
Matching Large Ontologies Based on Reduction Anchors

Peng Wang 1, Yuming Zhou 2, Baowen Xu 2

1School of Computer Science and Engineering, Southeast University, China
2State Key Laboratory for Novel Software Technology, Nanjing University, China

pwang@seu.edu.cn, zhouyuming@nju.edu.cn, bwxu@nju.edu.cn

Abstract

Matching large ontologies is a challenge due to the
high time complexity. This paper proposes a new
matching method for large ontologies based on re-
duction anchors. This method has a distinct advan-
tage over the divide-and-conquer methods because
it dose not need to partition large ontologies. In par-
ticular, two kinds of reduction anchors, positive and
negative reduction anchors, are proposed to reduce
the time complexity in matching. Positive reduc-
tion anchors use the concept hierarchy to predict
the ignorable similarity calculations. Negative re-
duction anchors use the locality of matching to pre-
dict the ignorable similarity calculations. Our ex-
perimental results on the real world data sets show
that the proposed method is efficient for matching
large ontologies.

1 Introduction
Recent years have seen an increasing use of large ontologies
in various areas such as machine translation, e-commerce,
digital library, and life science. Since building and main-
taining large ontologies may be distributed and autonomous,
large ontologies can also be heterogeneous. Ontology match-
ing is a plausible solution to the heterogeneity problem. How-
ever, large ontology matching (LOM) is a challenge due to the
high time complexity and space complexity. First, matching
process requires a large amount of memory. This may cause
the matching system to crash by the out of memory error.
Second, most LOM methods are O(n2 × t) time complex-
ity (n represents the number of concepts), i.e. it needs n2

times similarity calculations and each similarity calculation
has O(t) complexity. This paper focuses on the time com-
plexity in the LOM problem.

Most existing ontology matching systems are unable to
deal with the LOM problem. The Ontology Alignment Evalu-
ation Initiative (OAEI1) results in past years showed that few
systems could deal with LOM tasks. In OAEI2007, only 2
of all 18 systems finished 4 LOM tasks: anatomy, food,
environment, and library. In OAEI2008, only 2 of all 13
systems finished 4 LOM tasks: anatomy, fao,mldirectory,
and library, and only 1 system finished the vlcr task.

1http://oaei.ontologymatching.org/

Divide-and-conquer strategy is a feasible solution to re-
duce the time complexity in LOM by partitioning a large on-
tology into small modules. However, it has two limitations.
First, most existing ontology partitioning approaches cannot
control the size of modules [Hu and Qu2006, Hu et al.2008].
Consequently, many too small or too large modules, which
are inappropriate for matching, may be generated. Second,
partitioning ontologies into modules may lead to the loss of
useful semantic information on the boundary elements. As a
result, the quality of ontology matching may be degraded.

In this paper, we propose a reduction anchors based ap-
proach for matching large ontologies. Compared to exist-
ing work, the proposed approach has the following advan-
tages. First, it does not need to partition ontologies but keeps
the high performance as the divide-and-conquer approaches
have. Second, it is indeed a general LOM framework, in
which most existing matching techniques could be used. The
main contribution of this paper is that we introduce two types
of reduction anchors to cut down the number of pairs for
which a similarity measure must be computed during ontol-
ogy matching. On the one hand, if two concepts have a high
similarity, we leverage the concept hierarchy to skip subse-
quent matching between sub-concepts of one concept and
super-concepts of the other concept. On the other hand, if
two concepts have a low similarity, we leverage the locality
phenomenon of matching to skip subsequent matching be-
tween one concept and the neighbors of the other concept.
The former is called a positive reduction anchor and the lat-
ter is called a negative reduction anchor. Our experimental
results show that the proposed approach is very effective for
matching large ontologies.

2 Related Work
The LOM problem has been concerned by both academic
researchers and industrial engineers. For example, peo-
ple integrated common large ontologies for machine trans-
lation [Hovy1998], discovered mappings between Web direc-
tories for information retrieval [Massmann and Rahm2008],
and matched biology and medical ontologies [Zhang et
al.2007, Mork and Bernstein2004]. This paper classifies
existing LOM solutions into three types: quick-similarity-
calculation (QSC) methods, parallel processing (PP) meth-
ods, and divide-and-conquer (DC) methods.

QSC methods attempt to reduce the time complexity in
each similarity calculation, namely, the factor t in O(n2× t).
To this end, they often use simple but quick matchers such
as literal-based and structure-based matcher. However, pre-
vious literature shows that, when matching large ontologies,

QSC methods have a high time complexity [Mork and Bern-
stein2004]. In OAEI2007, some systems with QSC methods
had not any advantages both in running time and the quality
of matching results. Indeed, QSC methods are unable to deal
with LOM for the following two reasons. First, quick match-
ers only use limited information that would cause low-quality
results. Second, since n2 is a large number, reducing factor t
has little influence on the matching performance.

PP methods employ the parallel strategy to deal with the
similarity calculation [Mao2008]. The parallel processing
idea is very simple and easy to be implemented. However,
it needs expensive hardware resources to set up the parallel
computing environment. More importantly, the matching per-
formance improvement is limited.

DC methods attempt to reduce the factor n2 in O(n2 × t).
The divide-and-conquer strategy partitions a large ontology
into k modules or blocks to reduce the time complexity to
O(n2

k × t). The improvement of performance is determined
by the number of modules. Modular ontology is a popular
way to partition large ontologies. However, existing modu-
lar ontology methods focus on the correctness and complete-
ness of logics but cannot control the size of modules [Hu et
al.2008], i.e., they would generate too large or too small mod-
ules. For example, a modularization algorithm will generate
the large module with 15254 concepts for NCI ontology and
will fail for GALEN ontology [Grau et al.2007].

Malasco [Paulheim2008] and Falcon-AO [Hu et al.2008]
are two well-known LOM systems based on the DC method.
Malasco employs partitioning algorithms and existing match-
ing tools to match large ontologies. It uses three on-
tology partitioning algorithms: naive algorithm based on
RDF sentences, structure-Based algorithm [Stuckenschmidt
and Klein2004], and ontology modularity based on ε −
connection [Grau et al.2006]. Falcon-AO proposes a
structure-based partitioning algorithm to divide ontology el-
ements into a set of small clusters, then constructs blocks
by assigning RDF sentences to clusters. We notice that the
structure-based partitioning algorithm in Falcon-AO can flex-
ibly control the sizes of modules.

However, DC methods suffer from the contradiction be-
tween semantic completeness and information loss. More
specifically, after partitioning, ontology elements near bound-
aries of modules are possible to lose useful semantic informa-
tion. The more modules we have, the more information will
be lost. This may degrade the quality of ontology match-
ing. In Malasco, Paulheim realizes this problem and hence
uses overlapping partitions to compensate such information
loss. Paulheim claims that the overlapping partitions could
limit the loss of precision less than 20% [Paulheim2008].
However, he also points out that overlapping partitions cause
the matching phase running up to four times as long as non-
overlapping partitions.

3 Reduction Anchors
During matching large ontologies, we have two interesting
observations: (1) A large ontology is often composed of con-
cept hierarchies organized by is-a or part-of properties, and
a correct alignment should not be inconsistent with such hi-
erarchies; (2) An alignment between two large ontologies has
locality, i.e., most elements of region Di in ontology O1 will
match the elements of region Dj in ontology O2. The two
observations provide the new perspective for finding the effi-
cient LOM solution.

In Fig. 1(a), according to the first observation, if ai
matches bp or bq , it will have a direct benefit: the sub-
sequent similarity calculations between sub-concepts(/super-
concepts) of ai and super-concepts(/sub-concepts) of bp or bq
can be skipped. In this paper, we call such concepts like bp
or bq the positive reduction anchors about ai, which employ
the ontology hierarchy feature to reduce the time complexity
in LOM. The positive reduction anchor is defined as follows.
Definition 1 (Positive Reduction Anchor (P-Anchor))
Given a concept ai in ontology O1, let the similarities
between ai and concepts b1, b2, ..., bn in ontology O2 are
Si1, Si2, ..., Sin, respectively. If Sij is larger than the
predefined threshold ptV alue, the concept pair (ai, bj) is a
positive reduction anchor, and all positive reduction anchors
about ai are denoted by PA(ai) = {bj |Sij > ptV alue}.

It is clear that positive reduction anchors are symmetrical,
i.e. if bp ∈ PA(ai), then ai ∈ PA(bp). ptV alue is a larger
value in [0, 1].

O1 O2

ai
bp

bq

br bs

bx

O1 O2

ai

bx

D1

D2

D0

(a) Positive Reduction Anchor (b) Negative Reduction Anchor

Figure 1: Reduction anchors in large ontology matching

Fig. 1(b) shows the locality phenomenon in LOM, where
Di represents a region in the ontology. Most elements in D0
are matched to the elements inD1. Suppose ai inD0 does not
match bx inD2. According to the second observation, we can
infer that the neighbors of ai do not match bx too. As a result,
we can skip the subsequent similarity calculations between
the neighbors of ai and bx, which will also reduce the times
of similarity calculations. In this paper, we call such con-
cepts like bx the negative reduction anchors about ai, which
employ locality of matching to reduce the time complexity.
The negative reduction anchor is defined as follows.
Definition 2 (Negative Reduction Anchor (N-Anchor))
Given a concept ai in ontology O1, let the similarity values
between ai and concepts b1, b2, ..., bn in ontology O2 are
Si1, Si2, ..., Sin, respectively. If Sij is smaller than the
predefined threshold ntV alue, the concept pair (ai, bj) is a
negative reduction anchor, and all negative reduction anchors
about ai are denoted by NA(ai) = {bj |Sij < ntV alue}.

It is clear that negative reduction anchors are also symmet-
rical. ntV alue is usually a small value in [0, 1].

Based on positive and negative anchors, ontology mathc-
ing process can skip many similairity calculations, which will
significantly reduce the time complexity. Since P-Anchors
and N-Anchors cannot be identified in advance, we hence dy-
namically generate them during ontology matching.

4 Large Ontology Matching Algorithms
4.1 LOM-P: Large Ontology Matching Algorithm

Based on P-Anchors
Let PS(ai), the positive reduction set of ai, be all the
ignorable similarity calculations predicted by PA(ai). If

|PA(ai)| > 0, we select the top-k P-Anchors with maximum
similarities. Let PS(ai|bj) be the positive reduction set about
a P-Anchor (ai, bj).

If PA(ai) = {bp}, then PS(ai) = [sub(ai)⊗ sup(bp)] ∪
[sup(ai) ⊗ sub(bp)]. Here, sup() and sub() represent the
super-concepts and sub-concepts respectively, and ⊗ denotes
the Cartesian product.

If PA(ai) = {bq, br}, then PS(ai|br) =
[sub(ai) ⊗ sup(br)] ∪ [sup(ai) ⊗ sub(br)]. Let
mid(bq, br) be the middle concepts on the hi-
erarchy path from bq to br. Since sup(br) =
mid(br, bq)∪sup(bq), the above formula can be rewritten as:
PS(ai|br) = [sub(ai)⊗ sup(bq)] ∪ [sup(ai)⊗ sub(br)]

∪[sub(ai)⊗mid(br, bq)]
Similarly, we obtain:
PS(ai|bq) = [sub(ai)⊗ sup(bq)] ∪ [sup(ai)⊗ sub(br)]

∪[sup(ai)⊗mid(br, bq)]
Therefore,

PS(ai) = PS(ai|br) ∩ PS(ai|bq)

= [sub(ai)⊗ sup(bq)] ∪ [sup(ai)⊗ sub(br)]

Let lub(br, bq) and glb(br, bq) be the least upper bound
and the greatest lower bound for br and bq , respec-
tively. The above formula can be simplified as follow:
PS(ai) = [sub(ai)⊗ sup(lub(br, bq))]

∪[sup(ai)⊗ sub(glb(br, bq))]
The above analyses can be extended to the general case:

given PA(ai) = {b1, b2, ..., bk}, the corresponding reduction
set can be calculated by:

PS(ai) =

k⋂
j=1

PS(ai|bj)

= [sub(ai)⊗ sup(lub(b1, ..., bk))]

∪[sup(ai)⊗ sub(glb(b1, ..., bk))] (1)

Formula (1) indicates that smaller top-k will generate
larger PS(ai). In our implementation, top-k is assigned a
value from 1 to 4.

The total positive reduction set during matching is:

PS =

n⋃
i=1

PS(ai) (2)

The positive reduction set is generated dynamically and
consists of two parts: (1) Invalid positive reduction set con-
tains all similarity calculations have been computed. There-
fore, it is useless for matching; (2) Valid positive reduction set
contains all similarity calculations to be computed but can be
skipped in matching. Therefore, only valid positive reduction
set can improve the performance.

The order of similarity calculations will affect the size of
the valid positive reduction set. The ideal order can be deter-
mined by following theorem.
Theorem 1 When the order of similarity calculations can di-
vide the hierarchy path L into parts with equal length contin-
ually, the P-Anchors can generate the maximum valid positive
reduction set with |L| ∗ (|L| − 2) size.

The proof is omitted for the limitation of space. Accord-
ing to theorem 1, when a path with |L| length generates the
maximum positive reduction set, one of the order of similarity

calculations is L
2 ,

L
4 ,

3L
4 ,

L
8 ,

3L
8 ,

5L
8 ,

7L
8 , ..., and it will divide

the path into equal lengths continually: |L|2 ,
|L|
4 ,
|L|
8 ,

Algorithm 1 is the large ontology matching algorithm
based on P-Anchors (LOM-P). Here, LOMP-Algorithm() is
the main function, ComputerSim() matches elements on the
hierarchy path recursively, and GetPAnchors() obtains top-k
P-Anchors.
Algorithm 1: LOM-P algorithm

Input: ontology O1, ontology O2
Output: matching results

1 Function LOMP Algorithm(O1, O2)
2 begin
3 foreach Li ∈ O1 do
4 ComputeSim(Li)
5 end
6 end
7 Function ComputeSim(L = (a1, a2, ..., an))
8 begin
9 PA← GetPAnchors(n

2)
10 PS ← PredictNewPS(PA)
11 ComputeSim(La = (a1, ..., a(n

2−1)))

12 ComputeSim(Lb = (a(n
2 +1), ..., an))

13 if |L| ≤ 1 then
14 return
15 end
16 end
17 Function GetPAnchors(ai)
18 begin
19 foreach bj ∈ O2 do
20 if (ai, bj) ∈ PS then
21 continue
22 end
23 Sim(ai, bj)← Compute(ai, bj)
24 if Sim(ai, bj) > ptV alue then
25 PACandi← PACandi ∪ bj
26 end
27 end
28 PA←MaxTopk(PACandi)
29 end

The time complexity of LOM-P algorithm is analyzed as
follows. Given two matched ontologies, if all concepts are on
a hierarchy path, the matching process can generate n(n− 2)
size valid positive reduction set, and it just needs 2n simi-
larity calculations, i.e., the algorithm has the best time com-
plexity O(2n). However, such ideal case almost does not
exist in real world. Suppose there are m hierarchy paths,
then the average depth of the ontology is d̄ = n

m . Conse-
quently, we can derive the time complexity of Algorithm 1
is O((1 − 1

m)n2) = O((1 − d̄
n)n2). It means that LOM-P

algorithm can improve the matching performance when the
ontologies have large average depths.

4.2 LOM-N: Large Ontology Matching Algorithm
Based on N-Anchors

N-Anchors are also able to predict ignorable similarity cal-
culations. The set of all ignorable similarity calculations pre-
dicted by N-Anchors are called the negative reduction set. Let
Nb(ai) = {ax|d(ax, ai) <= nScale} be the neighbors with
nScale distance to ai. Therefore, the negative reduction set
generated by ai is:

NS(ai) = Nb(ai)⊗NA(ai) (3)

According to formula (3), NA(ai) will be propagated to
neighbors of ai. Such propagation will lead to low credi-
ble negative reduction set because it will improve the risk of
missing right similarity calculations. Fig. 2. interprets the po-
tential risk. LetNA(ai) = Ns+Np andNA(aj) = Np+Nq .
If we first calculate the similarities about ai, then aj will get
NA(ai). Therefore, we will skip the similarity calculations
between aj andNs, which would miss correct alignments like
(aj , bx)(bx ∈ Ns). Therefore, Ns is a potential risk for simi-
larity calculations about aj .

ai aj
O1

O2
Ns Np Nq

Figure 2: The risk of propagation of N-Anchors

To reduce such risk, we introduce three constraints on the
negative reduction set.

Constraint 1: All N-Anchors must be obtained in similar-
ity calculating. This means that N-Anchors propagated from
neighbors cannot be propagated again. In Fig. 2, NA(aj)
consists of two parts: Np is propagated from ai and Nq is
obtained in calculating similarity about aj . Only Nq can be
propagated to other neighbors.

Constraint 2: All N-Anchors of ai can only be propagated
to the neighbors in the semantic subgraph of ai. We call
this constraint the SSG constraint. Constraint 2 further re-
stricts that N-Anchors can only be propagated to neighbors
with close semantic relations to ai.

Constraint 3: All N-Anchors of ai can be propagated only
if the description document of ai contains more than t items.
we call this constraint the SDD constraint. It means that if
an element lacks of enough literal information in matching,
its N-Anchors may be incorrect and cannot be propagated. In
the implementation, we set t = 8.

Algorithm 2: LOM-N algorithm
Input: ontology O1, ontology O2
Output: matching results

1 begin
2 SortConceptByDegree()
3 foreach Ci ∈ O1 do
4 NA(Ci)← Ø
5 foreach Dj ∈ O2 do
6 if (Ci, Dj) ∈ NS then
7 continue
8 s←ComputeSim(Ci, Dj)
9 if s < ntV alue AND InConstraint()

then
10 NA(Ci)← Dj

11 end
12 NS(Ci)← BuiltNS(NA(Ci))
13 NS(Ci)← RefineNS(NS(Ci))
14 NS←NS ∪ NS(Ci)
15 end
16 end
17 end
18 end

The order of similarity calculations would also influence

the size of negative reduction set. In order to generate the
maximum valid negative reduction set, the elements with
more neighbors should be calculated first during matching.

Algorithm 2 is the large ontology matching algorithm
based on P-Anchors (LOM-P). All concepts are sorted by
their degrees (line 2). If a similarity s is smaller than ntV alue
and satisfies three constraints (line 9), a N-Anchor (line 10)
is used to get the negative reduction set (line 12). The valid
negative reduction set is obtained after refined (line 13). The
time complexity of the algorithm is O((1 − wλ)n2), where
w is the average degree and λ is determined by ntV alue and
constraints. The bigger w and λ, the higher performance the
algorithm has.

4.3 LOM-Hybrid: Hybrid Large Ontology
Matching Algorithm

We use a hybrid algorithm, called LOM-Hybrid, to combine
the LOM-P and LOM-N algorithms to obtain as large valid
reduction set as possible. The LOM-Hybrid algorithm will
prefer the matching order of LOM-N algorithm for two rea-
sons: (1) Since the average depth of a real ontology is often
small, LOM-P may not have the ideal high performance. (2)
LOM-N algorithm first calculates the elements with large de-
gree, it can be benefit for the LOM-P algorithm. Therefore,
the LOM-Hybrid algorithm is mainly based on the framework
of the LOM-N algorithm, in which the LOM-P algorithm is
embedded. LOM-Hybrid can generate the valid positive re-
duction set and valid negative reduction set. Theoretically, the
time complexity of LOM-Hybrid is between the complexity
of LOM-N and the complexity of LOM-P. Indeed, it is very
close to LOM-N. The LOM-Hybrid algorithm is omitted here
for the space limitation.

5 Experimental Evaluation
5.1 Data sets
Two data sets are used in the experiments:
• Dataset1 consists of five middle scale ontology pairs

(russia12, russiaAB, russiaCD, tourismAB, and
sport), which are selected from FOAM 2. These on-
tologies have 103-474 concepts and 22-100 properties,
and will be used to examine the correctness of our algo-
rithms.
• Dataset2 is the real large scale ontology set in

OAEI2008, i.e. Anatomy, Fao, and Library. These
ontologies have 2000-30000 concepts, and will be used
to examine the performance of our algorithms.

5.2 Experiments for examining the algorithms
Besides Precision, Recall, and F1-Measure, we also introduce
the Loss to measure the quality loss in LOM algorithms:

Loss =
Fgold − Fget

Fgold
× 100%

where Fgold is the F1-measure of a general ontology match-
ing (GOM) algorithm provided by the matching system Lily
3, and Fget is the F1-measure of our LOM algorithms.

As shown in Table 1, we have following observations: (1)
Three LOM algorithms perform well on middle ontologies.

2http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ontologies.htm
3http://cse.seu.edu.cn/people/pwang/lily.htm

Table 1: LOM algorithm VS GOM algorithm (on FOAM data set)
GOM LOM-P LOM-N LOM-Hybrid

F1-Measure F1-Measure Loss F1-Measure Loss F1-Measure Loss
Russia12 0.72 0.71 1% 0.67 7% 0.68 6%
RussiaAB 0.99 0.99 0% 0.96 3% 0.97 2%
RussiaCD 0.94 0.91 3% 0.85 10% 0.85 10%

TourismAB 0.89 0.88 1% 0.85 4% 0.85 4%
Sports 0.75 0.77 -3% 0.75 0% 0.75 0%

Average 0.86 0.85 0.4% 0.82 4.8% 0.82 4.4%

Table 2: Matching results on Anatomy
System Runtime Precision Recall F1-Measure Recall+

Label Eq. – 0.98 0.61 0.76 0.00
LOM-Hybrid 13min 0.80 0.70 0.75 0.47
Falcon-AO 12min 0.96 0.60 0.74 0.13
TaxoMap 25min 0.46 0.76 0.57 0.47

(2) LOM-P, LOM-N and LOM-Hybrid have similar perfor-
mance, which can be generally sorted by: LOM-P≥LOM-
Hybrid≥LOM-N. (3) Compared with GOM algorithm, three
LOM algorithms have a certain quality loss. The average
Loss of LOM-P, LOM-N and LOM-Hybrid are 0.4%, 4.8%
and 4.4%, respectively. We set LOM-Hybrid as the standard
LOM algorithm in remaining experiments, because it not only
combines other two algorithms, but also has a close running
time to LOM-N.

We also compare the LOM-Hybrid with other matching
system using DC method. We select Falcon-AO as the
comparing system, whose matching method called PBM. As
shown in Fig. 3, LOM-Hybrid has a similar performance to
PBM.

5.3 Real large ontology matching experiments
Here we present results of our LOM algorithms on three
LOM tasks (Anatomy, Fao, and Library) in OAEI2008.
Anatomy task requires matching two ontologies with

2700 and 3300 concepts. There are 13 systems that par-
ticipate in the anatomy task, but only few systems use the
special large ontology matching method. The TaxoMap uses
the PBM algorithm of Falcon-AO. We employ the Recall+
[Caracciolo et al.2008] to measure how many non trivial cor-
rect alignments can be found. From Table 2, we can see that:
(1) LOM-Hybrid can also perform well in Anatomy task.
Indeed, it outperforms than some systems using background
knowledge. (2) LOM-Hybrid and Falcon-AO have similar
performance, which are better than TaxoMap. (3) The run-
ning time of LOM-Hybrid is 13 minutes. It indicates that our
LOM algorithms have similar running time to other systems
using DC methods. (4) Our method and Taxomap have a high
Recall+, indicating that they have the ability to discover the
difficult alignments.
Library task contains two ontologies with 5000 and 35000

concepts. Fao contains several ontologies with 2000 to
10000 concepts. As Fig. 4 shows, our method can discover
the alignments for the two tasks.

5.4 Performance experiments
There is a need to analyze the influence of key parameters
to our algorithms. Here we use a new metric G called bene-
fit rate to measure how much a LOM algorithm can improve
the performance: G = N

n1×n2
, where N is the size of total

reduction set, n1 and n2 represent the number of concepts

0.65

0.90

0.59

0.85

0.62

0.87

0.79

0.94

0.59

0.78

0.68

0.85

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

russia12 tourism

PBM-Prec PBM-Rec PBM-F LOM-Prec LOM-Rec LOM-F

Figure 3: LOM-Hybrid VS Falcon-AO-PBM

0.529

0.867

0.368 0.403

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Library Fao-agrafsa

Precision Recall

Figure 4: Matching results on the real large ontologies

in two ontologies. The larger G is, the fewer times of simi-
larity calculations and the higher efficiency of the algorithm
has. Although we use Dataset1 to perform the following ex-
periments, it should be noted that similar conclusions can be
obtained from other datasets.

top-k is a key parameter in LOM-P. We need to know the
influence of different top-k values to the quality of results and
efficiency. Our experimental results show that there is a small
variation of matching results when top-k changes from 1 to
4. This result can be explained that most elements only have
very few P-Anchors. Since ontologies in Dataset1 have short
hierarchy pathes, LOM-P just gets about 5% benefit rate.

LOM-N algorithm has four important parameters:
ntV alue, nScale, SDD constraint and SSG constraint. We
evaluate these parameters on the TourismAB of Dataset1.

Fig. 5 shows the relation of ntV alue to F1-Measure on
different nScale. Fig. 6 shows the relation of benefit rate
to ntV alue under different nScale. We observe that: (1)
ntV alue has a significant effect on matching quality and effi-
ciency, i.e., larger ntV alue will lead to lower matching qual-

Figure 5: ntV alue - nScale - matching quality Figure 6: ntV alue - nScale - benefit rate

Figure 7: SDD - SSG - matching quality Figure 8: SDD - SSG - benefit rate

ity, meanwhile, it also causes higher benefit rate. (2) nScale
also affects the matching quality and efficiency. As nScale
increases, matching quality will decrease, but the benefit rate
will increase. Results also show that ntV alue < 0.02 and
nScale = 2 will lead to a good matching quality and benefit
rate. Fig. 7 and Fig. 8 show the influences of SDD and SSG
on matching quality and benefit rate. The line with rectan-
gle represents the results without any constraint. We can see
that: (1) Under three constraints, the matching quality will
increase, but the benefit rate decreases. (2) SSG constraint
has a higher influence on matching quality and benefit rate.

6 Conclusion
This paper proposes a new efficient large ontology matching
method based on reduction anchors. Reduction anchors are
used to predict the ignorable similarity calculations in match-
ing. Our experimental results show that the proposed method
is effective for matching large ontologies.

Acknowledgments
The work is supported by the NSF of China (61003156 and
90818027), the National High Technology Research and De-
velopment of China (863 Program) (2009AA01Z147), and
the Major State Basic Research Development Program of
China (973 Program) (2009CB320703)

References
[Caracciolo et al., 2008] Caterina Caracciolo, Jrme Euzenat,

Laura Hollink, Ryutaro Ichise, and et al. Results of the on-
tology alignment evaluation initiative 2008. In The Third
International Workshop on Ontology Matching (OM2008),
Karlsruhe, Germany., 2008.

[Grau et al., 2006] B. Cuenca Grau, B. Parsia, E. Sirin, and
A. Kalyanpur. Modularity and web ontologies. In Proc.
KR-2006, 2006.

[Grau et al., 2007] Bernardo Cuenca Grau, Ian Horrocks,
Yevgeny Kazakov, and Ulrike Sattler. Just the right

amount: extracting modules from ontologies. In Proceed-
ings of the 16th international conference on World Wide
Web (WWW2007), 2007.

[Hovy, 1998] Eduard Hovy. Combining and standardizing
large-scale, practical ontologies for machine translation
and other uses. In Proceedings of the First Interna-
tional Conference on Language Resources and Evaluation
(LREC98), 1998.

[Hu and Qu, 2006] Wei Hu and Yuzhong Qu. Block match-
ing for ontologies. In The 5th International Semantic Web
Conference (ISWC2006), 2006.

[Hu et al., 2008] Wei Hu, Yuzhong Qu, and Gong Cheng.
Matching large ontologies: A divide-and-conquer ap-
proach. Data & Knowledge Engineering, 67(1):140–160,
2008.

[Mao, 2008] Ming Mao. Ontology Mapping: Towards Se-
mantic Interoperability in Distributed and Heterogeneous
Environments. PhD thesis, University of Pittsburgh, 2008.

[Massmann and Rahm, 2008] Sabine Massmann and Erhard
Rahm. Evaluating instance-based matching of web direc-
tories. In The 11th International Workshop on Web and
Databases 2008 (WebDB2008), 2008.

[Mork and Bernstein, 2004] Peter Mork and Philip A. Bern-
stein. Adapting a generic match algorithm to align on-
tologies of human anatomy. In Proceedings of the 20th In-
ternational Conference on Data Engineering (ICDE2004),
2004.

[Paulheim, 2008] Heiko Paulheim. On applying matching
tools to large-scale ontologies. In The Third International
Workshop on Ontology Matching, 2008.

[Stuckenschmidt and Klein, 2004] Heiner Stuckenschmidt
and Michel Klein. Structure-based partitioning of large
concept hierarchies. In Third International Semantic Web
Conference (ISWC2004), 2004.

[Zhang et al., 2007] Songmao Zhang, Peter Mork, Olivier
Bodenreider, and Philip A. Bernstein. Comparing two ap-
proaches for aligning representations of anatomy. Artifi-
cial Intelligence in Medicine, 39:227–236, 2007.

