
Journal of Information & Computational Science 12:3 (2015) 957–964 February 10, 2015
Available at http://www.joics.com

A Comparative Evaluation of String Similarity Metrics

for Ontology Alignment ?

Yufei Sun a,∗, Liangli Ma a, Shuang Wang b

aDepartment of Computer Engineering, Naval University of Engineering, Wuhan 430033, China
bCollage of Liberal Arts, Hunan Normal University, Changsha 410205, China

Abstract

Ontology alignment is regarded as the most perspective way to achieve semantic interoperability among
heterogeneous data. The majority of state of art ontology alignment systems used one or more string
similarity metrics, while the performance of these metrics were not given much attention. In this paper
we first analyze naming variations in competing ontologies, then we evaluate a wide range of string
similarity metrics, from the experimental result we can get some heuristic strategies to achieve better
alignment results with regard to effectiveness and efficiency.

Keywords: Ontology Alignment; Name Matching; String Similarity Metrics; Comparative Evaluation

1 Introduction

The rapid progress of information and communication technologies have made available a huge
of heterogeneous information on the web. To overcome the semantic heterogeneity and integrate
distributed information sources, various solutions have been proposed, among which ontology is
the most perspective. While since the decentralized nature of semantic web, there must have some
variations in representation, so ontologies themselves are heterogeneous even in the same domain.
Therefore, if we want to achieve information interoperability, firstly, we must find semantic rel-
evance between entities of competing ontologies, that is ontology alignment(for a comprehensive
survey of ontology alignment, see [1]).

Existing approaches of ontology alignment are mostly based on calculating similarities between
entities of two ontologies by utilizing various types of features [2]. Exploiting name features is
the most direct and effective way, string similarity metrics are pervasive in almost all state of art
ontology alignment systems. RiMOM [2] used edit distance, vector space and WordNet, Falcon
[3] used ISUB [4], TF-IDF, and YAM++ [5] used Jaro, Smith-Waterman, and so on.

?Project supported by the Pre-research Funds from PLA General Armament of China (No. 9140A27040413JB
11407).

∗Corresponding author.
Email address: sharesorrows@163.com (Yufei Sun).

1548–7741 / Copyright © 2015 Binary Information Press
DOI: 10.12733/jics20105420

958 Y. Sun et al. / Journal of Information & Computational Science 12:3 (2015) 957–964

The metrics usually used for ontology alignment are mostly derived from some other research
community, such as duplicated record detecting, record linkage, object identification, information
integration and nature language processing. So, it’s valuable to analyze these metrics’ performance
for ontology alignment tasks, in particular, this paper seek to answer the questions below:

(1) What is the most effective and efficient string similarity metrics for ontology alignment task?

(2) Does the hybrid method indeed improve the performance in terms of effectiveness and effi-
ciency?

(3) When faced with a certain ontology alignment task, how to select string similarity metrics
taking the accuracy and efficiency into account?

In the following we discuss these points on the basis of our experiences from the comparison of
these metrics, and discussed rules to select metrics with regard to accuracy and efficiency. In
Section 2 we discuss entities’ name variations in competing ontologies. The similarity metrics
usually used in ontology alignment are discussed in Section 3. The comparative experimental
evaluation and results are addressed in Section 4. We conclude this paper in Section 5.

2 A Taxonomy of Name Variations

From our informal analysis performed on a large amount of heterogeneous ontologies, 8 primary
categories of the entities names’ variations were classified:

Type 1. Syntactic similar but different naming conventions(punctuation, capitalization, spac-
ing, and so on) are used. e.g., “E-mail” vs. “email”, “url” vs. “U.R.L.”, etc.

Type 2. Synonym. e.g., “Participant” vs. “Attendee”, or they have similar meaning in a
specific domain, e.g., “contribution” vs. “paper” in the conference organization domain, etc.

Type 3. Word omissions. e.g., “email” vs. “hasEmail”, “Regular author” vs. “author”, etc.

Type 4. Abbreviations. e.g., “PC Member” vs.“ProgramCommitteeMember”, or acronym,
e.g., “WWW” vs. “World Wide Web”, etc.

Type 5. Misspelling. e.g., “sponsor” vs. “sponzor”, etc.

Type 6. Two names are tokenizable and there tokens (or only a part of tokens) is syntactic or
meaning similar. e.g., “hasSurname” vs. “has the last name”, “Camera ready contribution” vs.
“Final manuscript”, etc.

Type 7. Do not belonging to any categories above, but they surely denote the same entity. e.g.,
“has a review expertise” vs. “hasRating”, “Speaker” vs. “Active conference participant”, etc.

Type 8. Irregular. This can be caused by synthetic replace with random strings, or just use an
identifier to denote entities. e.g., “volume” vs. “zsbdgz”, etc.

Sometimes even, entities names’ variations are composed by several kinds of name variations
discussed above. Among these variations, from our experiences, type 1, type 3, type 6 happen
first place, type 2, type 4, type 7 come second, and type 5, type 8 at least.

Y. Sun et al. / Journal of Information & Computational Science 12:3 (2015) 957–964 959

3 String Similarity Metrics

String similarity metrics usually used in ontology alignment systems can be classified into two
groups: string-based and language-based. We covered some typical metrics in detail that will be
evaluated in Section 4 (show in bold).

3.1 String-based Similarity Metrics

String-based similarity metrics calculate syntactic similarity of two names, they can divide into
two groups: character-based metrics measures similarity depending only on the appearance and
sequence of characters; while token-based string similarity metric first tokenize two strings into
sets of tokens (words), then compute the similarity between two sets.

3.1.1 Character-based

• Edit distance The edit distance between two strings is the minimum cost of edit operations
need to transform one string into another. Each operation has a cost function associated,
in the simplest form, each has cost 1, this is also referred to Levenstein distance. The edit
distance can address the typographical errors of name variations very well, and the distance
can be transformed to similarity by subtracting normalized distance by 1:

sim(s1, s2) = 1− Levenstein(s1, s2)

max{|s1|, |s2|} (1)

• Monge-Elkan The Monge-Elkan is a variation of Smith-Waterman with the match matrix
scores all entries 0 except that an exact match scores 5, and approximate matches score
3. Two characters are approximate match if they fall into one of the following set: {d t}
{g j} {l r} {m n} {b p v} {a e i o u} {, .}. It uses an affine gap model with gap start
penalties -5 and gap continual penalties -1. The Monge-Elkan is suit for abbreviations of
name variations mostly. More information about this metric can find in [6].

• Jaro-Winkler Given two strings s1 = a1...aN and s2 = b1...bL, define a character ai in s1

to be an common if there exist a character bj = ai in s2, such that |i−j| < min(|s1|, |s2|)/2.
Let s′1 = a′1...a

′
m be the common characters in s1 (in the same order), and Let s′2 = b′1...b

′
m

be the common characters in s2, define a transposition of s′1 and s′2 to be a position i such
that ai 6= bi. Let m be number of the common characters and t be half the number of
transpositions, The Jaro distance is defined as:

Jaro(s1, s2) =

0 if m = 0,

3 ·
(m

|s1| +
m

|s2| +
m− t

m

)
otherwise.

(2)

Winkler proposed a variant of this metric that prefer to two strings has common prefix, let
l′ be the longest common prefix of s1 and s2, l = max(4, l′), Jaro-Winkler is defined as:

Jaro−Winkler(s1, s2) = Jaro(s1, s2) + l · p(1− Jaro(s1, s2)) (3)

where p is a variable, and p < 0.25, usually set to 0.1.

960 Y. Sun et al. / Journal of Information & Computational Science 12:3 (2015) 957–964

• ISUB ISUB [4] is a so-called new metric specially developed for ontology alignment, it
argue that similarity is based on commonalities as well as differences between two strings
being compared. ISUB is defined as:

sim(s1, s2) = comm(s1, s2)− diff(s1, s2) + winkler(s1, s2) (4)

The comm(s1, s2) first finds the longest common substring, then removes it and searches
for the next longest common substring repeatedly until there is no one retain. The sum of
the lengths of i iterations’ substrings is then scaled by the length of original strings:

comm(s1, s2) =
2 ·∑i |maxComSubstringi|

|s1|+ |s2| (5)

The diff(s1, s2) is defined as:

diff(s1, s2) =
uLens1 ∗ uLens2

p + (1− p) ∗ (uLens1 + uLens2 − uLens1 ∗ uLens2)
(6)

where uLen is a function return the length of unmatched substring leaved by the iteration
step from the initial strings scaled with the original strings’ length. p is a factor, the author
argue that 0.6 to be a good choice.

The winkler(s1, s2) is the improvement of the result using the method introduced above.
It should be noted that this metric return a similarity value range from −1 to 1.

• N-gram N-gram first convert each string into a set of n-grams, for example, if the string is
“paper” and n=3, the result would be pap, ape, per, an improvement is to append special
characters prior to the start of and after the end of string, this would result {##p, #pa,
pap, ape, per, er%, r%%}. Then the Dice coefficient will used resulting a similarity:

sim(set1, set2) =
2 · |set1 ∩ set2|
|set1|+ |set2| (7)

We implemented the improved variation with n equal to 3 in the experiment.

3.1.2 Token-based

• Jaccard The Jaccard metric is defined as the intersection of the two sets of words dividing
by the union of them, let A and B are the sets of words of s1 and s2 respectively, then:

Jaccard(s1, s2) =
|A ∩B|
|A ∪B| (8)

• Level2 Monge and Elkan also proposed a set-based similarity metric in their paper [6].
The SecondString [7] library implements this metric as Level2, so that is why we call it
Level2 here. Let sim′ be a base similarity metric (e.g., Levenstein, Jaro-Winkler, etc.), and
{a1, a2...an}, {b1, b2...bm} be the set of words of s1 and s2, respectively. Then the similarity
is defined as:

sim(s1, s2) =
1

|s1|
m∑

i=1

n
max
j=1

{sim′(ai, bj)} (9)

In order to ensure symmetry, |s1| must be no more than |s2|. We used the Level2 with
Jaro-Winkler in the experiment.

Y. Sun et al. / Journal of Information & Computational Science 12:3 (2015) 957–964 961

• Soft TF-IDF TF-IDF stands for term frequency-inverse document frequency, which was
widely used in information retrieval community. Let TFw,s be the number of times word
w ∈ s appears in two ontologies, divided by the total number of words in this ontologies,
IDFw be the inverse of the fraction of names in ontologies that contain word w. So w ∈ s
has weight V ′(w, s) = log(TFw,s + 1) · log(IDFw). Then each weight in a string is scaled:

V (w, s) = V ′(w, s)

/
√ ∑

w′∈s

V ′(w′, s) (10)

Finally, using the cosine similarity, this metric can be defined as:

TFIDF (s1, s2) =
∑

w∈s1∩s2

V (w, s1) · V (w, s2) (11)

Soft TF-IDF [7] is a variation of TF-IDF, in which similar tokens (using an base similarity
metric) are only measured once in word sets s1 and s2, and similar tokens also considered
in s1 ∩ s2. Again let sim′ be a secondary similarity metric, then the similarity is defined as:

sim(s1, s2) =
∑

w∈s1
V (w, s1) · V (v, s2) ·max

v∈s2

{sim′(w, v)} (12)

where max
v∈s2

{sim′(w, v)} finds the maximal similarity word (which must larger than a thresh-

old θ) v∈s2 with w. We used the Soft TF-IDF with Levenstein 0.9 in the experiment.

3.2 Language-based Similarity Metrics

We only discuss the semantic similarity based on WordNet, for a comprehensive survey of WordNet
based semantic similarity, please see [8]. One known approach is Lin [9]. Lin’s conceptual
semantic similarity is defined as:

sim(ci, cj) =
2× log p(lso(ci, cj))

log p(ci) + log p(cj)
(13)

where lso(ci, cj) is the lowest super-ordinate of ci and cj in the taxonomy, p(ci) is the probability
of node ci by which are calculated statistics from a large corpus.

It is important to note that, semantic similarity metrics measure the similarity between two
concepts rather than two words, it’s need to determine the meaning of words before calculate
their similarity. Let s(wi) be the set of concepts of word wi, there still has an compromise:

sim(wi, wj) = max
ci∈s(wi),cj∈s(wj)

{sim(ci, cj)} (14)

3.3 Hybrid Methods

• Soft TF-IDF with Lin and Levenstein (SLL) Different from the soft TF-IDF metric,
when calculate the similarity between tokens, it first use the Lin metric, in the case of Lin
metric return a value less than a predefined threshold (e.g., 0.8), then use the Levenstein
metric. We implemented Soft TF-IDF with Lin and Levenstein 0.9 in the experiment.

962 Y. Sun et al. / Journal of Information & Computational Science 12:3 (2015) 957–964

• Max This method uses the maximal similarity value of two entities computed by some
metrics as an aggregated similarity. In the experiment, we used the 9 metrics mentioned in
Section 3.1 and 3.2.

• Sigmoid This method uses the sigmoid function to emphasize high individual similarity
values and deemphasizes low individual similarity values. The aggregated similarity is
the average of sigmoid individual values of different similarities. We used the function
f(x) = 1/(1 + exp(−5(x− 0.5))) and again the 9 metrics in the experiment.

4 Experimental Evaluation

4.1 Experimental Setup

To compare these metrics’ performance for ontology alignment tasks, we conducted experiments
that implement with java using the Alignment API [10], the SecondString library [7] and the
JWS (Java WordNet Similarity) library. The experiment methodology works as follows. First
each entities’ lexicons is extracted from the two ontologies, the lexicons are entities’ id (in the
case of id is null, we use the label instead), and we preprocess them by tokenizing for token-based
string similarity metrics. Then for each string similarity algorithm in the library, we compute a
similarity score for each pair of entities that belongs to two ontologies respectively. We extract
mapping results using the naive descendant extraction algorithm [11]. The experiments were
conducted on Intel Core i5 M480 2.67 GHz processors and 6 GB RAM under Windows 7.

In the experiment, part of the benchmarks tests (#204, #301, #302, #303 and #304) and the
conference tests from OAEI ontology alignment campaign [12] are used. The #204 test case is a
naming conventions modified ontology of the reference ontology, and the #30x are four real-life
ontologies, these five ontologies are compared to #101. The conference data set include 16 real
world ontologies describing the domain of organizing conferences and 21 tests which reference
alignments are open.We follow the evaluation criteria from OAEI campaign in terms of precision,
recall and F-measure.

4.2 Experimental Result

For each string similarity metric, after the mapping results are extracted, a filter threshold value
range from 0.1 to 1 in interval of 0.1 is used to select the candidate mappings, and at each level
of this threshold the average F-measure among all tests was computed. So we can get the highest
F-measure at a certain threshold, this best F-measure and corresponding precision as well as
recall will be compared with each other. Meanwhile, the exact matching is used as the baseline,
the results on two data sets are shown in Fig. 1 and Fig. 2 (in order to save space, we use Levens,
MongeE, JaroW instead). The average computation time of two tests each metric spends are
illustrated in Fig. 3 and Fig. 4.

Fig. 1 and Fig. 2 reveal a wide disparity among the performance of string similarity metrics. On
benchmarks data set, N-gram, ISUB, SoftTFIDF, Jaccard, and Sigmoid have the top performance
in term of F-measure, and Lin get the worst since its recall is quite low. On conference data set,
the SoftTFIDF, Sigmoid, and Jaccard get the top F-measure, and to our surprised, Max, Monge-
Elkan have the worst F-measure. One possible reason is Max and Monge-Elkan return higher

Y. Sun et al. / Journal of Information & Computational Science 12:3 (2015) 957–964 963

baseline

Levens

MongeE

JaroW

ISUB

NGram

Jaccard

Level2

SoftTFIDF

Lin

SLL

max

sigmoid
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Precision

Recall

F−measure

Fig. 1: Performance of string similarity metrics on benchmarks data set

Precision

Recall

F−measure

baseline

Levens

MongeE

JaroW

ISUB

NGram

Jaccard

Level2

SoftTFIDF

Lin

SLL

max

sigmoid
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 2: Performance of string similarity metrics on conference data set

0 5 10 15 20 25 30 35

baseline
Levens

MongeE
JaroW
ISUB

NGram
Jaccard
Level2

SoftTFIDF
Lin

SLL
max

sigmoid

Time (seconds)

Fig. 3: Computation time on benchmarks data set

Time (seconds)

0 50 100 150 200 250 300

baseline
Levens

MongeE
JaroW
ISUB

NGram
Jaccard
Level2

SoftTFIDF
Lin

SLL
max

sigmoid

Fig. 4: Computation time on conference data set

similarity to false positive. While if we take precision and recall into account, on benchmarks data
set, N-gram has the best recall and baseline get the best precision since it return correspondences
as correct by exact match of strings. And on conference data set, Soft-TFIDF get the best recall

964 Y. Sun et al. / Journal of Information & Computational Science 12:3 (2015) 957–964

and Lin get the best precision. It’s clear that hybrid metrics usually used do not improve the
performance much actually. Meanwhile, as we expected, illustrated by Fig. 3 and 4, the hybrid
methods spend too much time compared to non-hybrid methods. Among non-hybrid methods,
since Lin need access the whole WordNet database, it spend more computation time.

We can inspire from the results that, when faced with an ontology alignment task, some infor-
mation encoding in ontologies and strings can be analyzed to select or combine the appropriate
metrics and strategies taking the precision, recall or time cost into account. For example, we
should not use the hybrid metrics if the efficiency is important. If the tokens of every entities’
string are less than 2, we should choose the character-based metrics, or, if two ontologies share
many synonyms, we should select semantic similarity metrics.

5 Conclusion

In order to analyze the string similarity metrics’ performance for ontology alignment tasks, in
this work, we first discussed the name variations in heterogeneous ontologies, then introduced
a wide range of metrics addressing different source of name variations. Finally we conducted
experiments to evaluate the performance of these metrics. From the experimental results, some
inspiration on how to select or combine these metrics are discussed. We need to compare these
metrics’ performance on a wider variety of data sets. Those will be our future work.

References

[1] P. Shvaiko, J. Euzenat, Ontology matching: State of the art and future challenges [J], IEEE
Transactions on Knowledge and Data Engineering, 25(1), 2013, 158-176

[2] J. Li, J. Tang, Y. Li et al., RiMOM: A dynamic multistrategy ontology alignment framework [J],
IEEE Transactions on Knowledge and Data Engineering, 21(8), 2009, 1218-1232

[3] W. Hu, Y. Qu, G. Cheng, Matching large ontologies: A divide-and-conquer approach [J], Data
and Knowledge Engineering, 67(1), 2008, 140-160

[4] G. Stoilos, G. Stamou, S. Kollias, A string metric for ontology alignment [C], The Semantic
WebCSWC 2005, Berlin: Springer Heidelberg, 2005, 624-637

[5] D. H. Ngo, Z. Bellahsene, R. Coletta, YAM++–Results for OAEI 2011 [C], The 6th International
Workshop on Ontology Matching, ISWC’11, 2011, 228-235

[6] A. E. Monge, C. Elkan, The field matching problem: Algorithms and Applications [C], KDD,
1996, 267-270

[7] W. Cohen, P. Ravikumar, S. Fienberg, A comparison of string metrics for matching names and
records [C], KDD Workshop on Data Cleaning and Object Consolidation, 3, 2003, 73-78

[8] A. Budanitsky, G. Hirst, Evaluating wordnet-based measures of lexical semantic relatedness [J],
Computational Linguistics, 32(1), 2006, 13-47

[9] D. Lin, An information-theoretic definition of similarity [C], Proceedings of the International
Conference on Machine Learning, Madison, USA: Morgan Kaufmann, 1998, 296-304

[10] J. David, J. Euzenat, F. Scharffe et al., The alignment api 4.0 [J], Semantic Web, 2(1), 2011, 3-10
[11] C. Meilicke, H. Stuckenschmidt, Analyzing mapping extraction approaches [C], OM, 2007
[12] B. C. Grau, Z. Dragisic, K. Eckert et al., Results of the ontology alignment evaluation initiative

2013 [C], Proc. 8th ISWC Workshop on Ontology Matching (OM), 2013, 61-100

