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Abstract—Porting applications from one cloud platform to
another is difficult, making vendor lock-in a major impediment
to cloud adoption. Model-driven engineering could be used to
determine how applications might run on different platforms, if
platform schemas could be matched. However, schema matching
typically relies on linguistic and structural similarities, and
cloud schema terms diverge so much that such matching is
impossible. To address this challenge, we introduce Prison Break:
a novel, semi-automated and generic schema matching process.
Prison Break solves the divergent vocabulary problem by using
web search results as a similarity metric, thus incorporating
domain knowledge without constructing a dictionary, lexicon or
thesaurus. We tested Prison Break by matching schemas from two
major cloud providers: Windows Azure and Google Application
Engine. We determined that Prison Break helps solve the vendor
lock-in problem by reducing the manual efforts required to map
complex correspondences between cloud schemas. This brings
us one step closer to automatic model migration across cloud
platforms.

I. INTRODUCTION

In cloud computing, vendor lock-in refers to the depen-
dency of an application on a particular cloud vendor [1].
It is hard to migrate to another vendor, due to the lack of
standardized protocols, APIs, data structures, and service mod-
els [2]. This migration problem has previously been attacked
using model driven engineering to transform models across
platforms. However, appropriate mapping between the different
model schemas must first be established [3].

The process of finding correspondences between different
schemas is referred to as schema matching [4]. It is a well
established practice [5], widely used for database migration
and ontology consolidation [6], in domains such as linked-
data, telecommunications, e-commerce, and bioinformatics [7].
However, while some attempts have been made to concep-
tualize or deploy schema matching in the cloud [8], we are
unaware of any project that has successfully used it to mitigate
cloud vendor lock-in. This is because most schema matching
tools exploit simple mappings between schemas that share
structurally or linguistically similar concepts. These tools do
not provide generic solutions for executing complex mappings,
where similar domain concepts may not be be identifiable via
linguistic or structural similarities. Some advanced matching
tools use dictionaries to incorporate domain knowledge [9].
Unfortunately, concept glossaries are not always available, and
change constantly.

Complex mappings are the norm in the cloud. There are
no industry-wide conventions for naming functions or services
across cloud platforms. Proprietary marketing terms get used as
the structural software terms instead. For instance, the terms
“Role” in Windows Azure and “Module” in Google Appli-
cation Engine (GAE) refer to the same underlying concept.
However, these concepts do not have any linguistic similarity.
Constructing a domain specific thesaurus can strengthen this
kind of approach, but its applicability will be limited to those
terms existing in the domain dictionary, and it will be fragile
when change happens.

This paper presents a semi-automated schema matching
process that solves the problem of obtaining domain knowl-
edge and making the complex alignments required to facilitate
model driven migration of the cloud service models between
different providers. We call our approach “Prison Break”
because it frees users from vendor lock-in. We answer the
following research questions for complex cloud schemas:

RQ1. Is it possible to pull domain knowledge into schema
matching processes without sacrificing generality?

RQ2. How will this generic approach to schema matching
perform in comparison to existing approaches?

The answers are addressed throughout the paper, and
highlighted in the conclusion. This research work makes the
following contributions: (i) apply schema matching in the
cloud domain to address the vendor lock-in problem, (ii)
devise a generic schema matching process that uses web-search
results as a similarity metric to find correspondences between
similar concepts that may not share linguistic or semantic
features.

Section II of this paper illustrates why schema matching is
required in the cloud, and highlights the need for a generic ap-
proach to solving the mismatch problem. Section III illustrates
how generic schema matching solutions may fail to address
the mismatch problem in the cloud. Section IV presents our
proposed solution, and how it has been realized. Section V
evaluates it against competing alternatives. Section VI presents
related work, followed by conclusions and suggestions for
future work in Section VII.

II. PRELIMINARIES

We begin our investigation by exploring the schema mis-
match between two cloud providers; Microsoft Azure [10] and
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the Google Application Engine [11]. There are several ways
cloud service providers as an industry might attempt to resolve
these mismatches. Given that we cannot re-start the industry
on a shared vocabulary from scratch, some kind of mismatch
resolution is required. Therefore, automatic or semi-automatic
schema matching has a role to play in making that process
more manageable.

A. Mismatches at the Service Delivery Model

Deploying an application on a cloud platform requires
specifying how the application service model will use the
platform resources of that particular provider. This involves
specifying a set of platform specific artifacts (i.e., definition
and configuration files). Listings 1 and 2 show a definition
and configuration files respectively that are used to deploy an
application on Windows Azure platform. Likewise, Listings 3
and 4 show a deployment descriptor (i.e., definition file) and
module configuration files that are required to deploy a Java
application on Google Application Engine (GAE).

The service definition file in Listing 1 describes a cloud
application that uses one role. A role in Windows Azure
refers to a virtual appliance that is prepared with the required
software stack to run a certain family of applications (i.e., web,
or back-end). The service configuration file further specifies
the service definition by assigning values to the configuration
settings defined in the service definition file. For example,
the service configuration in Listing 2 specifies the number of
instances of the worker role, as well as a connection string
(DataConnection) that points to a Windows Azure account
to allow the role to access a cloud data store. Similarly, in
GAE, the application descriptor file in Listing 3 declares the
list of modules that comprise the application and the types of
these modules (i.e., web, java, ejb and connector). Each of the
modules defined in the deployment descriptor file is further
specified in the module configuration file, which also specifies
the scaling type and instance class.

At a glance, the Azure and GAE files seem to share several
similar concepts with similar, or at most slightly different
structures. For example, the concepts of a module and a role

<ServiceDefinition>
<WorkerRole name="ShoppingCartProcessing" vmsize="
Small"=>
<ConfigurationSettings>

<Setting name.."DataConnection" />
</ConfigurationSettings>

</WorkerRole>
</ServiceDefinition>

Listing 1: Example of Service Definition File.

<ServiceConfiguration>
<Role name="ShoppingCartProcessing">
<Instances count="2" />

<ConfigurationSettings>
<Setting name="DataConnection"

value="UseDevelopmentStorage=true" />
</ConfigurationSettings>

</Role>
</ServiceConfiguration>

Listing 2: Example of Service Configuration File.

are very similar. Both represent a software process that has a
type. The type specifies the family of applications the process
belongs to (i.e., a module type in GAE, a role type in Azure).
The number of instances for the modules and roles are speci-
fied in the configuration files. One of the structural differences
at the file level between Azure and GAE application package
specifications is that the resource requirements for roles are
specified in the definition file by specifying the virtual machine
size (e.g., vmsize=“Small”), while the modules underlying
instance specifications are specified in the configuration file by
specifying the instance class (e.g., “instance class = F4”). In
order to port the application from one provider to another, the
mismatch between the different providers’ models need to be
resolved. In the next subsection we highlight three different
approaches that can be used to resolve such a mismatch
and create mappings between the different provider-specific
concepts.

B. Potential Approaches to Solve Vendor Lock-in

The aforementioned examples are based on Windows
Azure and GAE application packaging specifications. How-
ever, the information required to specify a cloud application
deployment is essentially the same (e.g., in Amazon AWS the
previously described role/module is equivalent to beanstalk). In
order to deploy the same application on multiple providers and
facilitate its migration, there is a need to identify the mapping
between the deployment-description artifacts of the different
providers. There are three different approaches to address this
problem:

(a) The platonic standardization approach: A standardiza-
tion body or industry consortium creates a unified modeling
standard and enforces it on all providers. The advantage of this
approach is that if applied correctly, it can guarantee a minimal
set of concepts with few to no mismatches. Unfortunately, it is
not realistic to expect that a standardization body might arise

<application
<description>Demo Java EE App</description>
<display-name>My App</display-name>
<module>
<web>
<web-uri>ShoppingCartProcessing</web-uri>
<context-root>ShoppingCartProcessing</context-
root>

</web>
</module>

</application>

Listing 3: Example of GAE Deployment Descriptor File.

<appengine-web-app
<application>My App</application>
<module>ShoppingCartProcessing</module>
<version>uno</version>
<threadsafe>true</true>
<instance-class>F4</instance-class>
<manual-scaling>
<instances>5</instances>

</manual-scaling>
</appengine-web-app>
</application>

Listing 4: Example of GAE Module Configuration File.
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that is fully aware of all the cloud domain requirements, and
has full control over the industry - especially in such a vibrant,
competitive industry as cloud computing. It is just as unlikely
that such a body will emerge and become dominant now as it
was in earlier days when the cloud industry was born.

(b) The oligopoly approach: Providers create their own stan-
dards. Then, alignments are created to establish the mapping
between the different standards. This is more realistic than
the platonic approach as it relieves the providers from the
constrains of following one standard. However, it suffers from
several problems: (i) creating alignments manually is difficult;
therefore, automatic schema matching is needed. Morover, (ii)
automatic schema matching cannot identify all mismatches
nor is it able to establish all mappings; human intervention
is still required. Finally, (iii) the approach suffers from the
combinatorial explosion problem. In which, there is a need
to create mappings across every combination of the supported
providers’ schemas.

(c) The modest hybrid approach: Providers create their own
standards. These standards along with domain knowledge are
used to create a unified domain ontology/meta-model. Then,
a set of schema matching techniques is used to establish
mappings between the different providers’ schemes and the
unified domain ontology schema. This approach has the fol-
lowing advantages: (i) It addresses the combinatorial problem
by facilitating model transformation to and from the unified
domain ontology. This can improve application maintainability
as changes in one model can easily propagate to other models.
(ii) Even though it may use simple schemas (e.g., based
on xsd) in their output format, domain ontologies represent
higher level of abstraction and hence can deal with complex
and hierarchical relationships, and support reasoning and val-
idation of domain constraints. Despite all the advantages of
the modest approach, it suffers from the same drawbacks as
its predecessors: the creation of a unified domain ontology
is a complex and time-consuming task. Moreover, automatic
schema matching is an inaccurate and error prone process.

In a nutshell, schema matching is an essential component
for the success of any of the approaches discussed to tackle the
vendor lock-in problem. In particular, both the second and third
approaches require implementing efficient schema matching
processes. This paper focuses on this particular issue: how to
semi-automate mappings between the different schemas. The
next section defines the schema matching problem, explains
the main approaches and tools used in schema matching, and
highlights the challenges that may face practitioners who may
want to use schema matching to address the cloud vendor lock-
in problem.

III. SCHEMA MATCHING IN THE CLOUD

Despite the fact that schema matching has obvious utility
for solving the vendor lock-in problem, it has not been well
exploited within the cloud computing domain. Most existing
approaches follow the traditional model driven approach in
an attempt to create a reference domain model. This model
is usually created manually. The goal of this paper is to
address mismatch between the different cloud providers service
models, by applying schema-matching techniques

Besides addressing the vendor lock-in problem by mapping
the different providers service models, schema matching can
be used for model evolution, to migrate the existing artifacts
to newer versions when schemas are updated due to platform
updates with the same provider. This section introduces the
definition of schema matching, and highlights some of the
challenges when adopting schema matching techniques in the
cloud domain.

A. Schema Matching

The goal of schema matching is to find correspondences
between entities of two schemas (s1, s2). As shown in Fig.1,
schema matching techniques normally consist of two steps:
similarity analysis and elements mapping. In similarity anal-
ysis, given two schemas (s1,s2), each element in s1 will be
compared to the elements in s2. A similarity score σ(e1, e2) will
be calculated and normalized to be used in the final mapping
process. The results of the similarity computation are usually
presented in a similarity matrix. In which, each cell contains a
measure of similarity between an element of s1 and an element
of s2.

Fig. 1: The Schema Matching Process

Generally speaking, the similarity analysis techniques used
in schema matching can be classified into element-based and
structure-based methods. Element-based techniques do not
consider the relationship between the elements within the
same schema. It is usually based on calculating the syntactic
or semantic similarity between entities. On the other hand,
structure-based techniques use the relationships between ele-
ments and apply graph or tree matching algorithms to analyze
the structure of the schema. In most approaches, structural-
based techniques are considered complementary, because these
techniques are used to improve the overall matching results
derived from element-based similarities [12]. The mapping
process establishes the final matching between the elements
of the two schemas by comparing the similarities and filtering
the results. The most common mapping technique is threshold
based filtering.
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B. Problems With Schema Matching

As explained earlier, cloud models (schemas) are industry
driven. They are derived form the specifications of their un-
derlying platforms. Despite the similarity in domain concepts
between these various platforms, in most cases there are huge
discrepancies in the way they name these concepts. This is
due to: (i) the lack of coordination between the providers at
the early stages of the development of their platforms; (ii) the
continuous updating of schemas due to the evolving feature
sets of competitive offerings, and evolving customer needs;
(iii) marketing campaigns and the need to differentiate from
competitors through branding and positioning.

Purely linguistic based semantic similarity techniques fail
terribly in matching elements across cloud schemas. Recall
from Section II that the concept of “Role” in Azure is similar
to “Module” in GAE and “Beanstalk” in AWS. When apply-
ing a linguistic pairwise similarity technique, such as path
length [13] to discover the similarity between these concepts,
we get the similarity matrix1 in Table I. Path length similarity
is a node-counting scheme, in which the relatedness score
is inversely proportional to the number of nodes along the
shortest path between the synsets. Path lengths generate results
between zero and one, where one means identical concepts.
Despite the strong domain similarity between Azure Roles and
AWS Beanstalks, Table I shows very week linguistic semantic
correlation. This could be even worse using other linguistic
semantic techniques, such as Jiang & Conrath [13], where the
similarity between a Role and Beanstalk equals zero. For this
reason there is a need for techniques that captures domain
similarity, even when two concepts do not share any linguistic
syntactic or semantic similarity.

TABLE I: Path Length Pairwise Similarity

Terms Role Module BeansTalk
Role 1 0.12 0.07

Module 0.12 1 0.10

BeansTalk 0.07 0.10 1

These issues matter whether we are attempting to map
one platform schema to another, or all of them to an abstract
reference model for the cloud domain.

IV. THE PRISON BREAK APPROACH

Fig. 2 illustrates an overall approach of model migration
based on schema matching. Given two service model schemas
and domain knowledge, a schema matching process is used to
automate the generation of alignments between service models
of the different cloud providers. A domain expert reviews the
recommended model alignments and confirms or rejects them.
The final alignments are used to migrate the service models
between providers, or evolve the models from an older to a
newer version within the same provider.

This paper focuses on the process of finding correspon-
dences between the domain concepts. Two essential require-
ments should be considered in designing a schema matching
process to address the vendor lock-in problem: (i) it should

1The similarity values in the matrix have been computed using the WordNet
similarity web interface implementation by Ted Pedersen and Jason Michelizzi
http://maraca.d.umn.edu/cgi-bin/similarity/similarity.cgi

Fig. 2: Model-Driven Migration Using Schema Matching

be generic with global applicability to be used with various
providers’ service models; (ii) it should be able to incorporate
domain knowledge without sacrificing generality.

The schema matching approach proposed here follows
the same generic schema matching approach introduced in
Section III-A. However, it uses a Web Similarity Matcher as
the pairwise matcher for calculating the similarity between
each pair of elements of the source and target schemas based
on web-search results.

A. The Web Similarity Matcher

To meet the aforementioned requirements, the approach
proposed adopts a web search matching technique that is
inspired by Normalized Google Distance (NGD) [14]. NGD
is a measure of word relatedness that computes the degree
to which one word is related to another based on their co-
occurrence in search engine results [14]. NGD uses the number
of hits returned by the Google search engine, however the
metric can be used with the results obtained from other
search engines. To avoid ambiguity, when using search results
of other engines the NGD is sometimes referred to as the
Normalized Web Distance (NWDSE), where SE refers to the
name of the search engine used to obtain the results (e.g.,
Yahoo, Bing) [15]. NGD has been derived from the normalized
information distance [16], which is motivated by Kolmogorov
complexity [17]. Consequently, it measures the distance rather
than the similarity. The distance can range from zero, which
indicates 100% similarity to ∞ which means no similarity.

Equation (1) shows the NGD, where τ1 and τ2 are the
two terms to compare; NGD(τ1, τ2) is the distance between τ1

and τ2; f(τ1),f(τ2) is the page count for the terms τ1 and τ2;
f(τ1, τ2) is the page count for the query “τ1 AND τ2”; and
finally, N is the total number of pages in Google index. As
explained earlier, Equation (1) is not bounded, the output can
range from 0 to ∞.

NGD(τ1, τ2) =
max{log f(τ1),log f(τ2)}−log f(τ1,τ2)

logN−min{log f(τ1),log f(τ2)} (1)

In order to use the NGD as a semantic similarity measure, a
transformation function is needed that can: (i) convert distance
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into similarity, and (ii) normalize the unbounded results to
values between 0 and 1. Morover, since most values in NGD
fall between zero and one, it is desirable to have a function
that falls rapidly to zero as the value of NGD reach the ∞.This
research adopts a transformation function similar to the one
used by Gracia et al. [15]. In this research, the exponential
function g(x) = e−x is used in composition with the NGD.
The exponential function has been selected as it satisfies the
following properties:

• (g ◦NGD) : [0,∞) �→ (0, 1]

• g(0) = 1

• limx→∞ g(x) = 0

• g(x) is decreasing, if x1 > x2 then g(x1) < g(x2)

Equation (2) shows the result of composing the exponent
function after the normalized web distance (g◦NWD). We refer to
this composition as the Web-Similarity-Metric (WSM). WSM
is bounded between zero and one, where zero indicates no
similarity and one is 100 % similarity.

WSMSE(τ1, τ2) = e−NWDSE(τ1,τ2) (2)

The value of this operation is calculated by making three
queries to the search engine API, and retrieving the page
counts in each case. For example, as of May 2014, the count
of pages returned when querying for “Azure” on Google was
22,000,000, the count of pages when query for “AWS” was
34,600,000, and the count of pages of their co-occurrence was
2,390,000. Now, in order to calculate the WSM, one last value
is needed, this is the total number of pages (N) in the search
engine (e.g., Google) index. Some reference implementations
of the NGD use hardwired values for this number (e.g.,
30 trillion for Google as of 2014). This number changes
continuously over time and is different from one search engine
to another. A trick that can be used to deal with this challenge
and make the approach general is first to query the search
engine for the exact match of the term “the”. Assuming that
almost all pages on the Internet contain this term and the fact
that there are about 1,000 search terms on the average page this
gives the total page count (N). We use this result for the value
of N. Based on these values NWD( “Azure”, “AWS” ) ≈ 0.2
and WSM( “Azure”, “AWS” ) ≈ 0.82.

TABLE II: NGD Pairwise Similarity

Terms Azure Role GAE Module AWS BeansTalk
Azure Role 1 0.75 0.78

GAE Module 0.75 1 0.89

AWS BeansTalk 0.78 0.89 1

Table II shows the results obtained by applying the WSM to
the same example in Table I. Each cell in Table II is the result
of calculating the WSM between the two terms that intersect
in that cell. For example the cell in the third column of the
second row represents the outcome of the following operation:
WSM(“Azure Role”, “AWS Beanstalk”). Note that for all the
searches, we specify the domain name before the term to
be searched (e.g., Azure Role instead of Role). Specifying
the domain has significant impact on the WSM results, as it
limits the search within that domain. In addition to the domain

keywords (i.e., Azure, GAE, AWS), this research uses the time
period and duplicate filters as tuning parameters in the search
API calls in order to specify the domain context.

The results in Table II are promising; they show high
correlation between the domain concepts, even when the
concepts share no linguistic similarity. The evaluation section
will explore this further.

The output of the node similarity matcher is a similarity
matrix that shows the similarity between each element in
the first schema and the elements of the second schema.
The results of the similarity matrix are filtered based on a
predefined threshold as to keep only elements with highest
similarity.

B. Implementation

The approach proposed in this paper has been realized as
an extention to the OpenII Harmony framework [18] that is
an open source schema matching tool. OpenII Harmony was
selected because it offers many useful features, such as:

(i) Extensibility: Harmony has been designed in a modular
fashion that makes it easy to build custom matchers
tailored to a particular environment. To add new matcher
all you need is to extend the matcher class, and add your
logic.

(ii) Multiple Importers: OpenII includes several importers
for many schema models. The one of interest to us is the
XSD importer, which allows us to import and compare
multiple XML schemas at once. This feature comes
handy when comparing cloud schemas, as concepts can
span multiple files and have different structures based
on the cloud provider implementation of the underlying
platform.

(iii) Multi-Format Exporter: OpenII includes a number of
exporters (including spreadsheets, and cvs). Mappings
can thus be easily exported to other tools for further
analysis and processing.

(iv) High-end GUI: Harmony allows users to interactively
refine the automatically-suggested mappings, confirm and
reject the matches and add necessary annotations, includ-
ing specifying transformation functions. This feature is
extremely important for semi-automatic schema matching
approaches.

Our implementation uses the OpenII loaders, mappers and
code-generator. It also extends the matcher module by adding
an extra matcher: The web-semantic metric matcher.

The web-semantic metric extends the matcher class. It
has been implemented to work as a composite matcher that
can be selected with other matchers implemented within the
OpenII framework (e.g., WordNet, Documentation, and The-
saurus Mathcers). This facilitates combining and comparing
the results of different matchers. Fig. 3 shows a snapshot that
shows the results of applying the web-semantic metric on three
cloud schemas: Two belong to Microsoft Windows Azure (i.e.,
the Service Definition and Service Configuration schemas) and
one belongs to the GAE (i.e., appengine-web schema). The
figure shows how the web-semantic metric could be used as
a composite matcher, and how the WSMSE=“Bing” matcher is
able to map the Azure “Role” to the GAE “Module” concepts
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Fig. 3: Applying the WSM on GAE and AZURE Schemas

described earlier, with high confidence (evidence = 0.67). This
experiment will be discussed further in the evaluation section
(Section V).

The following are some considerations that have been taken
into account in our implementation of the WSM matcher:

(i) Response time of online requests: The main bottleneck
for the WSM approach is the time needed for perform-
ing the search requests. The complexity of the current
approach based on Equation (2) is given by:

TotalSearchRequestswithoutcache = 3× n2

assuming that the two schemas S1 and S2 have the
same number of elements (n). We addressed this in
our implementation, through implementing a caching
strategy. Implanting a caching strategy can reduce the
number of times we call the search engine API, by the
order of three as shown in the folowing equation:

TotalSearchRequestswithcache = n× (n+ 2)

Unfortunately, the number of calls will still grow expo-
nentially with the number of elements in the schemas.

(ii) Number of API requests allowed by the search engine
provider: Search engine providers (e.g., Google, Bing)
limit the number of calls per second and the maximum
number of calls per month or day. In the current im-
plementation, the user selects a license key. If the key
expired while the matcher is still running it prompts the
user to update the key.

The next section discusses the tests performed to evaluate
the proposed system.

V. EVALUATION

Revisiting our research questions, we now need to assess
the generality of this approach, and evaluate its performance
in comparison with other methods of schema mapping.

A. Evaluating Prison Break Generality

In the context of this research, generality refers to the abil-
ity of the process to perform its intended task with relatively
few constraints. We want to apply traditional schema matching
to the cloud domain, by allowing new matchers to discover
complex matches between the source and target schemas based
on concept domain similarity. The more generic the approach,
the fewer constraints it imposes on its input in order to be able
to find schema matches. For example, if one approach requires
the user to specify more information in order to perform its
computations, this makes it less generic.

By checking the input constraints of the Prison Break
approach in comparison to other approaches that are able
to incorporate the domain knowledge to discover schemas
correspondences, we notice that pure linguistic approaches
require extra sources of knowledge to distinguish domain
concepts, such as thesauri, acronym lists, dictionaries, and
mismatch lists. Prison Break does not require such information.
Instead it uses search engine results, which can be obtained
automatically at runtime to incorporate domain knowledge in
the node similarity matching process. Hence, Prison Break is
a more generic approach than other matching processes that
take domain knowledge as input.

B. Comparing Prison Break Performance With Other Ap-
proaches In OpenII

Evaluating performance involves applying Prison Break to
sample vendor cloud domain schemas, then evaluating the
results in order to determine how it performs in comparison
to other approaches. This section explains on how we set
up the experiment to conduct this comparison, and what
we discovered using the OpenII framework in terms of the
(i) quality of results, and (ii) execution time across the methods
we compared.

1) Experiment Setup: To evaluate performance, we con-
ducted an experiment to compare Prison Break with schema
matching techniques implemented within the OpenII frame-
work. OpenII implements six different matchers: Name Simi-
larity, Documentation, Exact, Mapping, Thesaurus, and Word-
Net matchers [18]. Unfortunately, due to the complexity of
cloud schemas, and the lack of information regarding both
domain glossaries and the documentation of schema elements,
only two matchers could be considered for the comparisons:
Name Similarity, and WordNet. The Name Similarity matcher
is a linguistic syntactic matcher that is based on edit dis-
tance [19]. calculated through the number of operations (i.e.,
Insertion, Deletion, Substitution) that are required to transform
one string into another. The WordNet matcher, by contrast,
is a bag matcher that uses the WordNet dictionary as a
thesaurus [18].

In this experiment, the Prison Break WSM was set to use
Microsoft Bing as a search engine, as it provides 5000 free
requests a month. The search was bound to a context by
appending the keywords “Azure” before all the first schema
concepts, and “GAE” before each of the second schema
concepts. The time between requests was set to 0.25 seconds
to avoid being classified as a denial of service (DoS) attack.

The experiment was conducted using real cloud schemas
for two main cloud platform providers: Microsoft and Google.
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In particular, we compared the Azure applications definition
and configuration schemas with the GAE “appengine-web”
schema configuration file. No additional information was pro-
vided (e.g., domain dictionaries or documentation).

We ran the experiment using the different matchers that
have been selected, then filtered the results based on different
threshold evidence. The mappings were then exported to be
evaluated. To make the comparisons fair, no manual selection
of mappings have been considered in this evaluation.

2) Evaluation of Results: To evaluate the quality of the
matching outcomes a set of reference alignments were used.
These alignments have previously been created manually for
the same schemas, as part of our efforts to devise platform
independent domain models for cloud applications [20]. For
each alignment, the values of precision, recall, and F-measure
were computed according to Equations 3, 4, and 5 respectively.
The outcome of these equations is between zero and one, the
higher the value the better the result.

Precision =
|{ReferenceAlignments}∩{MatchResults}|

|{MatchResults}| (3)

Recall =
|{ReferenceAlignments} ∩ {MatchResults}|

|{ReferenceAlignments}| (4)

F−measure = 2 · precision · recall
precision + recall

(5)
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Fig. 4: Precision

The goal of calculating precision is to assess how many of
the matches discovered by the matcher are correct in compar-
ison to the total number of matches retrieved. The higher the
precision value, the smaller the set of wrong matches. Fig. 4
shows that as the evidence threshold increases, the Prison
Break approach tends to provide higher precision than other
approaches. The precision of both Prison Break and WordNet

increases until the evidence reach 60% at that point WordNet
hits zero while Prison Break jumps to 100% precision before
hitting zero after that. The reason for this sudden change is
that at 80% confidence Prison Break only retrieves one value,
which is also a correct value. On the other hand the WordNet
matcher retrieves zero matches at confidence higher than 60%
for the set of schemas used. The worst precision results were
obtained by the Name Similarity matcher. While the precision
of the Name Similarity matcher starts higher than both other
matchers. It falls down rapidly to hit zero when the evidence
required is greater than 40%. The reason is that most matches
returned by the Name Similarity matcher have low evidence.
If most of the values returned by a matcher have low evidence,
this means that the matcher is not suitable for discovering
matches for that type of schema.
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Fig. 5: Recall

The goal of calculating recall is to assess how many correct
matches are retrieved in comparison to the total number of
correct matches in the reference alignment. The higher the
recall value, the smaller the set of the matches that have
not been found. Fig. 5 shows that the number of matches
found decreases as the evidence threshold increases for all the
three matchers. This is expected, because when the evidence
is low the matcher retrieves more results; both correct and
incorrect. Fig. 5 also shows that Prison Break always obtains
higher recall results, followed by WordNet and lastly the Name
Similarity matcher. The values of recall of Prison Break is on
average 38% higher than those of WordNet and 55% higher
than Name similarity. The reason Prison Break has the highest
recall is due to its dependency on WSM. WSM is a statistical
measure. Given the large number of pages on the Internet,
in most cases, the value WSM is greater than zero, which
indicates some statistical relatedness. However, this is not the
case for linguistic based similarities, where the similarity can
easily hit zero.

To have a better perception of the quality of the different
matchers, the values of both precision and recall should be
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Fig. 6: F-measure

combined. One way to combine both of them is through the
F-measure, which is the harmonic mean of precision and recall.
The F-measure provides a global measure of the matching
quality. A high value of F-measure indicates that the matching
results are of a good quality.

As shown in Fig. 6, for evidence thresholds greater than
30% the value of the F-measure for Prison Break is always
higher than both the WordNet and the Name Similarity match-
ers. On average the value of the F-measure is 5.2% higher
than the WordNet and 10% higher than the Name Similarity
matcher. For Prison Break, the maximum F-measure value
occurs at evidence threshold of 0.6, while the F-measure values
for both other approachs reach their maximum at an evidence
threshold of 0.2 . The low F-measure values obtained in this
experiment are an indication that pure linguistic approaches
are not suitable for discovering matches between the cloud
domain concepts of the different vendors. The high F-measure
value provides evidence of the advantage of using web search
similarity to incorporate domain knowledge in the element
matching process to discover domain concepts similarities.

To summarize, Prison Break has higher precision recall and
F-measure values than the pure linguistic approaches, when
applied to the cloud schemas. Unfortunately, one of the major
drawbacks of the Prison Break approach is the execution time.
While the execution time for the pure linguistic approaches
are measured in seconds, the Prison Break approach execution
time is measured in minutes. For instance, for the example
presented in this section, it took around five minutes for Prison
Break matching to run.

C. Threat to Validity

This section discusses three validity threats to our ap-
proach. Two external validity threats (i.e., accuracy of search
results, and experiment size) that affect the generalizability of

the approach and one internal threat (i.e., reference alignments)
that questions the current results.

• Accuracy of search results: The web similarity met-
ric depends on the page counts returned in search
results. Consequently, the accuracy of the web seman-
tic similarity measures is based on the correctness of
these results. In our work, we noticed that some search
APIs return misleading information based on estimates
(e.g., Google, Yahoo). This is becuase these search
engines uses cached results for search queries and do
not perform deep search (a more sophisticated search
that provides more accurate results) unless the cached
results are below a certain threshold, or deep search
is enforced through parameter tuning. For example
searching the term ”car” on Google will return 965
million results, while ”car games” will return over
than a billion pages. In order to address this issue, in
our implementation we enforce deep search, allowing
users to use different search engines and combine
search results.

• Reference alignments: The evaluation presented in
this paper depends on the correctness of the man-
ual alignments created by the domain expert. Such
alignments could be questionable, as they may involve
human error. The credibility of the manually created
alignments used in this study emerges from the fact
that these alignments have already been used to create
a domain independent modeling language [20], and
were realized as mapping rules to automate the gen-
eration of cloud provider-specific deployment artifacts
from existing provider-independent models.

• Experiment size: Another issue is the number of
sample schemas used. In order to generalize the results
of this study, Prison Break needs to be applied to other
schemas for other cloud vendors. We are planning to
address this in our future work.

Despite these external and internal threats, the approach is
promising and presents a progressive step toward automatic
model migration for cloud applications.

VI. RELATED WORK

The risk of vendor lock-in motivates research in cloud
portability [1]. Several techniques and solutions have been
devised to enable portability and facilitate migration in the
cloud [2], [21]–[26]. The goal is to promote reusability and
ensure that applications will work in the same manner, despite
the underlying platform or provider specifications.

The most common way to address portability is through
abstraction approaches (e.g., meta-modeling, feature modeling,
ontologies) [27], [28]. Abstraction approaches highlight the
commonalities and differences between the different provider
models. Several standardization bodies [29] have created cloud
domain reference models and ontologies in an attempt to tackle
the portability problem. The literature [1] distinguishes three
types of portability at different levels of abstraction in the
cloud: (i) Portability of virtual machines at the infrastructure
level. The Open Virtualization Format [30] is an example of a
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standard that supports this type of portability [30]. (ii) Porta-
bility of service models at the platform level. StratusML [31],
mOSAIC [32], MODACloud [33], and CloudML [34] are
some examples of languages and tools that enable this type
of portability. Finally, (iii) portability of data. The goal here
is to maintain data integrity while importing and exporting
data between different providers. While this type of portability
has been widely studied in the literature, cloud computing
creates new challenges, such as migration for shared nothing
databases [35] .

As argued in Section III, it is almost impossible to impose
a single platonic standard. In fact, several contributions in the
literature have also concluded that having a single standard
is not advisable in practice [36]–[38]. This makes schema
matching a mandatory requirement for portability. Matching
schemas enables the knowledge and data of the source schema
to be expressed with respect to the matched target schema,
which facilitate portability [6]. Several solutions for schema
matching have been devised in the last decades [12], [39].
Many surveys [4], [40], and books [41] have thoroughly
covered the topic. Morover, several schema-matching tools
have been developed by the database community in the past
two decades; Cupid , COMA++ [42], AgreementMaker [43]
and OpenII Harmony [18], are possibly the most noticeable.

Table III shows a comparative overview of these tools.
These tools integrate useful matchers based on linguistic, and
structural based matching techniques, they provide comprehen-
sive GUIs, module importers, and facilitate domain knowledge
matching based on external dictionaries. Unfortunately, none of
these tools currently support semantic matching based on web
search results. For this reason the work presented in this paper
not only paves the way for solving the cloud vendor lock-in
problem, it also contributes to the schema matching community
by making search-based semantic similarity matching available
as part of one of the most comprehensive schema matching
tools (OpenII).

TABLE III: Comparison of selected match tools

Comparison Criteria Cupid COMA++
Agreement
Maker

OpenII
Harmony

First time introduced 2001 2002/2005 2007 2008

Comprehensive GUI × √ √ √
Matchers Linguistic

√ √ √ √
Structural

√ √ √ √
Use of External Dictionary

√ √ √ √
Extensibility Support × × × √

The role that schema matching can play to address the
vendor lock-in problem is unquestionable. To date, the only
research initiative we are aware of that plans to adopt schema-
matching is mOSAIC [44]. As part of mOSAICs work toward
this goal, Cretella and Di Martino [8] described a schema
matching prototype system that aims to support mapping of
providers functionalities and resources between the different
providers APIs. Different from our approach, Cretella and Di
Martino approach uses a traditional linguistic schema matching
approach based on syntactic analysis and WordNet thesaurus.
Our study uncovers the problems in such approaches and
provides a solution through incorporating domain knowledge
using web-search based semantic matching (Web Similarity
Measure).

The relationship between cloud computing and schema
matching is mutual. Schema matching contributes to solving
the vendor lock-in problem, while cloud computing can be
used to develop efficient schema matching systems to address
some limitations of existing mapping processes (i.e., scalabil-
ity). For example in [45] the authors use cloud computing to
support the collaborative reconciliation of schemas.

Using web metrics for semantic disambiguation is not
new. Cilibrasi and Vitanyi paper “The Google similarity dis-
tance” [14] has been cited over a thousand times since 2007.
Our approach distinguishes itself by virtue of our application
domain and implementation. The work we present provides a
case study from the cloud domain, and evaluates the applica-
bility of web-metrics in addressing the vendor lock-in problem.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

To help mitigate the platform lock-in problem imposed on
application owners by cloud vendors, this paper proposed a
novel schema matching approach called Prison Break. Prison
Break uses web search results to compute the similarity
between any two schema-elements. This allows it to discover
alignments between schema elements that do not share lin-
guistic similarities. Prison Break is a generic approach, as it
does not require a dictionary of domain concepts to incorporate
domain knowledge.

Prison Break was compared with other matchers imple-
mented within the OpenII framework. The results showed that
Prison Break has higher recall and greater precision for results
with high evidence. The F-measure shows that the results of
the Prison Break approach are always better when matching
evidence is higher than 30%.

As in all schema-matching approaches scalability is still
a major issue that affects matching performance in terms of
execution time. However, due to its dependency on online
search results, Prison Break takes even more time than other
processes to discover the alignments.

The current implementation of Prison Break addresses
the scalability problem by caching. The performance of the
current approach can be further improved in the future by
implementing the similarity-matching task as a parallel process
and using partitioning to allow several machines to perform
similarity matching at the same time.

Schema matching plays an important role in the process
of automating model migration and evolution. It is a key for
solving the vendor-lock in problem. However, vendor driven
schemas are unconventional schemas. These schemas pose
challenges for schema matching techniques. Particularly, there
is a need for approaches that incorporate more domain knowl-
edge in the matching process. Moreover, there is ultimately a
need for a repository for thesauri, acronyms, dictionaries, and
mismatch lists for schemas across cloud vendors.
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