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Abstract The rapid development of crowd-sourcing or volunteered geographic
information both challenges and provides opportunities to authoritative geospatial
information. Matching geospatial ontologies is an essential element to realizing the
synergistic use of disparate geospatial information. We propose a new semi-
automatic method to match formal and informal real life geospatial ontologies, at
both terminology level and instance level, ensuring that overall information is
logically coherent and consistent. Disparate geospatial ontologies are matched by
finding a consistent and coherent set of mapping axioms with respect to them.
Disjointness axioms are generated in order to facilitate detection of errors. In
contrast to other existing methods, disjointness axioms are seen as assumptions,
which can be retracted during the overall process. We produce candidates for
retraction automatically, but the ultimate decision is taken by domain experts.
Geometry matching, lexical matching and cardinality checking are combined
when matching geospatial individuals (spatial features).

1 Introduction

In recent years, the emergence and development of crowd-sourcing or volunteered
geographic information has challenged and also provided opportunities to the
traditional model of geospatial data collection, storage and updates. Allowing
amateurs to collect geospatial data helps lower the cost, capture richer user-based
information and reflect real world changes more quickly. At the same time it may
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also dilute information quality, such as completeness, consistency and accuracy
(Jackson et al. 2010). It is desirable to use volunteered and authoritative geospatial
information as complements to each other, taking the best of both.

Ontology refers to an explicit specification of a shared conceptualization
(Gruber 1993) and plays an important role in establishing shared formal vocab-
ularies. A spatial individual has a certain and verifiable location and a meaningful
label, which together distinguish itself from others. Geospatial ontologies describe
conceptual hierarchies and interrelations of terminologies in the domain of geo-
spatial science, which are used to describe facts (classifications, relations, attri-
butions and locations) about spatial individuals. Compared to other ontologies,
geospatial ontologies have some special properties. Firstly, many geospatial ter-
minologies are commonly used in daily life and their meanings vary in different
contexts. For example, ‘‘College’’ may refer to an institution within a university in
one ontology, whilst meaning a secondary school in another. In addition, geo-
spatial ontologies often do not have a huge number of classes as ontologies in
several other subject areas (for example, biomedicine) do, but may represent many
real world spatial individuals, whose locations, at least in theory, can be verified.
For example, Space, a large-scale geospatial ontology constructed using WordNet,
GeoNames and Thesaurus of Geographical Names, contains 845 classes and 6,
907, 417 individuals (Giunchiglia et al. 2012). Since geospatial ontologies for
authoritative and volunteered data sets are developed independently, matching
geospatial ontologies is an essential step to use them synergistically.

We propose a new semi-automatic method for matching geospatial ontologies,
at both terminology level and instance level. Geographic information quality
includes several aspects, viz., completeness, logical consistency, positional accu-
racy, thematic accuracy, temporal quality and usability (International Organization
for Standardization 2011). We focus on logical consistency, ensuring that, after
adding a mapping, overall information is logically coherent and consistent, without
any contradictions. We assume that the TBoxes1 of geospatial ontologies are not
very large, but contain concepts which are more ambiguous, compared to, for
example, biomedical ontologies. The matching process is reduced to the problem
of finding a coherent and consistent set of assumptions (including disjointness
axioms, equivalence and inclusion relations between concepts from different
ontologies, and ‘‘sameAs’’ and ‘‘partOf’’ relations between spatial instances) with
respect to input ontologies. Unlike a premise, an assumption is believed by default,
but can be retracted later if found to be not reasonable later. Disjointness axioms
are generated in order to facilitate detection of errors or contradictions. Geospatial
individuals are matched using location, lexical and classification information.

The rest of the chapter is organized as follows. Section 2 reviews related work
on ontology matching and geospatial data integration. We describe our new
method in Sect. 3, and evaluate it in Sect. 4. Finally, Sect. 5 provides conclusions.

1 Definitions of concepts and roles.
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2 Related Research

Ontology matching is the task of finding a mapping, i.e. a set of correspondences,
between entities from different ontologies (Euzenat and Shvaiko 2007). It includes
two main levels, the terminology level and instance level. Many ontology
matching methods and systems have been developed in recent years (Euzenat and
Shvaiko 2007; Shvaiko and Euzenat 2012). Most of them are based on lexical and
structural analysis and similarity measurements. However, mappings generated by
these methods often contain logical contradictions. Logical reasoning is employed
for either mapping generation or verification in some systems, including the early
logic-based attempts, such as CtxMatch (Bouquet et al. 2003) and its extension
S-Match (Giunchiglia et al. 2004), and more recently, ASMOV (Jean-Mary et al.
2010) which verifies mappings against five specified inconsistent patterns,
KOSIMap (Reul and Pan 2010) based on description logic coherence checking
assuming the disjointness of siblings, ContentMap (Jimenez-Ruiz et al. 2009)
which computes new entailments from initial mappings generated by other sys-
tems, LogMap (Jimenez-Ruiz and Grau 2011) and CODI (Niepert et al. 2010).

LogMap is a logic-based ontology matching tool, designed for large-scale bio-
medical ontologies. It employs lexical and structural methods to compute an initial
mapping. LogMap iterates two main steps. In Step 1, unsatisfiable classes will be
detected using propositional Horn representation and satisfiability checking, and
be repaired using a greedy diagnosis algorithm. However, the propositional Horn
satisfiability checking is sound but incomplete, and the underlying semantics is
restricted to propositional logic, and thus cannot guarantee the coherence of the
mapping between more expressive ontologies. In Step 2, new mapping relations
will be generated based on the similarity of classes related to established corre-
spondences. Only newly discovered correspondences can be eliminated in the
repair step, whilst correspondences found in earlier iterations are seen as estab-
lished or valid. In other words, each mapping relation will be checked once,
against the available information at that time, which, however, cannot guarantee its
correctness when new information is discovered later.

CODI is a probabilistic logical alignment system based on Markov logic
(Domingos et al. 2008). It transforms the matching problem to a maximum-a
posterior optimization problem subject to cardinality constraints, coherence con-
straints and stability constraints. The GUROBI optimizer (Gurobi Optimization Inc
2012) is employed to solve the optimization problems. CODI reduces incoherence
during the alignment process for the first time, compared to all other existing
methods repairing alignments afterwards. CODI is based on the rationale of finding
the most likely mapping by maximizing the sum of similarity-weighted probabil-
ities for potential correspondences. However, during the optimization process,
some valid correspondences can be thrown away.

It is a central problem within the context of Linked Data to identify corre-
spondences between instances from different sources. Wolger et al. (2011) provide
a summary of the existing data interlinking methods. Most of them are based on
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lexical methods, such as string matching and word relation matching, machine
learning and natural language processing techniques. Only within some systems,
such as L2R (Sais et al. 2007), KnoFuss (Nikolov et al. 2007) and RDF-AI
(Scharffe et al. 2009), consistency is checked.

In addition, there is some recent work on debugging and repairing ontology
mappings (Meilicke and Stuckenschmidt 2009; Qi et al. 2009; Wang and Xu
2008), which is still at an early stage. However, to the best of our knowledge, all of
them, as well as the ontology matching or data interlinking systems described
above, treat disjointness axioms as premises, rather than retractable assumptions,
and none of them have addressed the special properties of geospatial information.

In geospatial information science, several data conflation methods have been
developed for matching or integrating geospatial vector data, mainly based on the
similarities of geometries or topological relations, as well as attributes, if available.
Most of them focus on conflating road vector data. However, few of these tech-
niques check and ensure the logical coherence and consistency of integrated
information (Du et al. 2012). In addition, several ontology-driven methods have
been developed for integrating geospatial terminologies. Most of them are based
on similarity measures or a predefined top-level ontology. Logical reasoning is
only employed when formal ontologies commit to a same top-level ontology
(Buccella et al. 2009). However, when ontologies are developed independently,
the common top-level ontology is not usually available. Additionally, there exist
some other methods (Volz and Walter 2004; Jain et al. 2010), following the
bottom-up approach to linking geospatial schemas or ontologies, inferring termi-
nology correspondences from instances correspondences. Though this works well
when instance data is representative and overlapping, it uses a very strong form of
induction from particular to the universal, which leads to lack of correctness and
completeness (Bouquet 2007). Therefore, more research is required to fill in the
gap, exploring logic-based approaches to matching geospatial ontologies.

3 Method

We propose a new semi-automated method for matching geospatial ontologies.
Initial mappings between concepts and between individuals are generated using
lexical matching and geometry matching. Logical coherence and consistency is
ensured by automatically generating sets of assumptions responsible for incoher-
ence or inconsistency using description logic reasoner Pellet (Sirin et al. 2007),
and asking domain experts to decide which assumptions from these sets should be
removed to restore coherence and consistency. Due to limited space, we recom-
mend Baader et al. (2007) for the basic notions of description logic.

Definition 1 (Ontology) An ontology O has a TBox which contains knowledge at
the conceptual level, and an ABox which describes facts about individuals using
terminologies described in the TBox.
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Definition 2 (Coherence) An ontology O is coherent if there is no class which
only admits an empty interpretation. Otherwise, it is incoherent.

Definition 3 (Consistency) An ontology O is consistent if

• there exists no individual name a can be shown to belong to a concept C and to
its negation, C;

• there exists no individual names a, b can be shown to belong to a role R and its
negation, R;

Otherwise, O is inconsistent.

This method matches ontologies from the terminology level to the instance level.
It includes four main steps. Since the original ontologies are often lightweight,
disjointness axioms are generated in Step 1, to facilitate detection of incoherencies
and inconsistencies. Ontology TBoxes are matched in Step 2. In Step 3, we match
ABoxes of geospatial ontologies using location and lexical information. The whole
ontologies are matched in Step 4. Mapping relations are represented as axioms in
standard description logics, making use of existing and highly optimized reasoning
techniques, for example Pellet (Sirin et al. 2007). Differing from other existing
methods, this method treats generated disjointness axioms and the mappings
between different ontologies, as assumptions, rather than premises. Users are
allowed to retract or enable existing assumptions, and add new assumptions, during
the matching process.

Definition 4 (Premise and Assumption) A premise is believed all the time, whilst
an assumption is believed by default, but may be retracted later.

To represent and reason with two ontologies Oi and Oj, where i, j are their
names, as well as the mapping M between them, as if they all belong to one super
ontology (Oi [ Oj [ M), we label all atomic concepts, roles and individual
names in each ontology by the name of the ontology. An atomic concept C and an
individual name a from ontology i are represented as i: C and i: a respectively.

Definition 5 (Union of Ontologies) The union of ontologies Oi and Oj, repre-
sented as (Oi [ Oj), is an ontology containing all axioms in Oi and Oj.

3.1 Matching Terminologies

A terminology mapping is a set of correspondences between concepts from dif-
ferent ontologies. A terminology correspondence is represented in one of the two
basic forms:

BiYC j ð1Þ

Bi w C j ð2Þ
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where B, C denote concepts.2 The relation (1) states that the concept B from the
ontology i is more specific than or equivalent to the concept C from the ontology
j. The relation (2) states that the concept B from the ontology i is more general than
or equivalent to the concept C from the ontology j. The equivalence relation (3)
holds if and only if (1) and (2) both hold.

Bi � C j ð3Þ

It states that the concept B from the ontology i and the concept C from the
ontology j are equivalent.

A disjointness axiom states that two or more concepts are pairwise disjoint,
having no common element. For example, Person and Place are disjoint, which
can be represented as Person Y: Place, where : denotes negation. Disjointness
axioms in ontologies play an important role in debugging ontology mappings.
However, within original geospatial ontologies, disjointness axioms are not always
available or sufficient. Adding disjointness axioms manually, especially for large
ontologies, is time-consuming and error-prone. Many existing systems employ
more automatic approaches, either assuming the disjointness of siblings (e.g. Reul
and Pan 2010), or employing machine learning techniques to detect disjointness
(e.g. Meilicke et al. 2008a). After disjointness axioms are generated by whatever
means, all existing ontology matching or debugging methods, to the best of our
knowledge, use them as premises, though the input disjointness axioms can be
insufficient or too restrictive. Differing from these methods, we use generated
disjointness axioms as assumptions, and ensure the assumption set is coherent.

Definition 6 (Coherence of an Assumption Set) An assumption set As is inco-
herent with respect to an ontology O, if O [ As is incoherent, but O is coherent.
Otherwise, it is coherent with respect to an ontology O.

When some incoherence is introduced by assumptions, minimal incoherent
assumption sets (MIA) will be computed. The notion of MIA is defined by
extending the minimal conflict set defined for mappings (Meilicke et al. 2008b) to
this context.

Definition 7 (Minimal Incoherent Assumption Set) Given a set of assumptions As,
a set C ( As is a minimal incoherent assumption set (MIA) iff C is incoherent and
each C0 , C is coherent.

A minimal incoherent assumption set can be fixed by removing any axiom from
it. When a MIA contains more than one element, one needs to decide which axiom
to remove. Most of the existing methods remove the one either with the lowest
confidence value or which is the least relevant. However, there is no consensus
with respect to the measure of the degree of confidence or relevance. In several
cases, confidence values or relevance degrees might be unavailable or difficult to

2 When B, C denote atomic concepts, Bi = i: B, Cj = j: C.
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compute or compare. Rather than relying on them, we allow domain experts to
make ultimate decisions.

Algorithm 1 is designed to generate a coherent assumption set (CAS) with
respect to an ontology.3 The set of minimal incoherent assumption sets will be
visualized clearly (Line 5). Domain experts are employed to take repair actions
(Line 6). Currently, a repair action can be retracting an assumption axiom. Users
are allowed to take several repair actions at one time.

Step 1: Generating coherent disjointness assumption sets (CDAS). For each
coherent ontology TBox,4 as shown in Algorithm 2, we generate disjointness
axioms as assumptions for sibling classes and refine them by applying Algorithm 1.

Step 2: Matching terminologies (Algorithm 3). Currently, an initial terminology
mapping is generated by using a very simple lexical matching method, i.e. stating
equivalence of atomic concepts with identical names (Line 1). Definition 6 can be
extended from one ontology O to two ontologies T1 and T2, given that the union of
two ontologies, T1[T2, is an ontology. A coherent disjointness assumption set for
TBoxes (union of CDAS for each TBox) and an initial terminology mapping form
an initial assumption set, from which, a coherent assumption set with respect to T1

3 In an algorithm, lines marked with * may require manual intervention.
4 An ontology only with a TBox.
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and T2 is calculated by applying Algorithm 1. An assumption in a minimal inco-
herent assumption set can be a disjointness axiom or a terminology correspon-
dence axiom. Domain experts are consulted to decide which assumption(s) to
retract when incoherence arises.

ALGORITHM 3: Matching Terminologies
Input T1, T2: coherent ontology TBoxes

Dcs: a coherent disjointness assumption set with respect to T1, T2

Output Tcs: a coherent terminology assumption set with respect to T1, T2

1. Mst :¼ lexicalMatching(T1, T2);
2. Tcs :¼ CAS(T1[T2, Dcs[Mst);
3. return Tcs

3.2 Matching Geospatial Individuals

An instance level mapping is a set of individual correspondences. An individual
correspondence is represented in one of the following forms:

i : a; j : bð Þ 2 sameAs ð4Þ

i : a; j : bð Þ 2 partOf ð5Þ

where a, b denote individual names. The relation (4) states that the individual
name a from the ontology i and the individual name b from the ontology j refer to
the same object. The relation (5) states that the individual name a from the
ontology i refers to an object which is a part of the object the individual name
b from the ontology j refers to.

ALGORITHM 4: Matching Geospatial Individuals
Input A1, A2: ontology ABoxes
Output Msa : an initial geospatial instance mapping between A1, A2

1. Msa:¼{};
2. for each spatial individual a1 in A1 do
3. for each spatial individual a2 in A2 do
4. if geo_poss_match(a1.geometry, a2.geometry)
5. and lex_poss_match(a1.lexicons, a2.lexicons) then
6. add (a1, a2) [ sameAs to Msa;
7. end if
8. end for
9. end for

10. cardinalityChecking (Msa)
11. return Msa

162 H. Du et al.



Step 3: Matching Geospatial Individuals. Algorithm 4 is designed to match
geospatial individuals whose geometries are represented using the same coordinate
reference system (CRS). The geometry of a spatial object can be represented in
different accuracy levels, granularities or world views in different ontologies. In
other words, for the same spatial object, the recorded geometry in ontology i may
not be exactly the same as the recorded geometry in ontology j.

The geo_poss_match (Line 4) between two geometries returns true if the
geometries are similar enough given a margin of error in representation. Currently,
it requires input geometries as polygons. Two polygons are possibly matched if one
of them is the smallest polygon containing the characteristic point from the other.5

The lex_poss_match (Line 5) between two lexical descriptions returns true if
the lexicons (meaningful labels indicating identity) are similar enough, tolerating
partial differences, for example, a full name and its abbreviation, and recognizing
different names for the same location. Currently, it employs a series of basic string
matching strategies, such as equivalence, inclusion and abbreviation.

For each pair of spatial individuals a1 and a2 from different ontologies, if their
geometries are possibly matched (Line 4) and their lexicons are possibly matched
(Line 5), then they can be assumed to be the same. We generate a ‘‘sameAs’’
relation linking them and add it to an instance mapping Msa (Line 6).

It is currently assumed that, within a local ontology, a spatial individual has at
most one representation. In other words, there are no ‘‘sameAs’’ relations within a
local ontology. The cardinality checking (Line 10) revises Msa, a set of ‘‘sameAs’’
relations, ensuring that ‘‘sameAs’’ is one-to-one. If not, we remove them from Msa,
and add corresponding ‘‘partOf’’ relations. For example, if Msa contains (i: a, j:
b) [ sameAs and (i: c, j: b) [ sameAs, we replace them with (i: a, j: b) [ partOf and
(i: c, j: b) [ partOf. 6

The geometry matching, lexical matching and cardinality checking complement
each other to cope with the following possibilities. Different geospatial individuals
may share the same label or the same location in an ontology. In addition, a same
geospatial individual may be represented as a whole in one ontology, whilst as
several parts of it in another.

5 Individuals from the Ordnance Survey of Great Britain (OSGB) Buildings and Places ontology
and the OpenStreetMap ontology (See Sect. 4.2) are spatially linked by finding the smallest OSM
polygon containing a point from OSGB address Layer 2. See Fig. 1 for examples. Polygons
containing the same red point are linked.

A more sophisticated geometry matching method for generating spatial ‘‘sameAs’’ and
‘‘partOf’’ relations is under development and evaluation.
6 We are aware that, an individual a in one ontology Oi can be part of an individual b in another
ontology Oj, even if there are no other individuals in Oi who can be part of b. This has be
considered when designing our new geometry matching method.
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Definition 8 (Consistency of an Assumption Set) An assumption set As is incon-
sistent with respect to an ontology O, if O[As is inconsistent, but O is consistent.
Otherwise, it is consistent with respect to an ontology O.

Definition 9 (Minimal Inconsistent Assumption Set) Given a set of assumption As,
a set C ( As is a minimal inconsistent assumption set (MIA),7 iff C is inconsistent
and each C’ , C is consistent.

Similarly, a minimal inconsistent assumption set can be fixed by removing one
element from it. The algorithm for calculating consistent assumption set (CAS)
can be generated from Algorithm 1, changing coherence checking to consistency
checking. Definition 8 can be easily extended to deal with two ontologies.

ALGORITHM 5: Matching Geospatial Ontologies
Input O1 = (T1, A1), O2 = (T2, A2): coherent and consistent geospatial

ontologies
Tcs: a coherent assumption set with respect to T1, T2

Msa: an initial geospatial instance mapping between A1 and A2.

Output Ocs: a consistent assumption set with respect to O1 and O2

1. Ocs : = CAS(O1 [O2, Tcs [Msa)8;
2. return Ocs

Step 4: Matching Geospatial Ontologies (Algorithm 5). A coherent assumption
set with respect to TBoxes is obtained in Step 2. An initial geospatial instance
mapping between ABoxes is generated in Step 3. The union of them is an
assumption set with respect to input ontologies. Applying CAS, if overall infor-
mation is inconsistent, a set of minimal inconsistent assumption sets will be cal-
culated, and visualized appropriately to help domain experts to repair them. These
steps iterate until a consistent assumption set is found.

4 Evaluation

The method described above is implemented as a system called GeoMap. Pellet
(Sirin et al. 2007) is employed for coherence and consistency checking. Minimal
incoherent assumption sets are calculated from explanations for unsatisfiable
classes, and minimal inconsistent assumption sets from explanations for
inconsistencies.

We evaluate GeoMap using the Ordnance Survey of Great Britain (OSGB)
Buildings and Places ontology (Hart et al. 2008) and the OpenStreetMap (OSM)
controlled vocabularies (OpenStreetMap 2012). OSGB and OSM are

7 MIA refers to minimal incoherent assumption set when matching terminologies, and refers to
minimal inconsistent assumption set when matching instances.
8 CAS here refers to the calculation of consistent assumption set.
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representatives of authoritative and crowd-sourced geospatial information sources
respectively. OSGB is the national topographic mapping agency of Great Britain.
OSM is a collaborative project to create a free editable map of the world, relying
on volunteers for data collection. Currently, OSM has not established a standard
ontology, but maintains a collection of commonly used tags for main map features.
An OSM feature ontology is generated automatically from the existing classifi-
cation of main features. For example, given ‘‘Restaurant’’ is a value under the key
‘‘Amenity’’ in the OSM classification, we formulate this as OSM: Restau-
rant Y OSM: Amenity. Both ontologies are written in the OWL 2 Web Ontology
Language (W3C 2009). The OSGB Buildings and Places ontology has 692 classes
and 1,230 logical axioms. There are 663 classes and 677 logical axioms in the
OSM ontology. Both ontologies, containing no disjointness axioms, are coherent.

4.1 Evaluating Terminology Mapping

Evaluating Step 1. Applying Algorithm 2, a coherent disjointness assumption set
containing 32,299 pairwise disjointness axioms is generated with respect to the
OSGB Building and Places ontology. With respect to the OSM ontology, the
coherent disjointness assumption set contains 9,348 pairwise disjointness axioms.
A sample of 323 and a sample of 93 are taken randomly from these coherent
disjointness assumption sets respectively. Based on manual evaluation, the rates of
correctness are 0.951 and 0.892 respectively.

Evaluating Step 2. GeoMap, CODI (Niepert et al. 2010) and LogMap (Jime-
nez-Ruiz and Grau 2011) are employed to match the OSGB Buildings and Places
ontology and the OSM ontology (TBoxes), given the generated coherent dis-
jointness assumption sets. The experiments are performed on an Intel Dual Core
2.00 GHz, 3.00 GB RAM personal computer from command line. The experi-
mental results are summarized in Table 1.

GeoMap time in Table 1 is for generating equivalence relations for same-
named classes from different ontologies and checking coherence using Pellet.
Total time including human interaction (choosing which assumption(s) to retract,
time in average is 105.6 s) is 124.4 s. Based on manual evaluation, the precision
rates of GeoMap, CODI and LogMap mappings are 89, 76 and 70 % respectively.

Table 1 GeoMap time

GeoMap CODI LogMap

Timea 18.8 s (automatic part) 167.72 s 8.65 s
Output 84 105 91
Precision 0.89 0.76 0.70
Recallb 0.71 0.76 0.41
a Times are in seconds, averaged over 5 runs
b The recalls are calculated based on the ground truth shown in Table 2
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The recalls are calculated based on a small set of ‘‘ground truth’’, i.e. equivalence
relations provided by domain experts shown in Table 2. In Table 2, ‘‘1’’ means the
mapping contains that relation, ‘‘0’’ means not. ‘‘-1’’ means the mapping contains
a ‘‘wrong’’ relation. For example, CODI mapping contains an incorrect relation
OSGB: Parking9 : OSM: Parking rather than OSGB: Car Park : OSM: Park-
ing. ‘‘0.5’’ means the mapping contains partially the relation. For example, Log-
Map mapping contains OSGB: Shop Y OSM: Shop instead of OSGB:
Shop : OSM: Shop.

Table 1 shows that, LogMap calculates a mapping very quickly, the precision
rate of GeoMap mapping is the highest, whilst the recall of CODI mapping is the
highest. LogMap is designed for matching large-scale ontologies, especially in
biomedical domain, in a reasonable time. As mentioned before, we assume that the
TBoxes of geospatial ontologies are not very large, but contain concepts which are
more ambiguous, compared to biomedical ontologies. We will focus on precision
and recall at the current stage of research.

The precision of GeoMap mapping is high, since domain experts are involved
to make ultimate decisions. Consider the following example. In the OSM ontol-
ogy, several classes, such as Bicycle, Clothes, Hardware and Kitchen, are defined
as subclasses of Shop, indicating what a shop sells. In this context, OSM: Clothes
does not refer to clothes, but a clothes shop. Domain experts retract OSGB:

Table 2 Equivalence relations provided by domain experts

Ground trutha GeoMap CODI LogMap

OSGB: Bank : OSM: Bank 1 1 1
OSGB: Chapel : OSM: Chapel 1 1 0
OSGB: Church : OSM: Church 1 1 0
OSGB: Fire Station : OSM: Fire_Station 1 1 1
OSGB: Hotel : OSM: Hotel 1 1 0
OSGB: House : OSM: House 1 1 1
OSGB: Nursery School : OSM: Kindergarten 0 1 0
OSGB: Library : OSM: Library 1 1 1
OSGB: Market : OSM: Marketplace 0 0 0
OSGB: Museum : OSM: Museum 1 1 1
OSGB: Car Park : OSM: Parking 0 -1 0
OSGB: Police Station : OSM: Police 0 -1 -1
OSGB: Public House : OSM: Pub 0 1 0
OSGB: Restaurant : OSM: Restaurant 1 1 1
OSGB: Shop : OSM: Shop 1 0 0.5
OSGB: Town Hall : OSM: Townhall 1 1 1
OSGB: Warehouse : OSM: Warehouse 1 1 0
Score 12 11 6.5

a The ground truth is a small set of equivalence relations provided by domain experts. As future
work, we will extend the current ground truth to a larger set, to get a more realistic evaluation

9 The meanings of OSGB concepts are usually normal. OSGB: Parking Y OSGB: Purpose.
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Clothes10 : OSM: Clothes, whilst, CODI removes OSGB: Shop : OSM: Shop
and keeps the existing correspondences of subclasses of Shop, optimizing the sum
of similarity-weighted probability. LogMap weakens the equivalence relation to
OSGB: Shop Y OSM: Shop. Though mappings calculated by GeoMap and CODI
are always coherent11 with respect to input ontologies, the results based on opti-
mization may not be reasonable in several cases, especially when informal
information exists. Domain experts do not necessarily make the same choices, and
an individual domain expert may make different decisions on different occasions.

CODI produces more correct correspondences, such as OSGB: Nursery
School : OSM: Kindergarten and OSGB: Public House : OSM: Pub, owing to
its usage of more intelligent lexical matching techniques. However, CODI trades
off its precision rate, since it also produces incorrect relations, like OSGB: Race
Horse12 : OSM: Horse_Racing. The recall of CODI is better than that of Geo-
Map or LogMap, however, it is still far from covering all ground truth relations.
All three fail to calculate the relation OSGB: Market : OSM: Marketplace and
miss relations of other types, such as inclusions13 and overlaps. To improve the
recall, more sophisticated lexical matching methods are required, and domain
experts are needed, at least at the current stage of development.

The experimental results show that domain experts are indispensable when
matching terminologies in order to obtain 100 % precision and recall. Mappings
produced by fully automatic methods, such as CODI and LogMap, require final
validation by experts, which is difficult and time-consuming. Our method reduces
human effort by directing experts to make ultimate decisions during the matching
process. As future work, more methods need to be developed to support the
manual intervention stage, minimizing human efforts.

4.2 Evaluating Geospatial Instance Mapping

We currently require that, geospatial individuals from different ontologies have
polygonal geometries, represented as two dimension vector data. The instance data
for OSGB Buildings and Places ontology is extracted from the OSGB Address
Layer 2 and the OSGB Topology Layer (Ordnance Survey 2012). The Address
Layer 2 is a point layer, containing lexical and classification information for spatial
individuals. The Topology Layer is a polygon layer, containing geometries of
spatial individuals. These two layers are linked together by finding the smallest
Topology Layer polygon containing a point from the Address Layer 2. The OSM
instances are from the building layer (containing polygonal geometries, names and

10 OSGB: Clothes refers to ‘‘garments worn over the body’’. It is a secondary concept.
11 A LogMap mapping may not.
12 OSGB: Race Horse Y OSGB: Animal. It is used to define OSGB: Racing Stables. .
13 LogMap weakens some equivalence relations to inclusions, but also does not produce enough.
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types) of OSM data, downloaded through Geofabrik (Geofabrik GmbH Karlsruhe
2012) in April, 2012. From the studied area of Nottingham city centre, 713 geo-
spatial individuals are added to OSGB Buildings and Places ontology, 253 geo-
spatial individuals are added to OSM ontology automatically, resulting in two
consistent ontologies. Each geospatial individual is classified to a class based on its
type information, and has geometry information and lexicon information as its data
properties.

Evaluating Step 3 and Step 4. When matching geospatial individuals, geometry
matching (geo_poss_match) is necessary since two different spatial objects may
have the same name. For example, OSGB: 1000002308426350 refers to a restaurant
called ‘PREZZO RISTORANTE’. So does OSGB: 1000002309000257. However,
they are actually different restaurants which are distant from each other. Without
any geometry checking, the existing data interlinking tools, for example KnoFuss
(Nikolov et al. 2007), will map them to the same spatial object OSM: 116824670. In
Step 3, only OSGB: 1000002309000257 and OSM: 116824670 are linked (Fig. 1),
since their polygons contain the same point from the OSGB Address Layer 2.
Lexical matching (lex_poss_match) is necessary since two different objects may
share the same location. For example, OSGB: 1000002308427059 refers to an
OSGB: Clinic, labelled as ‘N E M S PLATFORM ONE PRACTICE’, while OSGB:
1000002308427060 refers to a general commercial company, labelled as ‘CAPI-
TAL ONE (EUROPE) PLC’, in the same building. Without lexical matching, both
will be mapped to OSM: 17505332, labelled as ‘CAPITAL ONE’, based on
geometry similarity (Fig. 1). Cardinality checking is necessary since the same
object may be represented as a whole in one ontology, whist as several parts in the
other. For example, OSGB: 1000002308430942 refers to a NatWest bank in the
Victoria Centre. OSGB: 1000002308429872 refers to Millies Cookies, a bakery in
the Victoria Centre. Without cardinality checking, both will be ‘sameAs’, rather
than ‘partOf’, OSM: 16469518, the Victoria Centre (Fig. 2).

In Step 4, domain experts are consulted to make decisions to repair inconsis-
tencies. For example, OSGB: 1000002308476718 refers to an OSGB:

Fig. 1 Prezzo Ristorante
(Up) and capital one
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HealthCentre labelled as ‘SNEINTON HEALTH CENTRE’. OSM: 62134030
refers to an OSM: Clinic labelled also as ‘SNEINTON HEALTH CENTRE’. Their
geometries are very similar. However, the existence of the following assumptions
leads to inconsistency.

OSGB : 1000002308476718;ð
OSM : 62134030Þ 2 sameAs

ð6Þ

OSGB : Clinic � OSM : Clinic ð7Þ

OSGB : ClinicYOSGB : HealthCentre ð8Þ

Domain experts are consulted to decide which assumption(s) to retract. To keep
the individual correspondence (6), it is reasonable to retract (8) or weaken (7) to
OSGB: Clinic Y OSM: Clinic. This differs from all other methods, which use (8)
as a premise, which is not retractable.

Based on manual evaluation, more than 95 percent of the output 139 individual
correspondences (37 ‘‘sameAs’’ and 102 ‘‘partOf’’) are reasonable.

Though the initial experimental results seem promising, we are aware that there
is still a long way to go before being able to apply this method into practice.
Firstly, the ‘‘semantic gap’’ that exists between databases and their corresponding
ontologies makes it difficult to populate all individuals from databases to ontol-
ogies automatically. For example, ‘‘Bar’’, ‘‘POBox’’ and ‘‘Cafe’’ are individual
types in the OSGB database, but are not defined as concepts in the OSGB
Buildings and Places ontology. Additionally, some lexical and classification
information in OSM data set might be missing, in which case, only geometry
matching can be applied. Furthermore, though several geometry matching and
lexical matching techniques have been developed, almost none of them ensure
overall correctness and consistency of results. As future work, we will explore new
ways to make full use of geometry, lexical and classification information for

OSM

OSGB

Fig. 2 Victoria centre
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matching geospatial individuals, aimed for overall correctness and consistency,
and minimized human effort.

5 Conclusion

In conclusion, we propose a new semi-automatic method to match disparate
geospatial ontologies, guaranteeing the coherence and consistency of overall
information. Differing from other existing methods, disjointness axioms and
mappings are seen as assumptions, which can be retracted later if found to be too
restrictive or inappropriate. A series of algorithms are designed to match disparate
ontologies from terminology level to instance level by calculating a coherent and
consistent assumption set with respect to them. Geometry matching, lexical
matching and logical consistency checking are combined for matching geospatial
individuals. The initial experiments show promising results, which indicate that,
when matching geospatial ontologies, using geometry or location information
helps and domain experts are indispensable. As future work, we plan to develop
more sophisticated matching methods, aimed at obtaining 100 % precision and
recall, and minimizing human effort.
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