
Web Services Composition Method Based on OWL

Jike Ge Yuhui Qiu* Shiqun Yin
Faculty of Computer and Information Science

Southwest University
Chongqing, China

{gjkid, yhqiu, qiongyin}@swu.edu.cn

Abstract—At present, Web services are created and updated on
the fly. It has already beyond the human ability to analysis them
and generate the composition plan manually. It is a problem that
composing existing Web services automatically and dynamically
according to users’ request. A number of approaches have been
proposed to tackle that problem. Most of them are inspired by
the researches in cross-enterprise workflow and AI planning. In
this paper, we propose a Web services composition method based
on OWL ontology, and design a system model for services
composition. Web services are modeled based on OWL ontology,
the services are semantically matched and composed, and the
executing plan is generated. Finally, the plan is executed and
valuable results are returned to users. We also provide the
experimental comparison, and report that our method has more
accurate matching results.

Keywords: Web service; ontology; matching; composition

I. INTRODUCTION
Web services are considered as self-contained, self-

describing, modular applications that can be published, located,
and invoked across the Web[1]. Under the developing of the
Internet, a large number of Web services have emerged with an
increasing amount of organizations only implement their core
techniques and outsource other application services over
Internet. However, single service published on the Web often
can not satisfy users’ request. Therefore, the ability to select
and compose inter-organizational and heterogeneous services
on the Web efficiently and effectively is an important step
towards the development of the Web services application. Web
services automatic composition technology become one of the
main concerns of the application development process[2].

In the research related to Web services composition, several
methods have been provided that will allow easy integration of
heterogeneous systems. Such as, Universal Description,
Discovery and Integration (UDDI)[3], Web Service
Description Language (WSDL)[4], Business Process Execution
Language for Web Service (BPEL4WS)[5], which are focused
on representing services compositions where flow of a process
and bindings between services are known a priori. Despite all
these efforts, the Web service composition still is a highly
complex task, and it is already beyond the human capability to
deal with the whole process manually. The complexity, in
general, comes from the following sources. First, the number of
services available over the Web increases dramatically during
the recent years, and one can expect to have a huge Web
service repository to be searched. Second, Web services can be

created and updated on the fly, thus the composition system
needs to detect the updating at runtime and the decision should
be made based on the up to date information. Third, Web
services can be developed by different organizations, which
use different concept models to describe the services, however,
there is not a unique language to define and evaluate the Web
services in an identical means.

Semantic Web is the key step to Web services composition.
The functionality of a Web service needs to be described with
additional information, either by a semantic annotation of what
it does or by a functional annotation of how it behaves. The
semantic Web is also an extension of the current Web in which
information is given well defined meaning, consequently better
enabling computer and human to work in cooperation.
Semantic Web aims to add machine-interpretable information
to Web content in order to provide intelligent access to
heterogeneous and distributed information[6]. But, many Web
services can not well support semantic service description.
Therefore, some researchers are now using ontology to help
capture Web service semantics.

In this paper, we extend WSDL with semantic capabilities
for semantic Web services. This makes it feasible for the
automatic Web services composition. We define ontology for
Web services and specify it using the Web Ontology Language
(OWL)[7]. By specifying Web services, we get services
composition plan. Our method analyzes the structure of
services and makes the matched services more accurately.

The rest of this paper is organized as follows. Section 2
introduces the definition of Web services and related concepts
based on OWL. Section 3 describes the Web services
composition model based on OWL, it is our main contribution.
Section 4 reports the experimental analysis and their
evaluation. The last section concludes the paper.

II. WEB SERVICES DESCRIPTION

A. Web Service Definition
Composing Web services requires the description of each

service so as to other services and users can understand its
features and then interact with it. It maybe occur the problem
of semantic conflicts during composing Web services for these
Web services may come from different domains. In order to
solve this problem, we define the Web services and related
concepts, and specify it using OWL.

* Corresponding Author

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.1115

74

Definition 1 (Web Service): Given a Web Service (WS),
WS=<Service-name, Description, Ops, IN, OUT, Binding,
Domain>.

Where, Service-name is the name of a Web service;
Description is a text summary about Web service; Ops is the
set of actions supported by the service; IN and OUT are the set
of Web service’ inputs and outputs; Bindings is the set of
binding protocols supported by Web service, such as UDDI,
WSDL, RDF; Domain denotes the category of Web service.

Definition 2 (Ops): Given an action of the Web service
(Opi), Ops are the set of Opi. Opi=<name, description, catalog,
in, out>

Where, i={1,2,3,…,n}, n=|actions|; name is the name of
Opi, description is a text summary about Opi; in and out are
the set of Opi’s inputs and outputs; catalog indicates the
category of Opi.

Definition 3 (catalog): Given a catalog of the Opi, catalog=
<categoryName, taxonomy, value>

Where, categoryName is the name of the actual category,
which could be just a literal or a property; Taxonomy stores a
reference to the taxonomy scheme, it can be either a URI of the
taxonomy or a URL where the taxonomy resides, or the name
of the taxonomy; value are the values in a specific taxonomy.

B. The Rules of Web Services Composition
In general, services composition can divide into catalog

composition and binding composition[8]. When invoking a
composed service, it should be ensure that sub-services in the
service matching well. Otherwise, it would be difficult to
invoke an operation if there were no matching information
between the parameters requested by this operation. So, we
should define the rule of services composition explicitly.

Rule 1 (catalog composition): Given two Ops, Op1 and
Op2, Op1.catalog compositeWith Op2.catalog to be tenable, if
and only if the following conditions are true:

• Op1.catalog. categoryName= Op2.catalog.
categoryName

• Op1.catalog.taxonomy=Op2.catalog.taxonomy.

For example, assume two Web services are communicating
through operations. These Web services may support different
binding protocols (SOAP, HTTP, et al), it is important to
insure that they understand each other at the protocol level, or
one of the protocols adopted by one Web service must be
supported by the other. The rule 1 can insure this condition is
true.

Rule 2 (Binding composition): Given two Web services,
WS1 and WS2, WS1.Binding compositeWith WS2.Binding to
be tenable, if and only if WS1 .Binding ∩ WS2 .Binding≠φ .

Rule 3 (operation sequence): Pre(Op1, Op2), denotes Op1
precedes op2, to be tenable, if and only if Op1 and Op2 satisfy
the following rules:

• Op1.out ⊇ Op2.in

• Op1.catalog compositeWith Op2.catalog

• WS1.Binding compositeWith WS2.Binding

The above rules ensure services composition success in
theoretical.

III. WEB SERVICES COMPOSITION BASED ON OWL

A. The Framework of Web Services Composition
The framework of Web services composition in Fig. 1

consists of service requester, execution module and services
composition matchmaker.

Figure 1. The architecture of services composition

First, Web services, which provided by the service provider,
need to be registered for composing process. The service
provider registers its service semantic in the OWL Ontology.
Then, the extractor extracts the necessary contact details, such
as, service name, service description, instance of relationship,
input/output information, etc, and stores them in the process
ontology. The process ontology is also updated by connecting
the I/O parameters of the new service to other compatible
service parameters, which can reduce the complexity of
searching for services in an automatic composition. The
services composer searches for a sequence of services and
matches appropriate services, it can return a composite service
with the optimal graph, and generates composition plan of the
composite service for the execution module. Finally, the
execution module executes plan and calls related Web services,
and sends the final results to the service requester.

B. Service Matching Algorithm
Service discovery, often referred to as service matching, is

the precondition of services composition. But, in Web and
semantic Web scenario, heterogeneity cannot be avoided.
Different actors have different interests and habits, use
different tools and knowledge, and most often, at different
levels of detail. These various reasons for heterogeneity lead to
diverse forms of heterogeneity. Therefore, during service
discovery, we should be carefully taken into consideration.

Because of the limitation of syntactic discovery, there are
several efforts in the area of semantic web service discovery[9],
especially Ontology Web Language for Services (OWL-S) and
Web Services Semantics--WSDL-S. Rich semantic description

75

of services is important to facilitate semantic discovery. The
description of services should reflect their functional
characteristic, e.g. by trying to describe the function of a
service with a single term. This kind of semantic description
can be found in [10]. This method ignores the operational
characteristic of services. The matching for single input and
output concepts is put forward in[11]. In this paper, we propose
a novel Web service matching approach that allows for more
flexible and useful description. The Web service matching
algorithm shows in Fig. 2.

Figure 2. The service matching algorithm

There are four cases for check similarity of an output and
input parameter from the same ontology:

• They are the same, their similarity is maximal.

• The output parameter of the former service is
subsumed by the input parameter of the later service.

They are the second best matching, and the similarity
value depends on their distance in the ontology.

• The output parameter of the former service subsumes
the input parameters of the later service, and the
properties of the parameters could be partially
satisfied.

• Two parameters have no subsumption relation or they
are come from different ontology, the similarity value
can be obtained by Tversky’s feature-based similarity
model [12], which is based on the idea that common
features increase the similarity of two concepts, while
feature difference decreases the similarity.

Finally, we could look for the services for each of the
outputs in OUT with the service matching algorithm.

C. Web Services Execution
According to the results of the above algorithm, we can

generate a detailed description of a composite service. In order
to execute the composition plan automatically, we need to
convert G to BPEL4WS data flow, this can be done by the
services composer and produce the BPEL4WS code according
the BPEL4WS syntax specification. After the BPEL4WS is
created, the execution module will execute the BPEL4WS and
send the results to the service requester.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Set-up
We present the performance and quality evaluation of our

proposed method with other methods for Web services
composition. In the Web services composition methods, some
matchmaking algorithms based on keywords, we call them
KW[13], have been proposed. But, they do not take the
semantic between services into consideration so that they have
some limitations on the quality of composition. Another, we
call them SM, has been well researched in[10], which add
semantic to Web service but do not take the structure of the
Web service into consideration. Our Web services composition
method based on OWL, we called OC, which considers not
only the semantic but the structure between services.

All the tests have been performed on a Intel Pentium Dual
1.6GHz, with 1 GB of RAM, with the Windows XP operating
system.

B. Precision Evaluation
We compared precision against KW and SM. We random

generate 200 requests, and respectively use N=1000, 1800,
2500 registered Web services. We use the following equation
as measure method:

 NKP /= (1)

Where, P indicates the proportion of request that can be
successfully fulfilled, K is the number of request that can be
successfully fulfilled in N. N is the number of registered Web
service. Fig. 3 shows the comparison results.

Algorithm: Matchmaking (IN, OUTi) // IN denotes the
inputs of the request, OUTi denotes an output of the
desired service
{
 Get all the opj and IN ⊇ opj .in
 Add opj to set B
Repeat

 {
 For each the new added opj in set B
 Get all the opi and Pre (opi, opj)
 } until B does not increase
 Get all the output of B and add it to set A
 If (A ⊇ OUTi)

Return true;
Else

Return false;
}
If OUTi can be satisfied by the registered services and
the input set, we will find the services and store them
in directed graph (G).

Find (IN, OUTi)
{
 if (Matchmaking (IN, OUTi))

{
 for all the registered WS

A=get (Ops, OUTi) // get all the Ops whose
output include OUTi

Add Ai∈A to G as the pre node of the OUTi
For all Ai∈A
{ if (IN ⊇ Ai .in)

{
 for each ini ∈ Ai.in and ⊄ IN

{
 Find(IN, ini)
 }

}
Return G;

}
}

76

0

10

20

30

40

50

60

70

80

1000 1800 2500

N

P

KW

SM

OC

Figure 3. The precision of Web services composition

In Fig. 3, we can see that the P of SM and OC is much
higher than that of KW. The method based on keywords can
only support querying which may bring about low precision
results, and it is difficult to discovery semantic related requests.
Our method is a bit more precise than that of SM because the
SM neglects the process of service composition.

C. The QoS Evaluation
Quality of service (QoS) is the ability to provide different

priority to different applications, users, or data flows. It has
become an important feature in evaluating system performance,
and it is also a criterion of users’ satisfaction degree.

In this experiment, we will test the QoS of three methods.
We randomly generate 8 requests and use N=1000 registered
Web service to test the users’ satisfaction degree. We define σ
=0.5 as a reference standard value that indicates the base line at
which the users can accept the results of the Web services
composition.

As shows in Table I, KW has the best results in the users’
satisfaction degree, but it is so perfect that the results cannot be
believed by people. Maybe the results of KW fit for all requests,
the results are not pertinence, and they aren’t the best answers.
The results of OC are better than SM. It is proved that our
proposed method has a better performance than other methods.

TABLE I. THE USERS SATISFACTION DEGREE OF WEB SERVICES

Requested service KW SM OC
1 1 0.83 0.96
2 1 0.75 0.85
3 1 0.65 0.83
4 1 0.87 0.96
5 1 0.91 0.90
6 1 0.85 1
7 1 1 1
8 1 0.85 0.83

From above evaluation, our proposed method has a better
performance than other two methods. It is proved that our
method can ensure quality and efficiency while composing
services and it is more satisfied with users’ requests.

V. CONCLUSIONS
In this paper, we introduce an automatic Web services

composition approach based on OWL ontology, and propose a
service matching algorithm. Our method can compose the
services which described by OWL efficiently according to
user’s request. The experiment results also proved our method
has a better performance than other methods.

Even though services composition is a well recognized
problem. But, the presented composition strategies are almost
sequential, and a composite service might require a few
services to be executed in parallel. It might be possible to
enhance our method to start parallel service matching to handle
parallel service flows in the services composition. We plan to
continue our research in this direction to realize more efficient
parallel services composition methods.

REFERENCES

[1] J. Rao, and X. Su, “A Survey of Automated Web Service Composition
Methods,” In Proceedings of the First International Workshop on
Semantic Web Services and Web Process Composition,
SWSWPC’2004, LNCS, San Diego, USA, Springer-Verlag, pp. 43-54,
July 2004.

[2] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, “The next
step in Web services,” Communications of the ACM, vol. 46, no. 10, pp.
29-34, 2003.

[3] T. Bellwood, S. Capell, J. Colgrave, et al, “Universal Description,
Discovery and Integration specification (UDDI) 3.0.2,” Online:
http://uddi.org/pubs/, October 2004.

[4] R. Chinnici, J. Moreau, A. Ryman, et al,“Web Services Description
Language (WSDL) Version 2.0,”Online:
http://www.w3.org/TR/wsdl20/, June 2007.

[5] T. Andrews, F. Curbera, H. Dholakia, et al, “Business Process Execution
Language for Web Services (BPEL4WS) version 1.1,” Online:
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel,
May 2003.

[6] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, vol. 284, no. 5, pp.34-43, May 2001.

[7] P. F. Patel-Schneider, P. Hayes, and I. Horrocks, “Web Ontology
Language (OWL) Abstract Syntax and Semantics,” Technical report,
W3C Recommendation, 2004.

[8] M. Dumas, J. O’Sullivan, M. Heravizadeh, D. Edmond, and A. Hofstede,
“Towards a semantic framework for service description,” In Proceeding
of IFIP Conference on Database Semantics, pp. 277-282, 2001.

[9] J. Euzenat, and P. Shvaiko, Ontology Matching, Springer Berlin
Heidelberg, New York, 2007.

[10] M. Paolucci, T. Kawmura, T.R. Payne, and K. Sycara, “Semantic
matching of web services capabilities,” In Proceeding of 1st
International Semantic Web Conference, LNCS, Berlin, Heidelberg,
Springer-Verlag, pp.333-347, 2002.

[11] B. Benatallah, Q.Z. Sheng, and M. Dumas, “The self-serv environment
for Web services composition,” IEEE Internet Computing, vol. 7, no. 1,
pp. 40-48, January/February 2003.

[12] A. Tverski, “Features of similarity,” Psychological Review, vol. 84, no.
2, pp. 327-352, 1977.

[13] A. Sajjanhar, J. Hou, and Y. Zhang, “Algorithm for Web Services
Matching,” In Proceedings of APWeb2004, LNCS, Berlin Heidelberg,
Springer Verlag, pp. 665-670, 2004.

77

