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Abstract. Many use cases in business process management rely on the
identification of correspondences between process models. However, the
sparse information in process models makes matching a fundamentally
hard problem. Consequently, existing approaches yield a matching qual-
ity which is too low to be useful in practice. Therefore we propose to
investigate user feedback to improve the matching quality. To this end,
we analyze which information is suitable for learning. On this basis,
we design an approach that performs matching in an iterative, mixed-
initiative approach: we determine correspondences between two models
automatically, let the user correct them and analyze this input to adapt
the matching algorithm. Then, we continue with presenting the results
for the next two models. This approach improves the matching quality, as
showcased by a comparative evaluation. From this study, we also derive
strategies on how to maximize the quality while limiting the workload.
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1 Introduction

More and more organizations use process models as a tool for managing their
operations. Typical use cases for process models range from process documen-
tation to the implementation of workflow systems. Once a repository of process
models reaches a certain size, there are several important use cases which re-
quire the comparison of process models. Examples include validating a technical
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implementation of a business process against a business-centered specification
[2], process model search [6, 13, 10], or identifying clones in process models [7].

The demand for techniques that are capable of comparing process models
has led to the development of a variety of process model matchers. These match-
ers, e.g. [24, 14, 11], are usually designed for universal applicability. That is, they
are based on common matching metrics used to assess pairs of activities and
define classification rules which are believed to provide meaningful indications
of similarity for activities in any pair of process models. However, the insuffi-
cient accuracy of these approaches [3] suggests that the assumption of universal
applicability is too strict, and might hinder effective application in practice.

For this reason, we seize the idea of an adaptive matcher. A similar idea
was discussed in [23] where characteristics of a certain process model collection
are analyzed to select well-suited matchers for the collection. In contrast to this
approach, we build on an iterative, mixed-initiative approach that utilizes user
feedback to constantly adapt the matching algorithm. It aims to maximize the
matching quality improvements while introducing a minimized additional effort
for the user in correcting correspondences. Therefore, correspondences between
two models are presented to the user, and she is asked to add missing and remove
incorrect ones. Based on this feedback, the matching algorithm is updated by
analyzing the user’s decisions. Once this is done, the correspondences between
the next two models are presented. This inquiry of feedback is repeated until the
matching system provides good results. The quality of this approach strongly
depends on the information that is considered during the analysis. Thus, we
substantiate its design by deriving indicators from related research and by as-
sessing their suitability for feedback analysis. Furthermore, an evaluation based
on benchmark matching samples demonstrates the benefits of the approach.

The rest of the paper is organized as follows. Section 2 defines process model
matching and introduces the state of the art. Section 3 provides an overview of
correspondence indicators derived from related research and investigates their
potential for user feedback analysis. Based on this survey, Section 4 defines our
approach that incorporates feedback. Section 5 evaluates the approach using
simulated feedback from gold standards. Finally, Section 6 concludes the paper.

2 Foundations: Problem Illustration and Related Work

This section introduces the problem of process model matching in more detail.
First, we explain the problem of matching process models in Subsection 2.1.
Afterwards, we review the state of the art in Subsection 2.2.

2.1 Problem Illustration

In accordance with ontology matching [8], process model matching is the pro-
cess of identifying an alignment between two process models. In this paper, a
process model is regarded as a business process graph as defined in [4]: a process
model consists of labeled nodes of different types and directed edges connecting
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them. While the edges define the control flow of the process, the nodes express
activities, gateways, etc. This abstract notion of process models permits the ap-
plication of our work to other notations like Petri nets, Event-driven Process
Chains (EPCs) or Business Process Model and Notation (BPMN).

Definition 1 (Process model, Set of activities). Let L be a set of labels
and T be a set of types. A process model p is a tuple (N,E, λ, τ), in which:

– N is the set of nodes;
– E ⊆ N ×N is the set of edges;
– λ : N → L is a function that maps nodes to labels; and
– τ : N → T is a function that assigns types to nodes.

For a given process model p = (N,E, λ, τ) the set A = {a|a ∈ N ∧ τ(a) =
activity} is called the set of activities, where we require ∀a ∈ A,n ∈ N :
|{n|(a, n) ∈ E)}| ≤ 1 and |{n|(n, a) ∈ E)}| ≤ 1. Furthermore, we require that
there only exists one start (∃n ∈ N, ∀ni ∈ N : (ni, n) /∈ E) and one end node
(∃n ∈ N, ∀ni ∈ N : (n, ni) /∈ E).

Given two process models p1, p2 and their activity sets A1, A2 an alignment
is a set of correspondences, i.e. activity pairs (a1, a2) with a1 ∈ A1 and a2 ∈ A2

that represent similar functionality. This binary relation depicts more complex
correspondences between sets of activities (A∗1, A

∗
2) with A∗1 ⊆ A1 and A∗2 ⊆ A2

as the set of all activity pairs that they consist of {(a∗1, a∗2)|(a∗1 ∈ A∗1∧a∗2 ∈ A∗2)}.
Fig. 1 presents an alignment between two university admission process models

which will be used as a running example throughout the paper. Both processes
represent the scenario of receiving, evaluating, and deciding about an applica-
tion. Hence, activities from one process related to one of these tasks are matched
with activities dealing with the same task in the other process. While α2 and β2
constitute a one-to-one correspondence, β6 is not matched. Moreover, there are
two complex correspondences: a one-to-many correspondence formed by α1, α1

and β2 and a many-to-many correspondence comprised of α3, α4, α5, β4 and β5.
Applying a matcher to automatically determine alignments will only be use-

ful if it yields a high quality, i.e. if it meets the user’s expectations. This will
be the case when the number of correctly identified correspondences (true posi-
tives) is high. Consequently, only a few correspondences should be missed (false
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negatives). Moreover, the results of a good matcher also contain as few erroneous
correspondences (false positives) as possible.

2.2 Related Work

The foundations for research in process model matching can be found in various
works on schema and ontology matching [1, 8] as well as in research on process
model similarity. Such process similarity techniques exploit different sources of
information such as text [5, 12], model structure [9, 4], or execution semantics
[13, 26]. An overview is provided in [5].

Approaches for process model matching typically derive attributes of activity
pairs from these techniques and aggregate these attribute in a predefined static
classifier in different ways (see e.g. [24, 14, 11]). In [23], the idea of a more dy-
namic assembly of matchers is discussed. Therefore, matchers are allocated to
properties of process model pairs. By evaluating these properties within a model
collection, appropriate matchers are selected and composed.

However, up until now there is no automated technique for process match-
ing available that achieves results comparable to those in the field of ontology
matching. In fact, a comparison of techniques developed by different researchers
revealed that the best matcher achieved an f-measure of 0.45 on the test data
sets [3]. This calls for improving precision and recall of existing techniques. To
this end, we investigate suitable matching indicators and user feedback.

3 Information for User Feedback Analysis

The goal of analyzing user feedback is to reveal models that can predict user
decisions with a high chance. Therefore, indicators whose values are highly cor-
related to the decisions, i.e., whether activity pairs correspond or not, are needed
[19]. For example, label similarity is generally seen as a good indicator: activity
pairs with a high similarity tend to correspond more likely than those with a low
similarity. As various information sources, e.g. structure and execution seman-
tics, can be considered, we systematically identify suitable indicators following a
two-step approach. In Subsection 3.1, we present indicators derived from related
work and investigate their potential for feedback analysis in Subsection 3.2.

3.1 Indicator Definitions

Approaches from related work rely on various characteristics of activities to
judge whether activities correspond. From analyzing related work, we identified
five categories: position and neighborhood based on the model structure, label
specificity and label semantics referring to the labels, and execution semantics.
Thereby, some approaches rely on a certain modeling notation or do not explicitly
define the characteristics. In order to assess whether these characteristics can be
used for feedback analysis, we present indicators that follow the approaches from
related work, but that are suited to our notation.
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Basically, we define indicators as similarity functions from the set of activity
pairs A2 to the interval [0, 1], where a value of 0 indicates total dissimilarity,
a value of 1 identity, and values in between a degree of similarity. Most of the
presented indicators utilize an attribute function at : A→ R≥0 which returns a
value measured with regard to a certain property of an activity. Those indicators
are referred to as attribute indicators. Given an activity pair they indicate the
similarity of these activities with regard to a certain attribute.

Definition 2 (Attribute indicator). Let A1, A2 be two sets of activities and
a1 ∈ A1, a2 ∈ A2 be two activities. The attribute indicator iat is then defined as:

iat(a1, a2) =


0 max

a∈A1

(at(a)) = 0 ∧ max
a∈A2

(at(a)) = 0

1− | at(a1)
max
a∈A1

(at(a)) −
at(a2)

max
a∈A2

(at(a)) | else

Position. Process models might represent the same abstract process. In such
cases, it is more likely for activities at similar positions to correspond than for
activities whose positions differ. This idea is pursued in the Triple-S approach,
which takes the relative position of nodes in the process models as a similarity
indicator [3]. According to our definition, each process model has one start and
one end node. Thus, we view these nodes as anchors and consider the distances
to these nodes, i.e. the smallest number of activities on paths from a node to the
start or end node, as attributes to define the attribute indicators σstartpos , σendpos .

The position of an activity can also be defined with reference to the Refined
Process Structure Tree (RPST) [24, 23]. The RPST is a hierarchical representa-
tion of a process model consisting of single-entry-single-exit fragments [20]. Each
RPST fragment belongs to one of four structured classes: Trivial fragments (T)
consist of two nodes connected with a single edge. A Bond (B) represents a set of
fragments sharing two common nodes. Polygons (P) capture sequences of other
fragments. In case a fragment cannot be classified as trivial, bond, or polygon,
it is categorized as a rigid (R). Fig. 2 presents the RPST of the process A.

The idea is to view the depth of the non-trivial fragments that contain the
activity as an attribute for the position of the model structure (σrpstpos ), i.e., the
deeper an activity is located in the RPST the more decision points need to be
passed to get to the activity. As activities have at most one incoming and at most
one outgoing edge, there are no more than two trivial fragments an activity is
part of and these trivial fragments are part of the same non-trivial fragment.

Table 1 illustrates the position indicators for (α1, β1) from the running ex-
ample. Both activities have a distance to the start event of 0. As the structure
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Table 1: Attribute indicators for an activity pair from the running example.

a1 max
a∈AA

b1 max
a∈AB

(a1, b1) a1 max
a∈AA

b1 max
a∈AB

(a1, b1)

σstart
pos 0 3 0 3 1.00 σ|label| 2 2 2 3 0.67

σend
pos 3 3 3 3 1.00 σ 4 4 4 4 1.00
σrpst
pos 2 3 3 3 0.67 σ+ 0 0 0 1 0.00

σmodel
neigh 1 3 2 4 0.83 σ‖ 0 1 1 1 0.00

σrpst
neigh 2 2 0 0 0.00

of both processes is similar they also have the same distance to the end node.
Thus, both attribute indicators are 1. As activity β1 is located in a parallel block
and α1 is not, their RPST positions differ leading to an indicator value of 0.67.

Neighborhood. Whereas the position attributes consider the global location
of activities in a model, we now investigate the local structure. In this regard,
the Triple-S approach [3] considers the ratios of incoming and outgoing edges.
As our definition requires activities to have at most one incoming and at most
one outgoing edge these ratios would not provide much information. Instead, we
define the structural neighborhood indicator (σmodelneigh ) based on the undirected
version of the process model. We count the activities that are connected to an
activity by at least one sequence of distinct edges not containing any activities.

We also consider the RPST for comparing the local structure of activities
and define the RPST neighborhood indicator (σrpstneigh). Therefore, we determine
the trivial fragments an activity is part of and count their sibling fragments.

Table 1 also shows examples for the neighborhood indicators. α1 has one
neighbor (α2) and in process A α3 has the most neighbors (α2, α4, α5). Similarly,
β1 has two neighbors (β2, β3) and the maximum is four neighbors for β3 (β1, β2,
β4, β5). Thus, the structural neighborhood of both activities is similar (0.83).
The RPST neighborhood indicator is 0, because maximum in process B is 0.
Each activity belongs to two trivial fragments which are the only parts of a
polygon fragment. Therefore, the size of the neighborhoods of these fragments
is always 0 and therewith the maximum in process B, too.

Label Specificity. According to an analysis of matching challenges in [11], label
specificity (i.e., one label containing more detailed information than another)
had a big impact on the identification of correspondences. Thus, we assume
activities with a similar specificity to correspond more likely than those with
different specificities. An attribute indicator in this regard is defined upon the
label length (σ|label|), i.e., the more words a label contains, the more specific
information it provides. It is considered for matcher selection in [23] and for label
pruning in [11]. The label length is defined as the number of individual words
in a label without common stop words like “the”, “if”, and “to”. The individual
words of an activities label are returned by the function Ω : L → P(W). As
Table 1 shows that |Ω(α1)| = |Ω(β1)| = 2. Moreover, the maximum label length
in process A is 2. In process B β3 (“Is student qualified”) has the longest label of
length 3 whereas β2 (“Documents in Time?”) consists of two individual words,
because of “in” being a stop word. Thus, the label length indicator is 0.67.
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Table 2: Word occurrences and term frequencies in the admission processes

check application documents complete
occurrences 1 2 3 1
term frequency 0.33 0.67 1.00 0.33

We further assume frequently occurring words to be more specific than less
frequently occurring words. This idea is also pursued for label pruning in [11].
Thus, we rely on the term frequency which is well known in information retrieval.
It is defined as the number of occurrences of a certain word in a document. On
the one hand, we take the union of all activity labels in the model collection as
a document and define the function tfcoll : W → [0, 1] to return the number of
a word’s occurrences in the model collection divided by the maximum number
determined for a word in the collection. On the other hand, we define tf2p :
W → [0, 1] by using all activity labels in the examined model pair to create the
document. Based thereon, we define the term frequency indicators σcolltf and σ2p

tf .

Definition 3 (Term frequency indicators). Let a1, a2 be two activities.
Then, the term frequency indicators σcolltf and σ2p

tf are defined as:

σcolltf (a1, a2) = 1− | 1
|Ω(a1)| ∗

∑
ω∈Ω(a1)

tfcoll(ω)− 1
|Ω(a2)| ∗

∑
ω∈Ω(a2)

tfcoll(ω)|

σ2p
tf (a1, a2) = 1− | 1

|Ω(a1)| ∗
∑

ω∈Ω(a1)

tf2p(ω)− 1
|Ω(a2)| ∗

∑
ω∈Ω(a2)

tf2p(ω)|

Table 2 illustrates the model pair based indicator. “Documents” occurs most
often in the pair. Thus, the term frequencies are yielded by dividing the occur-
rence values with 3. As the average term frequency of α1 (“Check Application”)
is 0.50 and for β2 (“Documents Complete?”) it is 0.67, the indicator yields 0.83.

Label Semantics. Every matching approach relies on the calculation of label
similarities as an indicator to which degree activities constitute the same func-
tionality. Prior research has shown that the basic bag-of-words similarity [11]
yields good results [3]. It calculates a symmetric similarity score σ.ω : W2 →
[0..1] for each pair of individual words (ω1, ω2) with ω1 ∈ Ω(a1) and ω2 ∈ Ω(a2).
Based thereon, it is then defined as the mean of the maximum similarity score
each individual word has with any of the individual words from the other label.

Definition 4 (Basic bag-of-words similarity). Let a1, a2 be two activities.
The basic bag-of-word similarity σ.λ is then defined as:

σ.λ(a1, a2) =

∑
ω1∈Ω(a1)

max
ω2∈Ω(a2)

(σ.ω(ω1,ω2))+
∑

ω2∈Ω(a2)

max
ω1∈Ω(a1)

(σ.ω(ω1,ω2))

|Ω(a1)|+|Ω(a2)|

Table 3 illustrates the computation of the basic bag-of-words similarity for
α1 (“Check Application”) and β2 (“Documents complete?”). To compute the
similarity of a pair of words, we relied on the maximum of the Levenshtein
similarity [15] and the Lin similarity [16]. This measure sees high values in both,
syntax (Levenshtein) and semantics (Lin), as evidence for similarity.
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Table 3: Example for the basic bag-of-words similarity

document complete max
check 0.78 0.25 0.78
application 0.11 0.18 0.18
max 0.78 0.25 σ.λ = 0.50

Behavior. Lastly, there are approaches that account for the behavioral context
of activities within a process model. Such behavioral attributes are proposed as
indicators for matcher selection [23], considered for probabilistic match optimiza-
tion [14] and also implemented in the ICoP framework [21]. The idea is that cor-
responding pairs have similar execution semantics, whereas non-corresponding
pairs do not. Therefore, we rely on the notion of behavioral profile [22] which
comprises three relations between activities in a process model defined upon
the set of all possible execution sequences. Two activities are in strict order
(a1  a2), if there exist execution sequences that contain a1 and a2, but in all
such sequences a2 is executed after a1. Two activities are exclusive (a1 + a2) if
no sequence contains both activities, or interleaving (a1 ‖ a2) if there are se-
quences in which a1 occurs before a2 and there are sequences in which a2 occurs
before a1. For each type of relation, we count the number of relations the given
activity participates in. Based on these counts we define the attribute indicators
σ , σ+ and σ‖ which are illustrated in Table 1, too. While the (α1, β1) have
an identical number of strict order relations (their execution can be followed by
the execution of up to four activities), they do not share similar characteristics
with regard to the other behavioral attributes. On the one hand, there are no
exclusive activities in process A at all. Thus, the maximum in process A and the
according attribute indicator yield a value of 0. On the other hand, there is one
interleaving relation in each process (α4 ‖ α5 and β1 ‖ β2). As β1 is part of one
of these relations and α1 not, the according indicator is 0.

3.2 Applicability Assessment

Having a set of indicators, we now need to analyze whether they can be used to
derive models that can predict user’s decisions. For an indicator to be applicable,
there must be a correlation between its values or value ranges and the classes.

As the suitability of an indicator cannot be predicted in general, it must be
estimated with regard to particular data sets (i.e., process collections) for which
the set of correspondences is known (i.e., a gold standard of correspondences
exists). To this end, we used the two process collections and respective gold
standards from the matching contest in 2013 [3]: processes on birth certificates
and university admission. More precisely, we took the set of all corresponding and
the set of all non-corresponding activity pairs for both data sets as representative
samples for both classes. At this point, it should be noted that some of the process
models in the university admission data set are not sound, which is a necessary
prerequisite for computing the behavior attributes. Thus, we only considered the
sound university admission models for these attributes.
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Table 4: p-values of the Kolmogorov–Smirnov test for the birth certificate (gray
rows) and the university admission (white rows).

σstart
pos σend

pos σrpst
pos σmodel

neigh σrpst
neigh σ|label| σ

coll
tf σ2p

tf σ.λ σ σ+ σ‖
0.001 0.010 0.967 0.054 0.010 0.581 0.000 0.111 0.000 0.000 0.111 0.211
0.000 0.367 0.155 0.286 0.468 0.210 0.016 0.699 0.000 0.001 0.864 0.393

To assess the correlation of classes and indicator values, we first examined the
distributions of indicator values within both classes. The rationale is that classes
can only be assigned to value ranges if the values are distributed differently
across the classes. Therefore, we randomly drew 100 activity pairs from each
class per attribute. The reason is that the number of non-corresponding activity
pairs is roughly 30 times as high as the number of corresponding pairs in both
data sets, which would distort our analysis. Next, we conducted a two-sided
Kolmogorov-Smirnov [17] test at a significance level of 0.01 with these samples.
The neutral hypothesis of this test is that the examined distributions are equal
and will be rejected if the yielded p-value is lower than the significance level.
Table 4 summarizes the p-values yielded for each attribute. Bold values highlight
p-values that are below the significance level.

As can be seen from the table, there are only three attributes (σstartpos , σ.λ, and
σ ) for which the null hypothesis is rejected in both cases. From this analysis
these three attributes seem suitable for classification, but we will also consider
σcolltf as its p-value are only marginally larger than the significance level.

We further substantiated our analysis by investigating how well each class
can be assigned to a value range of an indicator. Therefore, we measured the
information gain [19], a well established measure from statistics, as an indicator
for the entropy of class assignments within subsets of activity pairs with regard
to all pairs. More precisely, we calculated the values of all activity pairs for
each of the four attributes (σstartpos , σ.λ, σcolltf , σ ). We then determined two
subsets of pairs with regard to one of the attributes and to a threshold. For
all pairs in the first subset the attribute value is smaller than the threshold,
whereas the values of pairs in the second subset are larger than it. We considered
all possible separations of activity pairs that satisfied this rule and chose the
separation with the highest information gain for each attribute. The rationale is
that the respective subsets constitute the best separation of corresponding and
non-corresponding pairs with regard to the considered attribute. As can be seen
from Table 5, σ.λ yields the highest and σstartpos the lowest information gain, σcolltf

and σ are in between. To convey a better intuition for this measure, Fig. 3
shows the distribution of the relative value frequencies for σ.λ and σstartpos as well

as for σcolltf as a representative for the indicators with medium information gains.

Table 5: Information gains for the selected attributes for the birth certificate
(gray rows) and the university admission (white rows).

σ.λ σcoll
tf σ σstart

pos

0.056 0.023 0.016 0.005
0.027 0.010 0.007 0.002
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σ.λ σcoll
tf σstart
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1

Fig. 3: Box plots for corresponding (c) and non-corresponding (n) activity pairs
representing three indicators for the birth certificate (upper row) and the uni-
versity admission (lower row) data sets.

According to these box plots a threshold at about 0.4 would yield a good
classifier for σ.λ as many corresponding and only a few non-corresponding activ-
ity pairs have values larger than this threshold. For the other indicators whose
distributions differ only slightly there is no threshold which would classify that
well. Thus, we only consider σ.λ for user feed back analysis and introduce a
mixed-initiative approach which aims at increasing the applicability of σ.λ for
separating activity pairs in the next section.

4 Word Similarity Adaptation

The incorporation of user feedback opens the opportunity to analyze the user’s
decisions and adjust the matching process accordingly. Here, we rely on correc-
tions made by the user to proposed alignments. Therefore, we let the user select
a pair of process models and automatically determine an alignment. Presenting
it to the user, she is asked to remove incorrect and add missing correspondences.
These corrections are passed to the algorithm which examines the feedback and
adapts its classification mechanism. Afterwards, the next matching process can
be started by the user. Fig. 4 illustrates this basic approach.

As outlined in Section 3, we will only consider the basic bag-of-words simila-
rity σ.λ for correspondence identification. Given a predefined threshold we clas-
sify all activity pairs with a basic bag-of-words similarity score higher than or
equal to the threshold as correspondences.

Although our analysis shows this attribute to have the most desirable pro-
perties, there will still be false positives and false negatives leading to an unsat-
isfactory matching quality [3]. Hence, it is the goal of the feedback analysis to
understand why mistakes were done and how they could have been avoided.

With regard to the matching process a false positive was suggested because
the similarity of the activity pair was estimated too high, i.e., it should have been
lower than the threshold. In case of a false negative, it is the other way around,
i.e., the similarity should have been higher than the threshold. The main reasons
for such wrong assessments originate not directly in the basic bag-of-words sim-
ilarity, but in the underlying word similarity measure σ.ω. Those measures are
either syntactic, not considering word meaning, or semantic being based on ex-
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ternal sources of knowledge like lexical databases or corpora [18]. As the creation
of such databases or corpora incurs huge manual effort, usually matchers rely
on universal ones. In both cases, i.e. syntactic matching or semantic matching
using universal corpora, the word similarity measures do not sufficiently account
for domain-specific information, e.g., technical vocabulary or abbreviations, and
thus introduce errors.

Consequently, when the user feedback indicates a misclassification of an ac-
tivity pair, our learning approach checks which pairs of words contributed to
that misclassification. According to the definition of the basic bag-of-words sim-
ilarity, a word pair contributes to an activity pair classification each time it
yields the highest similarity score for one word in the respective activity labels.
Therefore, in order to adjust the word similarities to the domain characteristics
of the considered process model collection, we decrease the similarity of a pair of
words whenever it contributed to a false positive, and increase the similarity for
a false negative. We do so by defining two counting functions: γfp : (ω1, ω2)→ N
returns the number of counted false positive contributions for a word pair, and
γfn : (ω1, ω2) → N analogously for false negative contributions. Based on these
counters, we introduce a word similarity correction term.

Definition 5 (Word similarity correction). Let ω1, ω2 be two words. Fur-
thermore, let ρfp, ρfn ∈ R be two predefined learning rates. The correction func-
tion δ :W2 → R is then defined as:

δ(ω1, ω2) := ρfp × γfp(ω1, ω2) + ρfn × γfn(ω1, ω2)

Note that the counts are multiplied with learning rates; together with the
threshold these are the control parameters of the approach.

Given this correction term and an ordinary word similarity measure σ.ωo, we
introduce the adaptive word similarity σ.ωα.

Definition 6 (Adaptive word similarity). Let ω1, ω2 be two words. Further-
more, let δ : W2 → R be a function that returns a correction value for a word
pair. The adapting word similarity function σ.ωα :W2 → [0..1] is then defined as:

σ.ωα(ω1, ω2) :=

1 σ.ωo(ω1, ω2) + δ(ω1, ω2) > 1
0 σ.ωo(ω1, ω2) + δ(ω1, ω2) < 0
σ.ωo(ω1, ω2) + δ(ω1, ω2) else

Since σ.ωo(ω1, ω2) + δ(ω1, ω2) might return a value outside the interval [0, 1],
but any σ.ω function is expected to stay within these bounds, we enforce the
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bounds as per the first and second case in the above definition. We then use
σ.ωα as σ.ω in the basic bag-of-words similarity when determining the alignment
between two process models.

To illustrate this approach, we refer to Table 3 which outlines the computa-
tion of σ.λ for (α1, β1). In previous work [11] we found that a threshold above 0.6
yields good results. In this case, the matching algorithm will classify the activity
pair as non-corresponding. Collecting user feedback this will be revealed as a
wrong classification. Thus, the false negative counter will be increased by 2 for
(“check”, “complete”) as this word pair yielded the highest value for both words
and by one for (“complete”, “check”) and for (“complete”, “application”). Hav-
ing ρfp set to 0.1 the adaptive word similarity will now roughly be 0.6. Thus, an
activity pair with the labels of α1 and β1 will now be classified as corresponding.

5 Evaluation

This section has two objectives. First, we want to analyze if our mixed-initiative
approach improves the results of existing matchers with regard to the amount
of missing and incorrect correspondences. Second, we aim to derive strategies to
minimize the amount of user feedback required to achieve high matching quality.

Experiment Setup. Our evaluation utilizes the birth certificate and the univer-
sity admission data sets from the matching competition [3]. The gold standards
serve a dual purpose here: (i) assessing the matching quality and (ii) simulating
user feedback. Therefore, going through a sequence of model pairs, we first deter-
mine an alignment for the current pair and assess the quality of this alignment.
That is, we determine the number of true positives (TP), false positives (FP)
and false negatives (FN) given the gold standard. We then calculate the stan-
dard measures of precision (P) (TP/(TP + FP )), recall (R) (TP/(TP + FN)),
and f-measure as their harmonic mean (F) (2× P ×R/(P +R)). Next, we pass
the sets of false positives and false negatives to the algorithm which adapts the
word similarities accordingly. Then, we move on to the next pair. The average
(AVG) and the standard deviation (STD) of all measures and model pairs are
used to assess the approach’s quality. These are calculated either as a running
statistics during learning, or as an overall quality indicator after all model pairs
have been matched and the respective feedback has been considered.

We sampled the space of possible threshold values over the interval [0,1] in
steps of 0.05 as well as the space of possible false positive and false negative
learning rates over the interval [0,0.2] in steps of 0.01. Moreover, we randomly

Table 6: Best results from matching contest and for word similarity adaptation

Birth Certificate University Admission
Precision Recall F-Measure Precision Recall F-Measure

Approach AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD

Baseline .68 .19 .33 .22 .45 .18 .56 .23 .32 .28 .41 .20
Adaptive .73 .15 .67 .24 .69 .18 .60 .20 .56 .25 .58 .21

12



generated different model pair sequences in order to check the influence of the
model pair order on the quality. We used the maximum of the Levenshtein [15]
and the Lin [16] similarities as the ordinary similarity measure.

Matching Results. Table 6 compares the results of our mixed-initiative ap-
proach to a baseline comprised of the best results from the matching competition
[3], i.e., the RefMod-Mine/NSCM results for the birth certificate and the bag-
of-words similarity with label pruning for the university admission data set. The
results for the mixed-initiative approach were determined for collecting user feed-
back over all model pairs. We observed an increase of the f-measure by 0.24 for
the birth certificate and by 0.17 for the university admission data set. While the
precision remained stable, there was a dramatic improvement in the recall.

Deriving strategies. To derive strategies for minimizing the user workload,
we first investigated if the order in which process model pairs are considered
by learning had impact on the overall quality. For this purpose, we determined
the quality of the basic bag-of-words similarity for each model pair. Then, we
split the model pairs for each data set into three equal-sized classes, i.e., model
pairs with a high, a medium, and a low f-measure. We generated three sequences
(high, medium, and low) where each sequence starts with 12 model pairs of the
respective class, randomly ordered, followed by the remaining 24 model pairs,
also in random order. Fig. 5 shows the running average f-measure after the ith
iteration for all three sequences per data set. The results suggest that the order
only has a small impact on the final quality, since the average f-measures converge
to roughly the same value as the number of iterations increases. However, the
running average can be misleading: if we start learning with pairs that are already
matched well before learning (as in the high case), how much can we learn from
them? To examine this aspect, we ran a different experiment, where learning is
stopped after the ith iteration, and the f-measure over all pairs is computed.
The results are shown in Fig. 6, left. Looking at the data, one might hypothesize
that here the user workload per model pair is lower in the high case than for the
other sequences. Thus, we also counted the number of changes a user has to do
until learning is stopped. These effort indicators are shown in Fig. 6, right.

First of all, it can be seen that – regardless of the order – the amount of cor-
rections is roughly growing linearly without big differences across the sequences.
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Furthermore, the f-measure curves for all three sequences approach each other
with a growing number of iterations used to learn. When learning is stopped
early, the best results are yielded for the low and the medium sequences: feed-
back on models has a larger impact if matching quality is low beforehand. Finally,
regardless of the order, 2/3rds of the improvements are obtained from learning
from about half the model pairs (i = 16). In practice it is not possible to sort
model pairs with regard to the f-measure upfront. But as feedback collection and
learning are progressing, the relative improvements can be measured. As soon
as the improvements from additional feedback level off, learning can be stopped.

Discussion. The evaluation showed that the incorporation of user feedback led
to strong improvements compared to the top matchers of the matching competi-
tion [3]. When feedback was collected for all model pairs, the f-measure increased
by 41% and 53% for the two data sets. Even when reducing the workload by only
collecting feedback for half of the model pairs, big improvements were obtained.

The major concern of experiments on process model matching relate to ex-
ternal validity, i.e. in how far the results of our study can be generalized [25].
In this regard, the size of the two data sets restricts the validity of both, the in-
dicator assessment and the evaluation. Furthermore, the processes in both data
sets represent the same abstract processes. Hence, some structural and behav-
ioral characteristics might be underrepresented limiting the significance of the
indicator assessment. This problem also has implications on the evaluation of
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the word similarity adaptation, as the processes only cover a small number of
tasks from both domains and a rather limited vocabulary used to describe them.
Thus, words might tend to occur more often than in other model collections.
Consequently, feedback might be collected for the same word pair more often
than usual limiting the generalization of the quality improvements and strategies
to minimize the user’s efforts. Lastly, the indicator assessment does not allow for
a general judgement on the sources of information, as there might exist other
encodings of indicators which better exploit these characteristics. Therefore, en-
larging the data sets by including data sets which characteristics differ from the
once considered in this paper and considering more indicators are two important
steps in future work.

6 Conclusions and Future Work

In this paper, we investigated user feedback as a mean for improving the qual-
ity of process model matching. Thus, we first reviewed indicators derived from
related work and assessed their potential as information sources for feedback
analysis. This assessment showed that, from the known sources of information,
only the label based similarity of activities can reliably be applied to decide
whether an activity pair corresponds or not. In a next step, we designed a
mixed-initiative approach that adapts the word similarity scores based on user
feedback. We evaluated our approach with regard to established benchmarking
samples and showed that user feedback can substantially improve the match-
ing quality. Furthermore, we investigated strategies to reduce the user workload
while maximizing its benefit.

In future research, we plan to investigate further strategies for decreasing the
user workload while maximizing the matching quality. This comprises guidelines
for choosing model pairs (or activity pairs) the user needs to provide feedback
on. Another direction we plan to pursue is the extension of our approach to
better account for semantic relations and co-occurrences of words within labels.
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