Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

Improved Convergence of Iterative Ontology
Alignment Using Block-Coordinate Descent

Uthayasanker Thayasivam and Prashant Doshi
THINC Lab, Dept. of Computer Science
University of Georgia
Athens, GA 30602, USA
{uthayasa,pdoshi} @cs.uga.edu

Abstract

A wealth of ontologies, many of which overlap in their scope,
has made aligning ontologies an important problem for the
semantic Web. Consequently, several algorithms now exist
for automatically aligning ontologies, with mixed success in
their performances. Crucial challenges for these algorithms
involve scaling to large ontologies, and as applications of on-
tology alignment evolve, performing the alignment in a rea-
sonable amount of time without compromising on the quality
of the alignment. A class of alignment algorithms is itera-
tive and often consumes more time than others while deliv-
ering solutions of high quality. We present a novel and gen-
eral approach for speeding up the multivariable optimization
process utilized by these algorithms. Specifically, we use the
technique of block-coordinate descent in order to possibly
improve the speed of convergence of the iterative alignment
techniques. We integrate this approach into three well-known
alignment systems and show that the enhanced systems gen-
erate similar or improved alignments in significantly less time
on a comprehensive testbed of ontology pairs. This represents
an important step toward making alignment techniques com-
putationally more feasible.

Introduction

Ontology repositories such as the National Center for
Biomedical Ontologies, which currently hosts 294 ontolo-
gies in the life sciences are indicative of the fact that there
is now an abundance of ontologies and that these are finding
important uses. This wealth of ontologies, many of which
overlap in their scope, has made aligning ontologies an im-
portant problem for the semantic Web. Consequently, sev-
eral algorithms (Jian et al. 2005; Li, Li, and Tang 2007;
Jean-Mary, Shironoshita, and Kabuka 2009; Doshi, Kolli,
and Thomas 2009; Wang and Xu 2009; Hanif and Aono
2009; Bock and Hettenhausen 2010) now exist for automat-
ically aligning ontologies, with mixed success in their per-
formances. Crucial challenges for these algorithms involve
scaling to large ontologies and performing the alignment
in a reasonable amount of time without compromising on
the quality of the alignment. Although ontology alignment
is traditionally perceived as an offline and one-time task,
the second challenge is gaining importance. In particular, as

Copyright (©) 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

150

Hughes and Ashpole (2004) note, continuously evolving on-
tologies and applications involving real-time ontology align-
ment such as semantic search and Web service composition
stress the importance of computational complexity consid-
erations. Additionally, established benchmarks such as the
ontology alignment evaluation initiative (OAEI) (Shvaiko et
al. 2011) recently began reporting the execution times of the
participating alignment systems as well.

A class of algorithms that perform automated alignment
is iterative in nature (Jian et al. 2005; Li, Li, and Tang 2007,
Doshi, Kolli, and Thomas 2009; Wang and Xu 2009; Hanif
and Aono 2009; Bock and Hettenhausen 2010). These algo-
rithms repeatedly improve on the previous preliminary so-
lution by optimizing a measure of the solution quality. Of-
ten, this is carried out as a guided search through the align-
ment space using techniques such as gradient descent or
expectation-maximization. These algorithms run until con-
vergence after which point the solution stays fixed but in
practice, they are often terminated after an ad hoc number of
iterations. Through repeated improvements, the computed
alignment is usually of high quality but these approaches
also consume more time in general than their non-iterative
counterparts. While the focus on computational complex-
ity has yielded ways of scaling the alignment algorithms
to larger ontologies, such as through ontology partition-
ing (Hu, Zhao, and Qu 2006; Seddiqui and Aono 2009;
Stoutenburg et al. 2010), there is a general absence of ef-
fort to speed up the ontology alignment process. We think
that these considerations of space and time go hand in hand
in the context of scalability.

In this paper, we introduce an approach for speeding up
the convergence of iterative ontology alignment techniques.
Objective functions that measure the quality of the solution
are typically multidimensional. Instead of the traditional ap-
proach of modifying the values of a large number of vari-
ables in each iteration, we may decompose the problem
into optimization subproblems in which the objective func-
tion is optimized with respect to a single or a small sub-
set (block) of variables, while holding the other variables
fixed. This approach of block-coordinate descent is theoret-
ically shown to converge faster under considerably relaxed
conditions on the objective function such as pseudoconvex-
ity (and even the lack of it in certain cases) or the exis-
tence of optima in each variable (coordinate) block (Tseng

2001). While it forms a standard candidate tool for mul-
tidimensional optimization and has been applied in con-
texts such as image reconstruction (Pintér 2000; Fessler and
Kim 2011) and channel capacity computation (Blahut 1972;
Arimoto 1972), this paper presents its first application to-
ward ontology alignment. Intuitively, the coordinate blocks
in our application involve alignment variables between enti-
ties at specific heights in the ontology graph.

We evaluate this approach by integrating it into mul-
tiple ontology alignment systems. Although several itera-
tive alignment techniques have been proposed, we selected
Falcon-AO (Jian et al. 2005), MapPSO (Bock and Hetten-
hausen 2010) and Optima (Doshi, Kolli, and Thomas 2009)
as representative algorithms. Not only have these established
tools participated in previous OAEI benchmarks and per-
formed satisfactorily, their implementations and source code
are freely accessible as well. Using a comprehensive testbed
of several ontology pairs — some of which are very large —
spanning multiple domains, we show a significant reduction
in the execution times of the alignment processes, indicating
faster convergences. This enables the application of these
techniques to more ontology pairs in a given amount of time,
or to more subsets in large ontology partitions.

Background

We briefly introduce the ontology alignment problem and
among the different alignment techniques that have been
proposed, we focus on three, which are iterative and rec-
ognized.

Iterative Ontology Alignment

The ontology alignment problem is to find a set of corre-
spondences between two ontologies O; and O,. Because on-
tologies may be modeled as labeled graphs (though with
some possible loss of information), the problem is often cast
as a matching problem between such graphs. An ontology
graph, O, is defined as, O = (V,E,L), where V is the set
of labeled vertices representing the entities, E is the set of
edges representing the relations, which is a set of ordered 2-
subsets of V, and L is a mapping from each edge to its label.
A correspondence, m,q, between two entities, x, € O; and
Yo, € Oy consists of the relation, r € {=,C, D}, and confi-
dence, ¢ € R. However, the alignment systems that we use
focus on the possible presence of = relation (also called,
equivalentClass) between entities only. In this case, an
alignment may be represented as a |V;| x |V;|-dimensional
matrix that represents the correspondence between the two
ontologies, Oy = (V|,E},L;) and Oy = (V5,E»,Ly):

miy mp2 M|V,

may ma2 M2V,
M =

Myt My,[2 Y 4|V

Each assignment variable, m,, in M is the confidence of
the correspondence between entities, x, € Vi and yq, € V.
Consequently, M could be a real-valued matrix commonly

151

known as the similarity matrix between the two ontologies.
However, in some systems including in two that we utilize,
the confidence is binary with 1 indicating a correspondence,
otherwise 0, due to which the match matrix M becomes a
binary matrix representing the alignment.

A class of alignment algorithms is iterative in nature.
These utilize a seed matrix, MY, either input by the user or
generated automatically. Beginning with the seed, the match
matrix is iteratively improved until it converges. Two types
of iterative techniques are predominant. The first type of it-
erative algorithms improve the real-valued similarity matrix
from the previous iteration, M~!, by directly updating it as
shown below: ' _

M =UM")
where U is a function that updates the similarities.

The other type searches over the space of match matrices,
denoted as M, in order to find the alignment that optimizes
an objective function, which gives a measure of the qual-
ity of the alignment, in the context of the alignment from
the previous iteration. This approach is appropriate when the
search space is bounded such as when the match matrix is bi-
nary, although with a cardinality of 2112l this space could
get very large. Formally,

(D

M! = argmax Q(M, M ™"))

MeM

where, M! is the alignment that optimizes the Q function in
iteration i.

Equations 1 and 2 help solve a multidimensional opti-
mization problem iteratively with m,q in M as the variables.
Next, we briefly review three ontology alignment algorithms
that optimize iteratively. Their selection is based on their ac-
cessibility and competitive performance on previous OAEI
benchmarks, and is meant to be representative of iteration-
based alignment algorithms.

Falcon-AO An important component of the Falcon-AO
ontology alignment system (Jian et al. 2005) is its iterative
graph matching called GMO (Hu et al. 2005). GMO mea-
sures the structural similarity between the ontologies that
are modeled as bipartite graphs (Hayes and Gutierrez 2004).
Matrix M in GMO is real-valued and this similarity matrix is
iteratively updated (Eq. 1) by updating each similarity with
the average of its neighborhood similarities until M stops
changing. Equation 1 manifests in Falcon-AO as a series of
matrix operations:

M =GM Gl +GTMI71G, A3)
Here, G| and G, are the adjacency matrices of the bipartite
graph models of the two ontologies O; and O, respectively.
In the first term of the summation, the outbound neighbor-
hood of entities in O; and O, is considered, while the second
term considers the inbound neighborhood.

MapPSO The MapPSO alignment system (Bock and Het-
tenhausen 2010) utilizes discrete particle swarms to perform
the optimization. Each of K particles in the swarm repre-
sents a valid candidate alignment, which is updated itera-
tively. In each iteration, given the particle(s) representing the

best alignment(s) in the swarm, alignments in other particles
are adjusted as influenced by the best particle.

Equation 2 manifests in MapPSO as a two-step process
consisting of retaining the best particle(s) (alignment(s)) and
replacing all others with improved ones influenced by the
best alignment in the previous iteration. The measure of the
quality of an alignment in the ' particle is determined by
the mean of the measures of its correspondences as shown
below:

Vil V2l
Y Y myg Xf(xavyoc)
a=1o=1

o(M}) =)

V1| [Va]

where m,q, is a correspondence in M,i and f represents a
weighted combination of a number of syntactic and possibly
semantic similarity measures between the entities in the two
ontologies.

Improved particles are generated by keeping aside a ran-
dom number of best correspondences according to f in the
alignment in the particle, and replacing others based on the
correspondences in the previous best particle. MapPSQO’s ar-
chitecture is capable of exploiting parallelism and adapts
naturally to parallel architectures.

Optima Optima (Doshi, Kolli, and Thomas 2009) formu-
lates ontology alignment as a maximum likelihood problem,
and searches for the match matrix, M.., which gives the max-
imum conditional probability of observing the ontology Oy,
given the other ontology, O», under the match matrix M..

Optima employs expectation-maximization to solve this
optimization problem in which it iteratively evaluates the ex-
pected log likelihood of each candidate alignment and picks
the one which maximize it. It implements Eq. 2 as a two-
step process of computing expectation followed by maxi-
mization, which is iterated until convergence.

The expectation step consists of evaluating the expected
log likelihood of the candidate alignment given the previous
iteration’s alignment:

Vil [Val -
Y XY Pr(yalx, M)

a=1o=1

x 1ogPr(xa|ya, M),

Q(Mi‘Mi_l) = 3)

where x, and y, are the entities of ontologies O; and
0y, respectively, and 7, is the prior probability of yg.
Pr(x4|yq, M) is the probability that node x, is in correspon-
dence with node y,, given the match matrix M’. The prior
probability is computed using the following equation,

Vi
P i1
Ty = W;PV(yoJmel)

The generalized maximization step involves finding a
match matrix, M:, that improves on the previous one:

M.=MecM: QM M) > oM M"Y (6)

Block-Coordinate Descent

Block-coordinate descent (BCD) (Tseng 2001) is an estab-
lished technique to gain faster convergence in the context

152

of large-scale N-dimensional optimization problems. In this
technique, the variables, referred to as coordinates, are parti-
tioned into C blocks and, within each iteration, the objective
function, Q, is optimized with respect to one of the coor-
dinate blocks while the other coordinates are held fixed. In
order to converge using BCD, we must meet the following
cyclic rule, which ensures that each coordinate block is cho-
sen sufficiently often (Tseng 2001). Let S denote a block
of coordinates, which is indexed by a non-empty subset of
{1,2,...,N}. We may define a set of such blocks as, B =
{80,51,...,Sc}, which is a set of subsets each representing
a coordinate block with the constraint that, S{ US> U...US¢
={1,2,...,N}. Then,
Cyclic rule: There exists a constant, 7' < N, such that every
block, S, is chosen at least once between the i iteration and
the (i 4T — 1) iteration, for all i.

A simple way to meet this rule is by sequentially iterating
through each block although we must continue iterating until
each block converges.

Integrating BCD into Iterative Alignment

Ontology alignment techniques, such as those mentioned
previously, optimize over a multidimensional space. As
the objective functions are often complex and non-
differentiable, numerical iterative techniques are appropriate
but these tend to progress slowly. In this context, we may
speed up the convergence using BCD as we describe below.

Approach

In order to integrate BCD into the iterations, the match
matrix, M, must be first suitably partitioned into blocks.
Though a matrix may be partitioned using one of several
ways, we adopt an approach that is intuitive in the context of
ontology alignment.

An important heuristic, which has proved highly success-
ful in both ontology and schema alignment, matches par-
ent entities in two ontologies if their respective child enti-
ties were previously matched. This motivates grouping to-
gether those variables, m,q in M, into a coordinate block
such that the x, participating in the correspondence belong
to the same height leading to a partition of M. The height
of an ontology node is the length of the shortest path from a
leaf node. Let the partition of M into the coordinate blocks
be {Ms,,Ms,,...,Ms.}, where C is the height of the ontol-
ogy O;. Thus, each block is a submatrix with as many rows
as the number of entities of O; at a height and number of
columns equal to the number of all entities in O,. For ex-
ample, the correspondences between the leaf entities of Oy
and all entities of O, will form the block, Mg,. In the context
of a bipartite graph model as utilized by Falcon-AO and Op-
tima, which represents properties in an ontology as vertices
as well and are therefore part of M, these would be included
in the coordinate blocks.

Iterative ontology alignment integrated with BCD opti-
mizes with respect to a single block, Mg, at an iteration
while keeping the remaining blocks fixed. In order to meet
the cyclic rule, we choose a block, Ms,, at iterations, i =
¢+ ¢C where g € {0,1,2,...}. We point out that BCD is

applicable to both types of iterative alignment techniques
as outlined in the previous section. Alignment algorithms
which updated the similarity matrix iteratively as in Eq. 1
will now update only the current block of interest, Mg, and
the remaining blocks are carried forward as is, as shown be-

low:
M =Us(Mi)
M= @)
g(? B S(,'

for all S, in the complement of S. from B. Note that Mi
combined with M L forall S, forms M. Update function, US,
modifies U in Eq. 1 to update just a block of the coordinates.
Analogously, the iterative alignment techniques which
search for the candidate alignment that maximizes the ob-
jective function as in Eq. 2, will now choose a block, Ms,,
at each iteration. They will search over the reduced search
space pertaining to the subset of all variables as selected in
M3, , for the best candidate coordinate block. Formally,

M’S . = argmax Qg (Ms,, M)
MSCEMSC

i—1

S K

,~ ®)

where Ms, is the space of alignments limited to block, S..
The original objective function, Q, is modified to Qg such
that it provides a measure of the quality of the block, Mg,
only given the previous best match matrix. Note that the pre-
vious iteration’s matrix, Mffl, contains the best block that
was of interest in that iteration.

Given the general modifications above brought about by
BCD, we describe how these manifest in the three iterative
alignment systems that form our focus.

BCD Enhanced Falcon-AO

We enhance Falcon-AO by integrating BCD with its itera-
tive GMO component. We begin by partitioning the similar-
ity matrix used by GMO into C blocks based on the height
of the entities in O that are part of the correspondences, as
mentioned previously. GMO is then modified so that at each
iteration, a block of the similarity matrix is updated while
the other blocks remain unchanged. If block, S, is updated
at iteration, i, then Eq. 3 becomes:

My, = Gl'yg(l?M"*l G} + Gl MGy o)
i
Mg, =M
Here, G s, focuses on that portion of the adjacency ma-
trix of O; that corresponds to the outbound neighborhood of
entities participating in correspondences of block S., while
GlT_ s, focuses on the inbound neighborhood of entities in S.
Adjacency matrix, G, is utilized as before. The outcome of
the matrix operations is a similarity matrix, with as many
rows as the variables in S, and columns corresponding to all
the entities in O,. The complete similarity matrix is obtained
at iteration, i, by carrying forward the remaining blocks un-
changed, which is then utilized in the next iteration.

153

BCD Enhanced MapPSO

We may integrate BCD into MapPSO by ordering the parti-
cles in a swarm based on a measure of the quality of a coor-
dinate block, S, in each particle in an iteration. Equation 4
is modified to measure the quality of the correspondences in
just the coordinate block, S, in the k' particle by taking the
average.

‘Vl,cl ‘VZ‘
' Y Y mga X f(xaay(l)

(10)
Viel[Val

where Vi . denotes the set of entities of ontology, O, of iden-
tical height participating in the correspondences included in
block, S.. As before, we retain the best particle(s) based on
this measure and improve on coordinate block alignment,
M ,’c s, in the remaining particles using the best particle in the
previous iteration while keeping the remaining coordinates
unchanged.

BCD Enhanced Optima

As we mentioned previously, Optima utilizes generalized
expectation-maximization to iteratively improve the likeli-
hood of candidate alignments. Jeffery and Alfred (1994)
discuss a BCD inspired expectation-maximization scheme
and call it as space alternating generalized expectation-
maximization (SAGE). Intuitively, SAGE maximizes the ex-
pected log likelihood of a block of coordinates, thereby lim-
iting the hidden space, instead of maximizing the likelihood
of the complete alignment. In each iteration, Optima en-
hanced using SAGE chooses a block of the match matrix,
M gc, and its expected log likelihood is estimated. As in pre-
vious techniques, we choose the blocks in a sequential man-
ner such that all the blocks are iterated in order.

Equation 5 is modified to estimate the expected log like-
lihood of the block of a candidate alignment as:

|Vl c‘ ‘V2|

Z Z Pr()’oc|xaa)

a=1 a=1 .
5) Mo

X LogPr(x4|yo, M

QS(M§C|MFI): (11)

Recall that V; . denotes the set of entities of ontology, Oy,
participating in the correspondences included in S.. Notice
that the prior probability, &, ., is modified as well to utilize
just Vi . in its calculations.

The generalized maximization step now involves finding
a match matrix block, Mgﬁ*, that improves on the previous
one:

i
MSL-,* -

i
o,c?

M € Ms, :
Os(Mi M) > Qs(M§ ! M)

Here, ngi is a part of M1,

At iteration i, the best alignment matrix, M, is formed by
combining the block matrix, M’S which improves the Qg
function as defined in Eq. 12 w1th the remaining from the
previous iteration, M;(,l’ unchanged.

12)

20
Falcon-AO
| Falcon-AO with BCD

BExx] MapPSO BExx]
1000 €z MapPSO with BCD oseess

A
o

DIXIIL,
R
o20%6% %%

100

Time (sec)
S0
2%
$6%%
—
X
250X
Time (sec)

7S
X
1%

<7
<

X
v
e
-
X
%5

X
X
3
~
(%

5%
%
KL
7
&
b}

029
77
%
5%
<X
2

7T
e
o0%

L
X%
%%

XX
2L

A
~

X
12

¢
X
1%

%%
%
:.0
252
<
oo

R
0%
7
o
—
%
02!

P
%

X
2
—
%
%!

&

&

1400

ogoses

Optima
Optima with BCD

<
X

R

3

7
K
6%

1200

T

O
RRRRRR

]
<

X
(R

1000

5
oo
%%

,.
<

1%
XK
$RXXA]

77
5
%!
XX

800

o929
QL
9%
o%e%e%
Time (sec)
0%
%

o
98

600

SRS
B
X

0 0.0.0.
558K

XXX
K
R
1%%!
(KR,

9 020.0.0.0:0.0.9-0:0.0.9,
odedodods
e
0200
1%0%%
TOTOT0%e
2920039

&
-
ves

X
b5
X7
O
o%!
%27
o

[

<
be%

%7
%
0%
[
KX

[
%

s
S
%!
2
1003

P

b

&

N
S
ok

R \Q‘\\
& Ny

& &

Figure 1: Average total execution time consumed by the three iterative algorithms, (a) Falcon-AO, (b) MapPSO, and (¢) Optima,
in their original form and with BCD when aligning the 4 ontology pairs of the bibliography domain. Note that the time axis
of (a) is in log scale. While the overall differences in run time are statistically significant, we point out an order of magnitude
reduction for the (303,101) pair in (a). For a majority of the pairs, the algorithms converged in a lesser number of iterations as

well.

Experiments

We empirically analyze the improvements in the speed of
convergence and the associated tradeoffs, if any, in the fi-
nal alignment, due to the integration of BCD in the itera-
tive alignment techniques. We used a comprehensive testbed
of several ontology pairs — some of which are very large —
spanning multiple domains. We used ontology pairs from
the OAEI competition in its recent version, 2011, as the
testbed for our evaluation. Among the OAEI tracks, we fo-
cus on the test cases that involve real-world ontologies for
which the reference (true) alignment was provided by OAEIL
These ontologies were either acquired from the Web or cre-
ated independently of each other and based on real-world re-
sources. This includes all ontology pairs in the 300 range of
the benchmark, which relate to bibliography, expressive on-
tologies in the conference track all of which structure knowl-
edge related to conference organization, and the anatomy
track, which consists of large ontologies from life sciences,
describing anatomy of adult mouse and human. We list the
ontologies participating in our evaluation in Table 1 and pro-
vide an indication of their sizes.

In our experiments, we aligned ontology pairs using all
three iterative alignment systems, in their original forms and
with BCD using the same seed alignment, M°. The iterations
were run until the algorithm converged and we measured the
total execution time, final recall and precision, and the num-
ber of iterations performed until convergence. We stopped
the execution if the system did not converge for an ontol-
ogy pair within 5 hours. Note that this is a longer time limit
compared to the OAEI 2011 benchmark limit of 2 hours. We
averaged results of 5 runs on every ontology pair using both
the original and the BCD enhanced version of each system.
Because of the large number of total runs, we ran the tests
on three different computing platforms while ensuring com-
parability. Two of these were Red Hat machines with Intel
Xeon Core 2, processor speed of about 3 GHz with 4GB
of memory, while the third was a Windows 7 machine with
Intel Core 17, 1.6 GHz processor and 4GB of memory.

The 4 ontology pairs in bibliography domain are obtained
from the 300 series of OAEI’s benchmark track, which con-

154

Ontology [Named Classes | Properties
Bibliography Domain
101 37 70
301 16 40
302 14 30
303 57 72
304 41 49
Conference Domain
ekaw 74 33
sigkdd 49 28
iasted 150 41
cmt 36 59
edas 104 50
confOf 38 36
conference 60 64
Life Science Domain
mouse anatomy 2744 2
human anatomy 3304 3

Table 1: Ontologies from OAEI 2011 used in our evaluation
and the number of named classes and properties in each. No-
tice that our evaluation includes large ontologies from differ-
ent domains.

sists of real-world ontologies describing bibliographic refer-
ences. We show the average total execution time consumed
by each algorithm until convergence in its original form and
with BCD in Fig. 1. While the introduction of BCD signifi-
cantly reduces the amount of total execution time consumed
by all three iterative techniques (Student’s paired t-test, p <
0.01), the reduction is greater than an order of magnitude for
ontology pair (303,101) in the context of Falcon-AO. Never-
theless, the final recall and precision of the resulting align-
ment remained unchanged for Optima. In the case of Falcon-
AQ, the integration of BCD caused the precision for ontol-
ogy pairs (302,101) and (303,101) to improve by 2% from
63.04% to 65.9% and from 41.23% to 42.1%, respectively,
while recall remained the same at 61.7% and 83.3%, respec-
tively. The precision and recall for all other pairs remain un-
changed. Enhancing MapPSO, which has a random compo-
nent, with BCD improved the precision averaged across the

Falcon-AO EX=X1
Falcon-AO with BCD sesese

1000

<
%

L8

N

A

5
X

T
RLREEK

3
s
T
oo

3

o
o

5
X
2%

RN

S
=
X X

o2

Time (sec)
Time (sec)
9%

5
X

LR

XX

RRXRXI K
ote%ee%

%

X

oS
X

o
X

i
2

<

2
K
XX
%%
X

K>

£2
KR
%
>

L

)

S) &
& &
B o e?\g“

X ot
R P
G & &

(@)

N
| ,,e‘zb
oY

s
& e

X

R

X

%

R

8
o8

et

()

1000

MapPSO EX=X1 Optima EXX]
MapPSO with BCD eeeses Optima with BCD eeeees

=)
3
T

oY

(|
b
—

To%%
K
R

93
e

%%
XX
T
XKL

w.
X
0
Letele

%

e
o205

X X

Time (min)
X

OSSR
e

o

-
o0k

o
T

%
o

"""'
de%e%!
-
<>
2%

%%
<
SR

3>
%

X
<

o
XX
XX

%2
S

5
Z%
X
%2
o

,v
<X
—
o
%

2

(< < o
& \ g E T [K
2 D a0 o\ &
& Nl o“\d\ R X o & \Q“ﬁ
& & R P o°
@ A X

Figure 2: Average total execution time consumed by, (a) Falcon-AO, (b) MapPSO, and (c¢) Optima in their original form and
with BCD, for 6 of the 21 ontology pairs from conference domain. Although we ran the algorithms for all the pairs, we selected
ontology pairs which exhibited the highest and lowest differences in average execution times. Note that the time axis of (a) and
(¢) are in log scale. Notice the improvements in execution time for the larger pairs.

pairs and runs from 37% to 88%, while the recall remained
steady at about 37%.

The ontologies in the conference domain vary widely in
their size and structure. As shown in Fig. 2, the introduc-
tion of BCD to the three iterative techniques clearly im-
proves their speeds of convergence and the differences are
significant (Student’s paired t-test, p < 0.01). In particu-
lar, we observed an order of magnitude reduction in time
for aligning relatively larger ontologies such as iasted and
edas. For example, pairs (confOf,iasted) in Falcon-AO, (con-
ference,iasted) in MapPSO and (confOf, edas) in Optima
showed such reductions. Importantly, BCD enhanced Op-
tima successfully completed aligning all the ontology pairs
in the conference domain while in its original form it was
unable to completely align the larger ontology pairs within
the cutoff of 5 hours. Analogous to the bibliography domain,
BCD enhanced Optima did not show any change in precision
and recall of the final alignment. However, Falcon-AQO exhib-
ited slight improvement in the average precision from about
13% to 14% while keeping the average recall unchanged at
73%. MapPSO with BCD resulted in a significant improve-
ment in final precision from 9% to 43% on average although
the difference in recall was not significant.

The very large anatomy ontologies for mouse and human
were not successfully aligned by either MapPSO or Optima
despite the use of BCD. However, BCD drastically reduced
the average total execution time for aligning this ontology
pair when using Falcon-AO from 162 minutes to 85 minutes.
Furthermore, the alignment generated by Falcon-AO with
BCD gained in precision from 74% to 76% while keeping
the recall unchanged.

In summary, the introduction of BCD led to significant
reductions in convergence time for all three iterative algo-
rithms on multiple ontology pairs. Furthermore, the quality
of the final alignments also improved in some cases while
remaining unchanged in others.

Discussion

While techniques for scaling automated alignment to large
ontologies have been previously proposed, there is a gen-
eral absence of effort to speed up the alignment process. We

155

presented a novel approach based on BCD to increase the
speed of convergence of iterative alignment algorithms with
no observed adverse effect on the final alignments. We also
demonstrated this technique in the context of three different
alignment systems and evaluated its impact on both the total
time of execution and the final alignment’s precision and re-
call. We reported significant reductions in the total execution
times of the algorithms enhanced using BCD. These reduc-
tions were most noticeable for larger ontology pairs. Often
the algorithms converged in a lesser number of iterations.
Simultaneously, the integration of BCD improved the preci-
sion of the alignments generated by some of the algorithms
while retaining the recall.

The capability to converge quickly allows an iterative
alignment algorithm to run until convergence, in contrast
to the common practice of terminating the alignment pro-
cess after an arbitrary number of iterations. As predefining
a common bound for the number of iterations is difficult,
speeding up the convergence becomes vital.

Our particular approach toward creating blocks limits
their number to the height of an ontology participating in
the alignment. If the ontologies are shallow, the number of
blocks created will be less, which may impact the improve-
ment in convergence time brought about by BCD. On the
other hand, tall ontologies may lead to an excessive number
of blocks thereby magnifying the possibility of converging
to local optima. Other partitioning techniques may not be
ruled out, though we find the employed partitioning tech-
nique to be intuitive and effective. While we may partition
M both row- and column-wise, this could lead to overpar-
titioning and impact the quality of the alignment. Further-
more, switching row and column ontologies in M may affect
the final results though our choice of which ontology to par-
tition was arbitrary.

We believe that the observed increase in precision of the
alignment due to BCD is because of the optimized mappings
found for the previous coordinate block, which influence the
selection of the mappings for the current coordinate block.
Additionally, the randomly generated mappings in MapPSO
are limited to the block instead of the whole ontology, due to
which the search becomes more guided. Given that on inte-

grating BCD the iterative algorithms produced better quality
alignments, we infer that the original algorithms were con-
verging to local optima, instead of the global optima, and
that using BCD has likely resulted in convergence to (better)
local optima as well. This is a significant insight because it
uncovers the presence of local optima in the alignment space
of these algorithms. This may limit the efficacy of iterative
alignment techniques.

Acknowledgement

This research is supported in part by grant number
ROIHLO87795 from the National Heart, Lung, And Blood
Institute. The content is solely the responsibility of the au-
thors and does not necessarily represent the official views
of the National Heart, Lung, And Blood Institute or the Na-
tional Institutes of Health.

References

Arimoto, S. 1972. An algorithm for computing the capacity
of arbitrary discrete memoryless channels. IEEE Transac-
tions on Information Theory 18(1):14-20.

Blahut, R. E. 1972. Computation of channel capacity and
rate-distortion functions. IEEE Transactions on Information
Theory 18:460-473.

Bock, J., and Hettenhausen, J. 2010. Discrete particle swarm

optimisation for ontology alignment. Information Sciences
1-22.

Doshi, P.; Kolli, R.; and Thomas, C. 2009. Inexact matching
of ontology graphs using expectation-maximization. Web
Semantics: Science, Services and Agents on the World Wide

Web 7(2):90-106.

Fessler, J. A., and Hero, A. O. 1994. Space-alternating gen-
eralized expectation-maximization algorithm. /EEE Trans-
actions on Signal Processing 42:2664-2677.

Fessler, J. A., and Kim, D. 2011. Axial block coordinate de-
scent (abcd) algorithm for X-ray CT image reconstruction.
In Proceedings of Fully 3D Image Reconstruction in Radi-
ology and Nuclear Medicine, 262-265.

Hanif, M. S., and Aono, M. 2009. Anchor-flood: results
for OAEI 2009. In Proceedings of the Workshop on On-
tology Matching at Sth International Semantic Web Confer-
ence, 127-134.

Hayes, J., and Gutierrez, C. 2004. Bipartite graphs as inter-
mediate model for RDF. In Proceedings of the 3rd Interna-
tional Semantic Web Conference (ISWC), Lecture Notes in
Computer Science. Springer Berlin / Heidelberg. 47-61.
Hu, W.; Jian, N.; Qu, Y.; and Wang, Y. 2005. GMO: A graph
matching for ontologies. In K-Cap Workshop on Integrating
Ontologies, 43-50.

Hu, W.; Zhao, Y.; and Qu, Y. 2006. Partition-based block
matching of large class hierarchies. In Proceedings of the
1st Asian Semantic Web Conference (ASWC), 72-83.

Hughes, T. C., and Ashpole, B. C. 2004. The semantics

of ontology alignment. In Information Interpretation and
Integration Conference (I3CON).

156

Jean-Mary, Y. R.; Shironoshita, E. P.; and Kabuka, M. R.
2009. Ontology matching with semantic verification. Web

Semantics: Science, Services and Agents on the World Wide
Web 7(3):235-251.

Jian, N.; Hu, W.; Cheng, G.; and Qu, Y. 2005. Falcon-AO:
Aligning ontologies with Falcon. In K-Cap Workshop on
Integrating Ontologies, 87-93.

Li, Y; Li, J; and Tang, J. 2007. RiMOM: Ontology
alignment with strategy selection. In Proceedings of the
6th International and 2nd Asian Semantic Web Conference
(ISWC2007+ASWC2007), 51-52.

Pintér, J. D. 2000. Yair censor and stavros a. zenios, parallel
optimization — theory, algorithms, and applications. Journal
of Global Optimization 16:107-108.

Seddiqui, M. H., and Aono, M. 2009. An efficient and scal-
able algorithm for segmented alignment of ontologies of ar-
bitrary size. Web Semantics: Science, Services and Agents
on the World Wide Web 7:344-356.

Shvaiko, P.; Euzenat, J.; Heath, T.; Quix, C.; Mao, M.; and
Cruz, I. E, eds. 2011. Proceedings of the 6th International
Workshop on Ontology Matching, volume 814 of CEUR
Workshop Proceedings. CEUR-WS.org.

Stoutenburg, S. K.; Kalita, J.; Ewing, K.; and Hines, L. M.
2010. Scaling alignment of large ontologies. Interna-
tional Journal of Bioinformatics Research and Applications
6:384-401.

Tseng, P. 2001. Convergence of block coordinate descent
method for nondifferentiable minimization. Journal of Op-
timization Theory and Applications 109:475-494.

Wang, P., and Xu, B. 2009. Lily: Ontology alignment results
for OAEI 2008. In Proceedings of the Workshop on Ontol-

0gy Matching at 7th International Semantic Web Conference
(ISWC).

