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Abstract. Effective communication in open environments relies on the
ability of agents to reach a mutual understanding of the exchanged mes-
sage by reconciling the vocabulary (ontology) used. Various approaches
have considered how mutually acceptable mappings between correspond-
ing concepts in the agents’ own ontologies may be determined dynami-
cally through argumentation-based negotiation (such as Meaning-based
Argumentation, MbA). In this paper we present a novel approach to
the dynamic determination of mutually acceptable mappings, that al-
lows agents to express a private acceptability threshold over the types
of mappings they prefer. We empirically compare this approach with
the Meaning-based Argumentation and demonstrate that the proposed
approach produces larger agreed alignments thus better enabling agent
communication. Furthermore, we compare and evaluate the fitness for
purpose of the generated alignments, and we empirically demonstrate
that the proposed approach has comparable performance to the MbA
approach.

1 Introduction

The problem of dynamic reconciliation of ontologies (vocabularies) used by
agents during interactions has received significant attention [8, 10, 12], due to
the growing adoption of mobile and service computing. In these scenarios, agents
situated in open environments encounter unknown agents offering new services
as a user’s context or location changes. As the heterogeneity that permeates
these environments increases, fewer assumptions on the vocabulary and content
of these ontologies can be made, thus hindering seamless interaction between the
agents.

The reconciliation of heterogeneous vocabularies has been investigated at
length by research efforts in ontology alignment [7], which tries to determine
suitable mappings between two ontologies. However, there are few traditional
alignment approaches suitable for use in purely dynamic interaction scenarios
as most require human intervention, or they align the ontologies at design time
[11]. Although recent systems [6] have emerged that can generate alignments at
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run time, these are often machine-learning based, requiring pre-labelled training
data to guide the learning process.

Whilst this has been demonstrated to be effective when such data is available,
it is not always suitable for all dynamic problems. Two agents may encounter
each other for the first time with the aim of interacting to achieve some goal
(where each agent may have its own preferences or policies over the terms and
axioms used within a specific interaction). Whilst alignments may exist between
the agents’ ontologies, these may have been determined under different con-
texts or assumptions, and thus may not necessarily satisfy the current agents’
preferences or policies. In order to address this limitation, and to consider the
context within which the alignment is to be used, Laera et. al. [8] proposed
in their Meaning-based Argumentation (MbA) approach the use of argumenta-
tion to select a set of mappings (i.e. an alignment) that is mutually acceptable
to the negotiating agents, from the union of disparate, precomputed alignments
where different alignments may have previously been generated (e.g. for previous
agent-agent interactions) and then published or retained for future use.

Therefore, the problem can be cast as a search for a mutually acceptable
set of mappings between two ontologies O1 and O2 (in the union of mappings
previously computed), given the agents’ individual, private preferences over the
mapping type (i.e. terminological, extensional, etc.). Approaches such as those
proposed by Laera et al. [8] and dos Santos et al. [10] assume that mappings have
an associated confidence value, and based on this, utilise both an acceptance
threshold, ε, and their preferences to determine whether or not a candidate
mapping is suitable for a task.

The search is conducted collaboratively, through the use of argumentation.
By specifying arguments that support (or refute) different mappings, the negoti-
ating agents identify a subset of mappings that are considered mutually accept-
able, which can subsequently be used to support further communication between
the agents. The arguments are determined from the individual agent’s prefer-
ences over the mapping types (which can vary, depending on the agents task or
the expressive power of ontology it commits to) and its acceptance threshold.
The argumentation converges on a set of agreed mappings, i.e. mappings that
are mutually acceptable to the negotiating agents.

As the generation of arguments is directed by a single preference and accep-
tance threshold specified by each agent, this approach is susceptible to rejecting
those mappings which, whilst not optimal, may still be considered acceptable
to all the agents involved. This results in smaller alignments, which may fail to
sufficiently support the agent’s subsequent communication. This approach may
also fail to reflect the true preference of an agent, as the different grounds sup-
porting the choice or type of mapping may actually generate similar mappings
in some cases.

In this paper, we demonstrate the effect of this limitation on the resulting
alignment empirically, and propose a novel approach for generating arguments
for each of the candidate mappings, utilising a weaker notion of suitability than
that originally proposed. The flexible approach for determining agents’ orienta-
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tion on ontology mappings (FDO) proposed here provides a flexible mechanism
for agents to decide whether they support or refute an argument about a map-
ping, and hence it allows agents to compromise over the suitable mappings; i.e by
arguing in favour of an assertion that may not be amongst the preferred ones, but
that facilitates the negotiation process in converging on a mutually acceptable
solution. In this way, the agents create a larger consensus base, by increasing the
number of arguments over which the agents negotiate, and that better reflect the
agents’ preferences over the type of mappings deemed to facilitate the exchange
of messages. Whilst this approach results in agents relaxing some of their prefer-
ences over suitable mappings, we demonstrate that it produces a larger consensus
over possible mappings due to the generation of a greater number of arguments
in favour of the candidate mappings (compared to Laera et al.’s MbA approach),
and better reflects the agents preferences than when only a single threshold and
preference value is used. We also demonstrate that allowing the negotiation to
take place over a larger set of arguments does not degrade the quality of the
alignment produced, measured in terms of precision and recall over query an-
swering tasks. Therefore, the contribution of this paper is twofold: we provide a
novel approach to the determination of whether an agent supports or refutes an
argument, and we provide an evaluation of this novel approach against the MbA
approach.

The paper is organised as follows: the MbA approach is briefly summarised,
followed by the description of our novel FDO approach for determining an agent’s
orientation on a mapping. This approach is then illustrated by means of an
example, before being evaluated empirically. The results of the evaluation are
then discussed, before concluding.

2 Arguing Over Ontology Mappings

Meaning-based Argumentation (MbA), as proposed by Laera et al. [8], assumes
that a number of precomputed alignments (i.e. sets of mappings) exist within
some publicly available repository. A similar assumption is also made by dos
Santos et al. [10], whereby such alignments are known (possibly computed on-
the-fly) by different agents. Before presenting our flexible approach for determin-
ing agent orientation, we first give the formal definition of these alignments, and
summarise the MbA approach3.

A mapping between two agent ontologies O1 and O2 is described as a tu-
ple: m = 〈e, e′, n, r〉, where e ∈ O1 and e′ ∈ O2 are the entities (concepts,
properties or individuals) between which a relation, r, is asserted, such as equiv-
alence, or subsumption, and n is a degree of confidence in this correspondence
[7]. These mappings can either be computed offline and stored by a dedicated
server, an Ontology Alignment Service, that provides the set of available candi-
date mappings the agents need to argue over [8], or they can be determined on

3 We focus primarily on the MbA approach since the negotiation phase in dos Santos
et al. is the same as the one used in MbA.
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the fly [10]. Whatever the approach used to generate the mappings, the argu-
mentation process considers as input a set of pre-computed mappings, and a set
of justifications that motivate the existence of a mapping, that are provided by
the mapping generation approach.

The Meaning-based Argumentation (MbA) process is based on the Value-
Based Argumentation Framework (VAF) [3], which introduced the notions of
audience and preference values. An audience represents a group of agents who
share the same preferences over a set of values, with a single value being assigned
to each argument. This framework extends the seminal work by Dung on the
use of argumentation theory [5]. In Dung’s framework, attacks always succeed; in
essence they are all given equal value. For deductive arguments this suffices, but
within the ontology alignment negotiation scenario [8] the persuasiveness of an
argument could change depending on the audience, where an audience represents
a certain set of preferences. Thus, the Value-Based Argumentation Framework
(VAF) facilitates the assignment of different strengths to arguments on the basis
of the values they promote and the ranking given to these values by the audi-
ence for the argument. Hence, it is possible to systematically relate strengths of
arguments to their motivations and to accommodate different audience interests.

Definition 1. A Value-Based Argumentation Framework (VAF) is defined as
〈AR,A,V, η〉, where:

– 〈AR,A〉 is an argumentation framework;
– V is a set of k values which represent the types of arguments;
– η : AR → V is a mapping that associates a value η(x) ∈ V with each

argument x ∈ AR.

The types of arguments represented by V typically varies, depending upon
the application. Within the MbA process, the values of V correspond to five
different types of ontological mismatches that can occur between ontologies, as
represented in Table 1.

In order to model the notion of different agents having different perspectives
on the same candidate mappings, we define an audience, i.e. the representation
of a preference ordering of V. The notion of audience is central to the VAF. Au-
diences are individuated by their preferences over the values. Thus, potentially,
there are as many audiences as there are orderings4 of V. The set of arguments
is assessed by each audience in accordance to its preferences. An audience is
defined as follows:

Definition 2. An audience for a VAF is a binary relation R ⊆ V × V whose
irreflexive transitive closure, R∗, is asymetric, i.e. at most one of (v, v′), (v′, v)
are members of R∗ for any distinct v, v′ ∈ V. We say that vi is preferred to vj
in the audience R, denoted vi �R vj, if (vi, vj) ∈ R∗

4 Number of audiences corresponds to the different combinations of the elements in
V; i.e. Number of audiences = |V|!
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Table 1. The classification of different types of ontological alignment approaches.

Semantic M These methods utilise model-theoretic semantics to determine
whether or not there is a correspondence between two entities, and
hence are typically deductive. Such methods may include proposi-
tional satisfiability and modal satisfiability techniques, or logic based
techniques.

Internal Structural IS Methods for determining the similarity of two entities based on the
internal structure, which may use criteria such as the range of their
properties (attributes and relations), their cardinality, and the tran-
sitivity and/or symmetry of their properties to calculate the simi-
larity between them.

External Structural ES Methods for determining external structure similarity may evaluate
the position of the two entities within the ontological hierarchy, as
well as comparing parent, sibling or child concepts.

Terminological T These methods lexically compare the strings (tokens or n-grams)
used in naming entities, or in the labels and comments concerning
entities. Such methods may employ normalisation techniques (often
found in Information Retrieval systems) such as stemming or elimi-
nating stop-words, etc.

Extensional E Extension-based methods which compare the extension of classes,
i.e., their set of instances. Such methods may include determining
whether or not the two entities share common instances, or may use
alternate similarity based extension comparison metrics.

As this notion allows different agents (represented by an audience) to have
different perspectives on the same candidate mapping, we need to model what
it means for an argument to be acceptable relative to some audience. This is
defined within the VAF as follows:

Definition 3. Let 〈AR,A,V, η〉 be a VAF, with R and S as subsets of AR, and
an audience R :

(a) For x, y ∈ AR, x is a successful attack on y with respect to R if (x, y) ∈ A
and η(y) 6�R η(x).

(b) x ∈ AR is acceptable with respect to S with respect to R if for every y ∈
AR that successfully attacks x with respect to R, there is some z ∈ S that
successfully attacks y with respect to R.

(c) S is conflict-free with respect to R if for every (x, y) ∈ S×S, either (x, y) 6∈ A
or η(y) �R η(x)

(d) A conflict-free set S is admissible with respect to R if every x ∈ S is accept-
able to S with respect to R

(e) S is a preferred extension for the audience R if it is a maximal admissible
set with respect to R

(f) x ∈ AR is subjectively acceptable if and only if x appears in the preferred
extension for some specific audience.

(g) x ∈ AR is objectively acceptable if and only if x appears in the preferred
extension for every specific audience.

(h) x ∈ AR is indefensible if it is neither subjectively nor objectively acceptable.

Laera et. al. [8] subsequently adopted the VAF for the Meaning-based Ar-
gumentation (MbA) process, allowing agents to express preferences for different
mapping types, and restricting the arguments to those concerning ontology map-
pings allowing agents to explicate their mapping choices. The definition of an
agent and an argument are as follows:
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Definition 4. An agent, Agi, is characterised by the tuple 〈Oi, V AFi, P refi, εi〉
such that Oi is an ontology, V AFi is a instance of a VAF, Prefi is an ordering
over the possible values in V and εi is a private threshold between 0 and 1.

Definition 5. An argument x ∈ AR is a triple x = 〈G,m, σ〉 where m is a
mapping, G is the grounds justifying the prima facie belief that the mapping does
or does not hold and σ is one of {+,−} depending on whether the argument is
that m does or does not hold.

Thus, when arguing over ontology mappings using the VAF, an argument
x ∈ AR either supports or refutes a mapping m, depending on the value of
σ. An agent determines this σ (i.e. decides whether to argue for or against a
mapping) based on its preferences and threshold. Given the set of mappings
M = {m}j=1,...,p, such that p is the number of mappings, and the function5

τ : M → V | τ(m) = v ∈ V then an agent can set the value of σ for an argument,
x, about a mapping, m, as follows:

σ =

{
+, if max(Prefi) = τ(m) ∧ nm ≥ εi
−, otherwise

(1)

The notion of an attack and counter-attack is also formally defined, whereby
x is attacked by the assertion of its negation, ¬x.

Definition 6. An argument x ∈ AR attacks an argument y ∈ AR if x and y
are arguments for the same mapping, m, but with different σ. For example, if
x = 〈G1,m,+〉 and y = 〈G1,m,−〉, x counter-argues y and vice-versa.

The agents can now express, and exchange, their arguments about ontology
mappings and decide from their perspective, audience, what arguments are in
their preferred extension; but the agents still need to reach a mutually acceptable
position with regards to what ontology alignment they actually agree upon.
Laera et. al. define the notion of agreed and agreeable alignment as follows:

Definition 7. An agreed alignment is the set of mappings supported by those
arguments which are in every preferred extension of every agent.

Definition 8. An agreeable alignment extends the agreed alignments with those
mappings supported by arguments in some preferred extensions of every agent.

Thus, a mapping is rejected if it is in neither the agreed nor agreeable align-
ment. Given the context of agent communication it is rational for the agents to
accept as many candidate mappings as possible [8], thus both sets of alignments
are considered. The agents should only completely disagree when they want the
opposite, indeed, the agents gain little by arguing and not reaching some kind
of agreement.

The definition of audience is central to the notion of acceptability of an ar-
gument, since given a set of arguments, and their respective counter-arguments,
5 In some cases τ(m) = η(xm), however in general this assumption does not hold.
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the agents in an audience need to consider which of them they should accept.
The acceptability of some arguments with respect to some audience, depends on
the agents ability to determine a preferred extension that represents a consistent
position within an argumentation framework that can be defended against all
attacks, and cannot be further extended without causing it to be inconsistent or
open to attacks. The mappings supported in the preferred extensions form the
mutually agreed set of mappings [8].

3 A Flexible Approach for Determining Agents’
Orientation on Mappings

The meaning based negotiation approach by Laera et al. is the first attempt to
tackle the problem of dynamic reconciliation of heterogeneous agent ontologies.
Whilst the approach has the merit of having highlighted an important problem,
the proposed solution presents a serious limitation, primarily due to the way σ
is obtained.

In Laera’s approach an agent argues only in favour of those arguments whose
grounds have the highest ranking in the ordering of agent preferences, whilst all
the other mappings are argued against. Hence, effectively the agents can only
express one preference towards one type of mapping, and will argue against
any other type of mapping, therefore greatly reducing the possibility to find a
suitable agreement on a set of mappings. In other words, this approach fails to
distinguish mappings that are less preferred from those mappings for which an
agent is against.

In addition, this type of strict decision process could potentially increase the
chance that inconsistent mappings are determined by the VAF. The walkthrough
example presented in the next section illustrates an occurrence of this unlikely
but possible event.

In this paper, we present an alternative approach that aims at recognising
how agents can have different preferences over the types of mappings to use
in interactions with other agents, and that these preferences can influence the
decision making process behind the negotiation. An agent would ideally try
to maximise the use of those types of mappings with the highest preferences,
however, since it needs to interact with other agents (with their own preferences)
then it might decide to compromise, i.e. to agree to use a less preferred mapping
type if this facilitates communication.

This is the main motivation behind the novel approach to mapping selection
that we present here. It builds on some of the notions presented in the previous
section for the MbA approach, but gives agents more flexibility in deciding their
orientation, i.e. whether to support or refute a mapping.

Given two agents ontologies O1 and O2, a mapping between e ∈ O1 and
e′ ∈ O2 is a tuple m = 〈e, e′, n, r〉, as defined in the previous section. Analo-
gously to MbA we define a VAF as a tuple 〈AR,A,V, η〉 that is similar to the
definition given in the previous section (likewise for the definition of mapping
m). In the flexible approach for determining agents’ orientation on a mapping
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(FDO) proposed here, we define an agent as a tuple Agi = 〈Oi, V AFi, P refi, φi〉,
where Oi is an ontology, V AFi is a instance of a VAF, Prefi is an ordering of
the values in V and φi : V → [0, · · · , 1] maps each v in V to a value 0 ≤ z ≤ 1.
φi(v) represents the minimum confidence threshold for Agi to argue in favour of
a mapping of type v.

Let us consider the function τ : M → V that assigns a v ∈ V to every
m ∈M, then the agent decides whether to be in favour or against the mapping
as follows:

σ =

{
+, if nm ≥ φi(τ(m))
−, otherwise

(2)

In our approach, an agent determines its orientation on a mapping solely
on the basis of the minimum confidence threshold for arguing in favour of a
mapping type, and no longer on the ordering of preferences. In this way, the
agents express how much they prefer each of the possible mapping types, and
how willing they are to argue in their favour. The ordering of preferences is now
only used by the VAF when dealing with arguments and their attacks.

4 Illustrative Example

The following example illustrates how the proposed FDO approach differs from
the original MbA approach, assuming the two ontologies illustrated in Figure 1,
with the mappings given with their relevant mapping types. Mapping m1 is a
Terminological equivalence mapping between concepts A and C, with a confi-
dence of 0.75, whereas mappings m2 and m3 are External Structural equivalence
mappings: m2 between concepts B and D (confidence 0.85); and m3 between
concepts B and E (confidence 0.65). Note that concepts D and E are disjoint,
and thus an alignment containing both mappings m2 and m3 would be incon-
sistent.

Given two agents that wish to communicate: Ag1 has the preference ordering
ES�T; whereas Ag2 has the preference ordering T�ES. Table 2 shows the sets
of mappings that will be argued in favour of (+) or against (-). With the MbA

C

D E

A

B

rdfs:subClassOf rdfs:subClassOf

owl:disjointWith

m1 = {A, C, ≡, 0.75} : T
O O'

m3 = {B, E, ≡, 0.65} : ES

m2 = {B, D, ≡, 0.85} : ES

Fig. 1. An alignment between O and O′
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Mapping Type Acceptance Arguments
Approach Preference Threshold in favor of + against -

MbA ES � T 0.5 {m2,m3} {m1}
T � ES 0.5 {m1} {m2,m3}

FDO ES � T ES=0.5, T=0.7 {m1,m2,m3} {}
T � ES T=0.5, ES=0.7 {m1,m2} {m3}

Table 2. The arguments that support (+) or refute (-) different mappings, given
thresholds and preferences.

approach, we assume that the acceptance threshold ε1 = ε2 = 0.5. Ag1 will argue
in favour of m2 and m3, and against m1; whereas Ag2 will argue against m2 and
m3, but in favour of m1. This is due to the fact that, in the case of Ag1, only
mappings of the first preference ordering were considered (subject to exceeding
the acceptance threshold), and all other mappings were automatically refuted.
The resulting attack graph is illustrated in Figure 2 (left), where each argument
is assigned a label corresponding to its mapping, and the mapping type. These
types are the values in the VAF, with each agent having a private preference
ordering over them.

The FDO approach, however, assigns a separate acceptance threshold for
each mapping type. Ag1 assumes a 0.5 threshold for ES, but a 0.7 threshold for
T , whereas Ag2 assumes a 0.7 threshold for ES, and a 0.5 threshold for T . In this
case, arguments are generated by Ag1 in favour of all three mappings, whereas
Ag2 generates mappings in favour of m1 and m2, but against m3. Although
Ag1 expresses a preference ordering for ES � T, the confidence value of all three
mappings exceeds the acceptance threshold for the different mapping types. The
resulting attack graph is illustrated in Figure 2 (right).

+
T

m1
-
ES

+
ES

m2
-
T

+
ES

m3
-
T

Attack Graph for the MbA Approach

+
T

m1

+
ES

m2

+
ES

m3
-
T

Attack Graph for the FDO Approach

Fig. 2. Attack graphs for the MbA and FDO procedures.

From the attack graphs shown in Figure 2 the preferred extensions for each
audience can be computed for the MbA approach (see below). This does not
produce an agreed alignment, but does produce an agreeable alignment, cor-
responding to {m1,m2,m3}. However, as mentioned earlier, if this agreeable
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alignment were to be accepted by both agents, their ontologies would become
inconsistent, thus making the ontologies and the resulting alignment unusable.

– T � ES = {m1+, m2-, m3-}
– ES � T = {m1-, m2+, m3+}

In contrast, the FDO approach produces an agreed alignment {m1,m2},
whereas mapping {m3} would only appear in an agreeable alignment. Thus, if the
agreed alignment is accepted by both agents, they would be able to communicate
with respect to concepts A, B, C, and D, but not with concept E.

5 Empirical Evaluation

The aim of the evaluation is to contrast the proposed FDO approach with the
original MbA approach presented in [8]. Two hypotheses are explored: that the
FDO approach generates a larger number of supporting arguments, resulting
in more selected mappings that MbA; and that the increased number of map-
pings will better support communication tasks such as query answering (i.e. the
resulting alignments are fit for purpose).

5.1 Evaluating the Generated Arguments

To explore the first hypothesis, the ratio of arguments in favour of mappings to
those against was computed for both approaches, and the resulting mappings
examined. This requires multiple candidate mappings based on different onto-
logical grounds (and hence different mapping types) between ontologies of the
same domain. Eleven ontologies were therefore taken from the OAEI 2007 and
2008 Conference Track repositories (with three exceptions6), as they represent
different domain theories for the same, real-world domain (thus reflecting real-
world heterogeneity) and can be used generate better pairwise alignments than
ontologies from other tracks7. These ontologies (originally developed as part of
the OntoFarm Project8) are listed in Table 3, complete with a brief characteri-
sation in terms of the number of classes (named and anonymous) and properties
(object and datatype), and their Description Logic expressivity9.

For the evaluation, a total of 55 ontology pairs were identified10. The align-
ments between each ontology pair were generated using the Alignment API
[7], which only produces mappings of type internal structural (IS), external
6 These ontologies have memory requirements of >1.5GB.
7
http://oaei.ontologymatching.org/2007/conference/

8
http://nb.vse.cz/~svatek/ontofarm.html

9 The expressivity of an ontology (and hence complexity of a reasoner) for a De-
scription Logic is indicated by the concatenation of letters representing different DL
operators [1].

10 Note that the ordering of the ontologies in each pair is irrelevant; thus rendering an
evaluation on the symmetric pairs unnecessary. Therefore, a total of N(N − 1)/2
ontology pairs were used, where N correspond to the 11 ontologies listed in Table 3.
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Ontology Named Object Datatype Anon. Expressivity
Classes Prop. Prop. Classes

cmt 29 49 10 11 ALCHIF(D)
Conf 59 46 18 33 ALCHIF(D)

confOf 38 13 23 42 SHIF(D)
crs dr 14 15 2 0 ALCHIF(D)
edas 103 30 20 30 ALCHIF(D)
ekaw 73 33 0 27 SHIN

MICRO 31 17 9 33 ALCHOIF(D)
OpenConf 62 24 21 63 ALCHOI(D)
paperdyne 45 58 20 109 ALCHOIF(D)

PCS 23 24 14 26 ALCHIF(D)
sigkdd 49 17 11 15 ALCHI(D)

Table 3. Characteristics for the ontology test set.

structural (ES) and terminological (T); thus for our evaluation, we assume
V = {ES, IS, T}.

In order to investigate the differences depending on the threshold, 4 thresh-
olds have been identified for each mapping type. The first, ε1 = 0 corresponds
to the case where the agent will argue in favour of all arguments. The remaining
thresholds are generated by determining the mean x̄ and standard deviations of
the confidence values for all the mappings for each of the types in V, generated
for the evaluation. Thus, ε2 = x̄ − stdev(x), ε3 = x̄, and ε4 = x̄ + stdev(x).
Whilst the upper limit (ε = 1) was considered, this would have resulted in the
agents arguing against all the mappings, resulting in empty alignments. The four
levels have been varied independently, producing four actual preferences for each
ordering; this produces 144 preferences for each pair of ontologies (again, dis-
carding duplicates). The total number of argumentation situations is, therefore,
7920.

Each experimental argumentation scenario (AS) is defined by the following
tuple:

AS = (O1, O2, P1, P2, A
σ+, Aσ−,Macc)

where the set of mappings over which to argue is determined univocally by
the ontologies O1 and O2, together with the alignment technique used, with P1

and P2 representing the actual sets used depending on the approach. For MbA,
P1 = (Pref1, ε1), P2 = (Pref2, ε2), i.e. for each agent we use the pair composed
of the preference ordering and the threshold. For FDO, Px = (Prefx, φx), but
in this case the Prefx is used only by the VAF (not in determining the agent
orientation). Aσ+ and Aσ− represent the set of arguments in favour and against
any of the mappings in the argumentation respectively, while Macc represents the
set of accepted mappings, i.e., the mappings belonging to at least one preferred
extension of one agent. These latter three parameters are recorded for each
evaluation.
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To compare the results between different ontologies, an index relating Aσ−

to the total number of arguments used has been defined; NegArgs(AS) : AS →
[0, 1], where:

NegArg =
|Aσ−|

(|Aσ−|+ |Aσ+|)

The results have been grouped into nine scenarios based on the first mapping
type of each agent preference Prefx. Thus, each row entry in Table 4 is labeled
by an Argument Scenario (AS) pair, such that the two values correspond to the
first preferred mapping type of Ag1 and Ag2 respectively. The results present
the averages11 over each of the subsequent preference values; i.e. the pair (ES,IS)
averages values for Ag1 preferences ES � (IS � T | T � IS), whereas for Ag2,
IS � (ES � T | T � ES), etc. To compare scenarios based on these pairs, a
comparison was made between FDO and MbA by pairing same ordering and
same thresholds, since the structure of the preferences is the same for both
approaches.

Argument FDO Approach MbA Approach
Scenario Aσ+ Aσ− Macc NegArgs Aσ+ Aσ− Macc NegArgs

(ES, ES) 5230 2591 1364 0.34 1498 6533 739 0.8
(ES, IS) 5685 2896 1325 0.35 2560 6310 33 0.72
(ES, T) 5720 2698 1358 0.33 1209 7680 92 0.84

(IS, ES) 4626 2216 1136 0.33 1802 4640 20 0.73
(IS, IS) 5230 2591 1364 0.34 3032 4752 439 0.64
(IS, T) 6413 3132 1490 0.33 2177 6388 175 0.76

(T, ES) 4416 2479 1050 0.36 987 5828 73 0.85
(T, IS) 4237 2170 1036 0.35 1488 5135 111 0.77
(T, T) 5230 2591 1364 0.34 700 6880 418 0.89
Table 4. Average number of arguments for each scenario.

When using MbA, the proportion of arguments against mappings averaged
78%, significantly greater than the 34% average of arguments that were gen-
erated against mappings with FDO. This can be clearly seen when examining
the number of mappings that were generated when using FDO (for example,
1325 mappings on average for (ES, IS), compared to only 32.67 with MbA). This
higher number of negative arguments generated by MbA suggests that it may
result in a higher probability of generating empty alignments, thus resulting in
unnecessary communication failure. Whilst these results support our hypoth-
esis, it raises questions as to the suitability and hence fitness of the accepted
mappings for a given task, which is addressed below.

11 Note that these results include the arguments generated by both agents over all the
mappings considered.
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5.2 Fitness Evaluation

The above evaluation demonstrated that the FDO approach produced a greater
number of arguments in favour of mappings being generated than when using
MbA, resulting in a larger number of mutually acceptable mappings. However,
it is unclear whether the increase in mappings will result in a better alignment
between two ontologies. To address this, new alignments were generated and
evaluated (in terms of precision and recall) for a typical query-answering task.
An alignment was selected to answer simple queries against one of the ontologies
involved in the alignment, and the results compared to that achieved when a
set of hand-crafted reference mappings (from the OAEI Alignment Challenge)
were used. To investigate how the availability of different alignments affects the
task, four alignment systems (Asmov, Falcon, Lily and OntoDNA [13] were used
to generate the alignments, and the evaluations were conducted over different
alignment combinations.

Base FDO MbA

O1, O2 R P FM R P FM R P FM

A
/
L

/
O (cmt, ekaw) 0.60 1 0.75 0.60 1 0.75 0.58 1 0.74

(cmt, sigkdd) 0.19 1 0.32 0.19 1 0.32 0.10 0.81 0.18
(confOf, ekaw) 0.55 1 0.71 0.55 1 0.71 0.43 1 0.60

A
/
F

/
L (cmt, confOf) 0.83 0.94 0.88 0.83 0.99 0.91 0.77 1 0.87

(confOf, ekaw) 0.90 0.93 0.91 0.9 0.99 0.94 0.75 1 0.85
(confOf, sigkdd) 1 0.96 0.98 1 0.99 1 0.59 0.61 0.60

A
/
O

(cmt, ekaw) 0.60 1 0.75 0.60 1 0.75 0.58 1 0.74
(cmt, sigkdd) 0.19 1 0.32 0.19 1 0.32 0.10 0.81 0.18
(confOf, ekaw) 0.55 1 0.71 0.55 1 0.71 0.43 1 0.60

A
/
F (cmt, confOf) 0.83 0.94 0.88 0.83 0.99 0.91 0.77 1 0.87

(confOf, ekaw) 0.90 0.93 0.91 0.90 0.99 0.94 0.75 1 0.85
(confOf, sigkdd) 1 0.96 0.98 1 0.99 1 0.59 0.61 0.60

L
/
O

(cmt, ekaw) 0.60 1 0.75 0.60 1 0.75 0.58 1 0.74
(cmt, sigkdd) 0.19 1 0.32 0.19 1 0.32 0.10 0.81 0.18
(confOf, ekaw) 0.55 1 0.71 0.55 1 0.71 0.43 1 0.60

F

(cmt, confOf) 0.83 0.94 0.88 0.83 0.99 0.91 0.77 1 0.87
(confOf, ekaw) 0.90 0.93 0.91 0.90 0.99 0.94 0.75 1 0.85

(confOf, sigkdd) 1 0.96 0.98 1 0.99 1 0.59 0.61 0.60

O

(cmt, ekaw) 0.60 1 0.75 0.60 1 0.75 0.58 1 0.74
(cmt, sigkdd) 0.19 1 0.32 0.19 1 0.32 0.10 0.81 0.18
(confOf, ekaw) 0.55 1 0.71 0.55 1 0.71 0.43 1 0.60

F
/
L

(cmt, confOf) 0.83 0.94 0.88 0.83 0.99 0.91 0.77 1 0.87
(confOf, ekaw) 0.90 0.93 0.91 0.90 0.99 0.94 0.75 1 0.85

(confOf, sigkdd) 1 0.96 0.98 1 0.99 1 0.59 0.61 0.60

Table 5. Precision(P), Recall (R) and F-Measure (FM) values for a selection of com-
binations of alignments (where each alignment system is referenced by their initials).
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The query-answering tasks were evaluated by querying instances from vari-
ous knowledge-bases (KBs) defined using the different ontologies. In each case,
queries were constructed by considering each named concept in one ontology
O1, and querying the KB for O2. To overcome the ontological heterogeneity, the
query was resolved using O2∪M , where M was the alignment used. As the result-
ing instance set depends on the generated alignment, a reference “gold standard”
instance set was constructed by using the hand-crafted reference alignment. To
evaluate scenarios where alternate alignments were available from the different
alignment systems used, alignments were generated by all of the systems, result-
ing in 12 different alignments, where each one was partitioned between three or
five ontology pairs. Query answering tasks were performed for three cases: when
all the mappings in the alignments were aggregated and used without any use of
the argumentation process (i.e. Base); when MbA was used; and when FDO was
used. In each case, the answers generated for each query were analysed and com-
pared with that obtained when using the Gold Standard set, and the Precision
(P ), Recall (R) and F-measure (FM) results (using these classical Information
Retrieval measures) are reported in Table 512.

The results suggest that in most cases, there is a slight improvement in the
success of a task when FDO is used (compared to Base) for the scenarios listed
in Table 5, with an average F-measure of 0.83 (compared to 0.82 for Base).
This contrasts sharply with MbA, which achieves only an average F-measure
of 0.72. In general, the precision of FDO is higher or comparable with that
exhibited by MbA. Interestingly, when FDO is compared with the base case in
general, a marked increase in precision is observed. Base already represents a
best-case scenario, in which the different alignment systems are tuned in order to
provide the best accuracy when computing the mappings, and therefore typically
generate only those mappings for which the system has the highest level of
confidence. These results suggest that the further filtering of results due to the
use of FDO pays off in terms of the increase in precision.

6 Related Work

A number of solutions have been proposed that attempt to resolve ontological
mismatches within open environments [14, 4, 8, 9]. An ontology mapping negoti-
ation [14] was proposed to establish a consensus between different agents using
the MAFRA alignment framework. It was based on the utility and meta-utility
functions used by the agents to establish if a mapping is accepted, rejected or ne-
gotiated, making it highly dependent on the MAFRA framework and unsuitable
for other environments.

Bailin and Truszkowski [2] present an ontology negotiation protocol that
enabled agents to exchange parts of their ontology, by a process of successive
12 In eight cases, the recall and precision of the Base and FDO evaluations were of

value 1 (i.e. they returned only those instances in the “gold standard” instance set),
and thus have not been included in the Table. In these cases, the precision of MbA
was also 1, but the recall varied between 0.9 and 0.99.
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interpretations, clarifications, and explanations. The result was that each agent
would converge on a single, shared ontology. However, within an open environ-
ment, agents may not always want to modify their own ontologies, as this may
affect subsequent communication with other agents.

The work by van Diggelen et al. [4] dynamically generates a minimal shared
ontology, where minimality is evaluated against the ability of the different com-
ponents to communicate with no information loss. The agents can explain con-
cepts to each other via the communication mechanism; either by defining the con-
cept in terms already understood or by invoking an extensional learning mecha-
nism. However, the ontological model used here is limited and non-standard, as
its expressivity supports only simple taxonomic structures, with no properties
and few restrictions other than disjointness and partial overlap, and does not
correspond to any of the OWL flavours13. As a consequence, its applicability to
the augmentation of existing real-world, published, OWL ontologies on the web
is limited.

dos Santos et al. [9, 10] address the problem of generating a canonical align-
ment using an extended version of the VAF, which considers both the strength
and value of an argument. They do not consider the problem of dynamically
aligning two agent ontologies to facilitate communication and fail to consider
the preferences of the agents.

7 Conclusions

This paper presents a novel mechanism for determining whether agents are in
favour or against ontology mappings during a process of dynamic selection of
mutually acceptable alignements. The flexible approach for determining agents’
orientation on ontology mappings (FDO) allows agents to express a minimum
acceptability thresholds for each of the mapping types to include in the align-
ment used during communication. In this respect FDO provides a more flexible
framework the Meaning-based argumentation (MbA) approach in order to decide
whether agents support or refute a mapping.

A systematic evaluation has been presented, aiming at assessing the perfor-
mance of this novel mechanism over the 11 ontologies used in the OAEI 2007
initiative. In particular, the evaluation investigated whether the FDO approach
generates larger set of mutually acceptable mappings than the original MbA ap-
proach, thus improving the possibility of finding an alignment agents can use to
interact. In addition, we investigated whether these mappings are fit for purpose
for a query answering task.

The results obtained suggest that the FDO approach produces a considerably
larger set of mutually acceptable mappings by reducing the number of mappings
an agent argues against when compared with MbA. The fitness for purpose
evaluation shows that the FDO approach has a comparable if not higher F-

13 The authors mention a reformulation of their model using Description Logics , but
provide no formal proof of its soundness [4].
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measure than the case when no argumentation is used, and definitely outperforms
MbA.
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