 ISSN: 1790-5117

The paper is structured as follows: The next
section briefly introduces the basic definitions of
Probabilistic Description Logics and explanations of
the reasoning mechanisms. Section 3 presents a
theoretically founded approach for finding these
mappings, where the inference service of
Probabilistic Description Logics is employed. In
section 4, we report on some preliminary
experimental evaluation of the approach proposed in
this paper and summarize the results.

2 Background
Description Logics (DLs) are a family of class
(concept) based knowledge representation
formalisms. Modern ontology languages, such as
OWL [12], are based on description logics and, to a
certain extent, are syntactic variants thereof. In
particular, OWL DL corresponds to SHOIN [13]. In
this paper, we assume an ontology O based on a
description logic L to be a set of axioms in L.

For exposition, suppose we have got the two
ontologies in Table 1. We divide the concepts
occurring in ontologies into two sets, the name
symbols that occur on the left-hand side of some
axiom and the base symbols that occur only on the
right-hand side of axioms. Name symbols are often
called defined concepts and base symbols primitive
concepts. For example, Man, Rich and Old are
primitive concepts in O1.

Table 1: Two example ontologies
O1 RichOldMan ≡ Man∩Rich∩Old

O2 HappyFather ≡ Father∩Rich
Father ≡ Man∩≥1hasChildren

In classical Description Logics, one has very

restricted means of expressing (and testing for)
relationships between concepts. Given two concepts
C and D, subsumption tells us whether C is contained
in D, and the satisfiability test (applied to C∩D) tells
us whether C and D are disjoint. Relationships that
are in-between (e.g., 90% of all Cs are Ds) can
neither be expressed nor be derived. As for the two
ontologies in Table 1, RichOldMan in O1 and
HappyFather in O2 are not equivalent, but there are
chances that an instance of RichOldMan also belongs
to HappyFather.

This deficiency is overcome in Probabilistic
Description Logic [7] by presenting a framework for
the specification of a unique probability distribution
on the set of all concept descriptions. The
probabilistic component of Probabilistic Description
Logic is called p-class (probabilistic class), which
specifies the probability distribution of a certain set
of individuals over primitive concepts and roles. A

p-class is represented using a Bayesian network. In
general the Bayesian network contains a node for
each primitive concept and each role R.

To compute the probability P(C) of a concept
description C, which defines the probability of
individuals in the domain belongs to the concept C,
the basic idea is to use the canonical form of a
description. A canonical form of a description is α∩

βR1∩βR2…∩βRm, where α is a conjunction of
primitive concepts and their negations and of filler
specifications (with no concept or attribute appearing
more than once), andβR is of the form (≥mR) ∩(≤
nR)∩(∀R.C), where C is also in canonical form. For
example, the canonical form of the concept
HappyFather in O2 is Man∩Rich∩≥1hasChildren.

The depth of a description is defined as follows.
The depth ofαis 0. The depth of a concept α∩βR1

∩βR2…∩βRm, is 1 + Max (depth (α), depth (β
R1),…, depth (Rm)). The way of providing a unique
probability distribution on the set of all concept
descriptions is to specify a distribution on concepts of
role-depth 0, and then to specify how to extend a
distribution on concepts of role-depth n to one on
concepts of role-depth n + 1.

So with the specification of the probability
distribution over primitive concepts and roles, the
probability P(C) of a concept description C can then
be computed by using inference algorithms
developed for Bayesian networks. The complexity of
this computation is linear in the length of C. Under
certain restrictions on the Bayesian networks used in
the specification, it is polynomial in the size of that
specification.

3 The PDLOM approach

The matching problem is to find
correspondences between entities in the two
ontologies. We attack the ontology matching
problem by computing similarity coefficients
between concepts of the two ontologies and then
deducing a mapping from those coefficients. The
coefficients, in the [0, 1] range, are calculated in two
phases. The first phase, called linguistic matching,
matches individual concepts based on their names.
The result is a linguistic similarity coefficient, lsim,
between each pair of concepts (see detailed definition
of lsim in section 3.1).

The second phase is the matching of ontologies
based on reasoning about the probability of a concept
description in Probabilistic Description Logics
introduced in last section. The result is a Jaccard
similarity coefficient, jsim, for each pair of concepts
(see detailed definition of jsim in section 3.2).

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 123 ISSN: 1790-5117

The weighted similarity (wsim) is a mean of lsim
and jsim: wsim = w × jsim + (1 - w) × lsim, where the
constant w is in the range 0 to1. A mapping is created
by choosing pairs of ontology concepts with maximal
weighted similarity. The two concepts are considered
matched when the wsim valued exceeds a given
threshold λt (see section 4.1).

In the next sub-sections, we describe the
linguistic and probabilistic matching phases in more
detail.

3.1 Linguistic matching
The first phase of ontology matching is based
primarily on concept names. In the absence of data
instances, such names are probably the most useful
source of information for matching. Linguistic
matching proceeds in two steps: normalization and
comparison.

Normalization considers names as words in
some natural language. It is based on Natural
Language Processing (NLP) techniques exploiting
morphological properties of the input words.
Normalization usually consists of tokenization,
lemmatization and elimination.

• Tokenization. Names of entities are parsed into
sequences of tokens by a tokenizer which recognizes
punctuation, cases, blank characters, digits, etc. E.g.
hasChildren→ {Has, Children}

• Lemmatization. The strings underlying tokens
are morphologically analyzed in order to find all their
possible basic forms, e.g. {Has, Children} → {Have,
Child}

• Elimination. The tokens that are articles,
prepositions, conjunctions, and so on, are marked to
be discarded.

The similarity of two name tokens t1 and t2, sim
(t1, t2), is computed by matching sub-string of the
words t1 and t2.
 sim(t1,t2) =

)length(t2) (t1),max(length
 t2))(t1,_substringlength(max

We use WordNet [10] to help match names by
identifying acronyms and synonyms. For example,
the concept Man in O1 and the concept Male in O2
do not match in names, but they are synonyms.

Given two concepts C∈O1 and D∈O2, let T(C)
denote the set of name tokens for concept C, then
linguistic similarity coefficients (lsim) are then
computed between the concepts by comparing the
tokens extracted from their names.
lsim (C, D) =

|)(||)(|

)]2,1(max[)]2,1(max[
)(2)(1)(1)(2

DTCT

ttsimttsim
DTt CTtCTt DTt

+

+ ∑∑
∈

∈
∈

∈

3.2 Probabilistic matching
Given two concepts C ∈ O1 and D ∈ O2, the
probabilistic matching is based on a well-defined
similarity measure:
Jaccard-sim(C, D) =)(/)(DCPDCP ∪∩

=
)()()(

)(
DCPDPCP

DCP
∩

∩
−+

This similarity measure is known as the Jaccard
coefficient. It takes the lowest value 0 when C and D
are disjoint and the highest value 1 when C and D are
the same concept. To compute the Jaccard coefficient
of two concepts, we need to compute three
probabilities: the probability P(C) of the concept
description C, the probability P(D) of the concept
description D, and the probability P(C∩D) of the
concept description C∩D.

In summary we employ Probabilistic
Description Logic to compute the Jaccard coefficient
as follows:

• 1. Pick out all the primitive concepts and roles
from O1 and O2 and form the set S of primitive
concepts and roles. As for ontologies in Table 1, S =
{Man (O1), Rich, Old, Man (O2), hasChildren,
HavingMoney}.

• 2. With the result of linguistic matching, we
have the lsim value between each pair of entities from
the set S. A threshold lt is defined. If lsim exceeds lt,
we consider the pair of primitive entities matches.
The matched entities are treated as the same element
in the set S and we remove the duplicate element
from the set. As for ontologies in Table 1, S = {Man,
Rich, Old, hasChildren}, and the canonical form of
every concept can be expressed with the primitive
concepts and roles in set S.

• 3. Construct the Bayesian networks over set S
and every role-filler sets as required by Probabilistic
Description Logic. We will discuss it in detail in the
next sub-section.

• 4. Use the Bayesian network to compute the
probabilities for the three concept descriptions and
then compute the Jaccard coefficient jsim.

From above we see that in order to exploit the
inference service provided by Probabilistic
Description Logic, the key step is to build the
Bayesian network over set S whose elements are
primitive concepts and roles.

3.3 Construct BNs using a search engine
A Bayesian network is a Directed Acyclic Graph
(DAG) in which the nodes represent random
variables. Each variable takes on a value in some
predefined range. Each node in the network is
associated with a conditional probability table (CPT),

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 124 ISSN: 1790-5117

which defines the probability of each possible value
of the node, given each combination of values for the
node’s parents in the DAG. We propose to exploit a
search engine to construct the Bayesian network over
set S.

A search engine is a searchable online database
of internet resources. Search engines attempt to index
and locate desired information by searching for
keywords in which a user specifies. Page counts and
snippets are two useful information sources provided
by most Web search engines. Especially, we will
exploit the page counts information to construct the
Bayesian network.

Page count of a query is the number of pages
that contain the query words. For example, the page
count of the query “Man” in Google is 1,130,000,000,
whereas the same for “have Child” is only
605,000,000. The page count of the query is
considered as a measure of individual occurrences of
the primitive concept [2] . We define f(C) as the page
count of the query whose search term is the
normalized name of the concept C, so we have

f(Man) = 1,130,000,000.
f(≥1hasChildrenren) = 605,000,000
f(Old) = 740,000,000

The page count for the query “man AND have

Child” is 254,000,000, which is considered as a
measure of individual occurrences of both concepts.
Similarly we define f(C1, C2, …, Cn) as the page
count of the query whose search term is the AND
composition of the names of the concepts C1, C2, …,
Cn. So we get

f(Man, ≥1hasChildren) = 299,000,000
f(Man, Old) = 385,000,000
f(≥1hasChildren, Old) = 413,000,000
f(≥1hasChildren, Man, Old) = 206,000,000

In order to compute the probability that an

individual in the domain of the ontology belongs to a
concept, we need to know the number of all
individual occurrences related to set S. For our
example, we need the page count of the query “have
Child OR Old OR Rich OR Man”, which is
2,190,000,000. This page number is considered as the
cardinality of the domain of the ontology and we
denote it by M. Then the probability that an
individual belongs to the concepts can be computed,
for example:

P(Man) = f(Man) / M = 0.51
P(Man, Old) = f(Man, Old) / M = 0.18
P(Man, ¬Old)= (f(Man) - f(Man, Old)) / M= 0.34
P(¬Man, Old)=(f(Old) - f(Man, Old)) / M= 0.16

P(¬Man, ¬Old)=1 - 0.26 - 0.31 + 0.21= 0.32

This can be easily extended for more primitive
concepts and roles. Given primitive concepts A, B
and C, the following probabilities can be computed:

P(A, B, C) = f(A, B, C) / M
P(A, B, ¬C) = (f(A, B) - f(A, B, C))/ M
P(A, ¬B, C) = (f(A, C) - f(A, B, C))/ M
P(A, ¬B, ¬C)
= (f(A) - f(A, B) – f(A, C) + f(A, B, C))/ M

With the formulas above we have the following
probabilities for our examples:

P(≥1hasChildren, Man, Old)= 0.094
P(≥1hasChildren, Man, ¬Old) = 0.042
P(≥1hasChildren, ¬Man, Old)= 0.095
P(≥1hasChildren, ¬Man, ¬Old)= 0.045

In order to construct the Bayesian network, we
need first to determine the topology of it, which
means to determine the edges of the graph whose
nodes are primitive concepts and roles in set S. When
there is a strong relativity holding between two
primitive concepts, we add an edge between the
nodes of the two concepts. We use the page count
overlap coefficient to measure the relativity between
two primitive concepts. Given two primitive
concepts A and B, the page count overlap coefficient
between A and B is defined as:

PC_Overlap (A, B) = f(A, B) / min(f(A), f(B))

With a predefined a threshold pt, for example pt
= 0.25, so we get PC_Overlap (Man, Old) = 0.44 > pt,
then we consider the relativity holds between concept
Man and concept Rich, and we add an edge between
the nodes of the two concepts. Since f(Man) > f(Old),
we think concept Man is more common so the
direction of the edge is from node Man to node Old.
With the topology of the Bayesian network defined,
we could further continue to construct the CPTs for
the Bayesian network. In our example, for node ≥
1hasChildren, whose parent nodes are node Man and
node Old, the CPT items for node ≥1hasChildren
can be computed as follows:

P(≥1hasChildren | Man, Old)
= P(≥1hasChildren, Man, Old) / P(Man, Old)
=0.094 / 0.18= 0.52

P(≥1hasChildren | Man, ¬Old)
= P(≥1hasChildren, Man, ¬Old) / P(Man, ¬Old)

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 125 ISSN: 1790-5117

= 0.042 / 0.34=0.12

P(≥1hasChildren | ¬Man, Old)
= P(≥1hasChildren, ¬Man, Old) / P(¬Man, Old)
= 0.95 / 0.16=0.59

P(≥1hasChildren | ¬Man, ¬Old)
= P(≥1hasChildren, ¬Man, ¬Old) / P(¬Man, ¬Old)
= 0.045 / 0.32= 0.14

After the CPTs are constructed, we can employ
the inference algorithm developed for Bayesian
networks to compute the probabilities of the concept
descriptions whose canonical form refers to only the
primitive concepts and roles, which are nodes in the
Bayesian network. For example, with the Bayesian
network in Figure 1, the probability of the concept
description RichOldMan∩HappyFather can thus be
computed:

P(RichOldMan∩HappyFather)
=P(Man∩Rich∩Old∩≥1hasChildren)
=P(Man)•P(Rich | Man)•P(Rich | Old)•
P(≥1hasChildrenren | Man, Old)

=0.51•0.13•0.34•0.52=0.011145

Figure 1: Bayesian network for our example

4 Experiments
We evaluated PDLOM experimentally on a
collection of ontologies dealing with conference
organization. They have been developed within
OntoFarm [14] project. Four ontologies are included.
Each of them is shortly described in Table 2. Two
human reviewers were asked to manually match the 6
pairs of ontologies. The matching provided by the

reviewers was used as ground truth when measuring
precision and recall.

Table 2: Test Ontologies
Name Number of

Classes
Number of
Properties

DL
expressivity

SigKdd 49 28 ALCI(D)
ConfTool 38 36 SIF(D)
Cmt 36 59 ALCIF(D)
Cocus 55 35 ALCIF(D)

The PDLOM is implemented on top of the

Probabilistic Description Logic reasoner [6]. We use
Google as the search engine to construct our
Bayesian networks. All experiments were performed
on a Celeron D 3Ghz desktop machine with 1GB of
RAM under Windows XP SP2.

The objectives of our experimental evaluation
are two-fold. First, we investigate the optimal choice
of the weight parameter and the threshold that
produce the best F1 quality1 w.r.t. the ground truth.
Second, we compare the precision, recall and F1
quality of PDLOM with those of COMA++ [1].

4.1 Optimal PDLOM Parameters
The set of parameters for PDLOM is comprised of:

• The weight parameter for similarity
computations.

• The similarity threshold lt is the minimum
similarity value against which two primitive concepts
are considered matched.

• The similarity threshold λt is the minimum
similarity value against which two concepts are
considered matched.

• The threshold pt is used to determine whether an
edge exists between two nodes in the Bayesian
network.

In our first set of experiments, we determine the
parameter setting that maximizes the average F1
quality over the entire dataset. The optimal values of
pt turned out to be independent of the specific pair of
ontologies.

Since most of the running time is spent on
inference and the inference complexity is highly
connected with the number of edges in the Bayesian
network, we expected a sharp increase with the
decrease of pt. The experiments confirmed that the
running time increases almost exponentially for pt <
0.25, while F1 quality stabilizes to a value of

1 For a pair of ontologies, we denote by A
the ground truth and by B the set of matched
pairs determined by the algorithm. We
compute precision as P = |A∩B| / |A| and
recall as R = |A∩B| / |B|. The F1 quality
measure is defined as usual F1 = 2•P•R /
(P+R).

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 126 ISSN: 1790-5117

approximately 0.66 for the same values of pt (Figure
2). From these two observations, we determined that
pt = 0.25 is a good compromise between quality and
running time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1Pthe

F
1

q
u
a
l
i
t
y

F1 quality

Figure 2: F1 quality decreases with the increase of

the threshold

We varied the values of the weight parameter
and the similarity threshold λt in increments of .05 in
the range [0, 1]. We then identified the configuration
of parameters that maximizes the average F1 value
over the entire dataset. For each pair of ontologies,
we also determined the configuration of the
parameters that maximizes the F1 quality value for
that pair. This resulted in a set of 6 values for each
configuration of parameters. Line 7 of Table 3
contains the parameter configuration that maximizes
the average F1 value for all the pairs.

Table 3: PDLOM optimal parameter values
 w lt λt
SigKdd-ConfTool 0.4 0.7 0.65
SigKdd-Cmt 0.5 0.75 0.7
SigKdd-Cocus 0.35 0.7 0.7
ConfTool-Cmt 0.55 0.7 0.6
ConfTool-Cocus 0.5 0.65 0.55
Cmt-Cocus 0.4 0.65 0.6
Average 0.47 0.69 0.63

4.2 Comparison with COMA++
We compared precision, recall and F1 quality against
one of the leading systems COMA++. COMA++ is a
tool that implements multiple match strategies to
align relational schemas, XML and OWL. PDLOM is
configured with the optimal parameter values for
average.

Figure 3 shows the F1 quality for every pair in
Table 3. We have found that PDLOM performs
significantly better than average when the two
ontologies share highly similar primitive concepts
and relations such as ConfTool, Cmt and Cocus.

Since under such conditions, canonical forms of
concepts to be compared share same primitive
concepts and this makes the inference service of
Probabilistic Description Logic to play a very
important part to capture the similarity between
concepts.

0.58

0.6

0.62

0.64

0.66

0.68

0.7

F
1

q
u
a
l
i
t
y

COMA++

PDLOM

Figure 3: Comparison of F1 quality for the 6

selected pair of concepts

Figure 4 shows the average precision, recall and
F1 quality for both methods. From the experimental
data, we see that, on average, the improvement in F1
quality of PDLOM is significant, 6% over COMA++.

0.68 0.71

0.56
0.60.62

0.66

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

COMA++ PDLOM

Precision

Recall

F1

Figure 4: Comparison of average Results

5 Related work
Ontology matching methods can generally be
classified as linguistic, structural, and instance-based.
Many of the linguistic approaches use an external
lexicon to match terms which are semantically
related. PDLOM uses WordNet [10] as well, which is
an electronic lexical database, where various senses
of words are put together into sets of synonyms.

Structural approaches compute the
correspondences by analyzing how entities appear
together in a structure and define the similarity
measure based on node neighborhoods. Similarity
Flooding [9] presents schemas as directed labeled
graphs and computes the correspondences of nodes in
the graphs as the fix-point of an operator. Cupid [8]

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 127 ISSN: 1790-5117

computes structural similarity coefficients weighted
by leaves which measure the similarity between
contexts in which elementary schema elements
occur.

In the area of instance-based methods, HICAL
[5] uses k-statistics from the data instances to infer
rule mappings among concepts. Glue [3] learns
classifiers for classes based on instance data, and
finally computes the joint probability distribution of
instances. The system uses a relaxation labeling
process to propagate similarity. oPLMap [11] is a
formal framework based on Horn predicate logics
and probability theory, which allow for automatically
learning mapping rules between ontologies.

The most successful ontology matching systems,
like COMA++, do not fall neatly into any of these
categories, but rather use a mixture of techniques.
PDLOM seems to fall into the category of
instance-based methods. However, Probabilistic
Description Logic uses the canonical form of a
concept description to compute the probability. The
canonical form of a concept description is just the
structure information of the concept. So PDLOM
employs both structure information and instances to
compute the probability for concepts.

6 Conclusion
We have presented PDLOM, an ontology matching
approach, which employs the inference service
provided by Probabilistic Description Logic to
compute the probability of a concept description and
further the Jaccard coefficient between concepts. We
have described how to exploit a search engine to get
the probability distribution over primitive concepts
and roles required by Probabilistic Description Logic.
Our approach has the advantage of a well defined
semantic similarity, but avoids requiring massive
data instances of all the concepts in the ontologies to
learn the Jaccard coefficient as other probability
based approach.

References:
[1] D. Aumueller, H. Do, S. Massmann, E. Rahm.

Schema and ontology matching with COMA++.
In Proceedings of SIGMOD (Demonstration),
2005.

[2] Cilibrasi, R., Vitanyi, P.: The google similarity
distance. IEEE Transactions on knowledge and
data engineering 19(3), pages 370–383, 2007.

[3] A. Doan, J. Madhavan, P. Domingos, A. Halevy.
Learning to map ontologies on the semantic web.
In Proceedings of WWW, 2002.

[4] I. Horrocks, P. F. Patel-Schneider, and F. van
Harmelen. From SHIQ and RDF to OWL: The

making of a web ontology language. J. of Web
Semantics, 1(1):7–26, 2003.

[5] R. Ichise, H. Takeda and S. Honiden. Rule
induction for concept hierarchy alignment. In
Proceedings of the Workshop on Ontology
Learning at the 17th International Joint
Conference on Artificial Intelligence (IJCAI-01),
2001.

[6] A. Kaplunova and R. Möller. Probabilistic LCS
in a P-Classic Implementation. Technical report,
Institute for Software Systems (STS), Hamburg
University of Technology, Germany, 2007.

[7] D. Koller, A. Levy and A. Pfeffer. P-Classic: a
tractable probabilistic description logic. In AAAI,
1997.

[8] J. Madhavan, P. Bernstein, E. Rahm. Generic
Schema Matching with Cupid. In Proceedings of
VLDB, 2001.

[9] S. Melnik, H. Garcia-Molina, and E. Rahm.
Similarity flooding: A versatile graph matching
algorithm. In Proceedings of the International
Conference on Data Engineering (ICDE), pages
117–128, 2002.

[10] A. G. Miller. WordNet: A lexical database for
English. Communications of the ACM,
(38(11)):39–41, 1995.

[11] H. Nottelmann, U. Straccia: A Probabilistic,
Logic-based Framework for Automated Web
Directory Alignment Soft Computing in
Ontologies and the Semantic Web, 2006.

[12] P. Patel-Schneider, P. Hayes, and I. Horrocks.
Web ontology language OWL Abstract Syntax
and Semantics. W3C Recommendation, 2004.

[13] P. Shvaiko, J. Euzenat. A Survey of
Schema-based Matching Approaches. In Journal
on Data Semantics, 2005.

[14] O. Svab, V. Svatek, P. Berka, D. Rak, and P.
Tomasek. Ontofarm: Towards an experimental
collection of parallel ontologies. In Poster
Proceedings of the International Semantic Web
Conference 2005, 2005.

7th WSEAS Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS '08), Hangzhou, China, April 6-8, 2008

ISBN: 978-960-6766-49-7 128 ISSN: 1790-5117

