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Abstract

Particle Swarm Optimisation (PSO) is a biologically-inspired, population-based
optimisation technique that has been successfully applied to various problems
in science and engineering. In the context of semantic technologies, optimisa-
tion problems also occur but have rarely been considered as such. This work
addresses the problem of ontology alignment, which is the identification of over-
laps in heterogeneous knowledge bases backing semantic applications. To this
end, the ontology alignment problem is revisited as an optimisation problem.
A discrete particle swarm optimisation algorithm is designed in order to solve
this optimisation problem and compute an alignment of two ontologies. A num-
ber of characteristics of traditional PSO algorithms are partially relaxed in this
article, such as fixed dimensionality of particles. A complex fitness function
based on similarity measures of ontological entities, as well as a tailored par-
ticle update procedure are presented. This approach brings several benefits
for solving the ontology alignment problem, such as inherent parallelisation,
anytime behaviour, and flexibility according to the characteristics of particu-
lar ontologies. The presented algorithm has been implemented under the name
MapPSO (Ontology Mapping using Particle Swarm Optimisation). Experi-
ments demonstrate that applying PSO in the context of ontology alignment is
a feasible approach.

Key words: discrete particle swarm optimization, ontology alignment,
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1. Introduction

Particle Swarm Optimisation (PSO) [17, 27] is a biologically-inspired op-
timisation meta-heuristic which has continuously gained momentum in recent
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years. It is generally applicable for problems, where the global optimum of an
objective function is to be found in a multi-dimensional search space. Although
originally developed for continuous optimisation problems, a number of modifi-
cations have been proposed to make PSO also applicable to discrete optimisation
problems [17, 2, 3]. Convergence and run-time behaviour of PSO cannot be triv-
ially determined, however, increasingly numerous case studies and applications
show that it usually performs better than non-heuristic optimisers1.

The emergence of intelligent information systems bears the need for informa-
tion and knowledge to be represented in machine readable form. Ontologies in
the context of computer science have been formally described by Gruber [11] in
1993 as “an explicit specification of a conceptualization”—a description which
has frequently been refined and reinterpreted since. In particular the attribute
“formality” has been added to the definition, since formality is a key feature
for ontologies in order to be machine processable and hence usable in auto-
mated systems. Making real-world concepts explicit in a machine readable form
now allows for the modelling of knowledge bases in order to make knowledge
processable by intelligent systems. Informally, ontologies formalise concepts,
individuals, and relations among them, in order to describe real-world entities
in a certain domain of interest.

From a number of approaches to standardise a language for ontologies, the
Web Ontology Language (OWL) [13] became widely accepted and is standard-
ised by the W3C. Large extents of OWL are based on Description Logics [1].
This logical underpinning enriches OWL ontologies with a formal semantics al-
lowing them for being used in so-called semantic applications or the Semantic
Web.

One of the key benefits of using ontologies in semantic applications apart
from the ability to infer implicit information, is the automated processing of
knowledge that is formally described in ontologies. This allows for e.g. inte-
grating knowledge to be used in semantic application or the Semantic Web
from different sources, i.e. ontologies. This problem is tackled in the discipline
of ontology alignment. It is based on the observation, that ontologies to be
integrated are heterogeneous models, often representing a similar or equal do-
main of interest, and hence have a certain overlap. As an example consider the
two ontologies about bibliography presented in Fig. 1. The ontologies originate
from different providers (MIT and University of Karlsruhe) and an intelligent
information system might want to refer to literature which is annotated by ei-
ther of the two ontologies in an integrated application. As one can easily see,
there is a significant overlap in these two ontologies, which needs to be iden-
tified by sophisticated ontology alignment systems. Other examples for the
need of ontology alignment can be found in the context of information shar-
ing among peers in distributed environments, such as peer-to-peer systems or
grid environments [25, 15, 30]. A use case for ontology alignment would also

1For some variations of PSO such analyses were performed. They are, however, not trivially
transferable to the proposed DPSO algorithm.

2



ff
ff
ff
ff
ff
ff
ff

Unpublished

TechReport

Proceedings

Phdthesis

Misc

Mastersthesis

Manual

Inproceedings ≡ Conference

Incollection

Inbook

Conference ≡ Inproceedings

Booklet

Book

Article

fEntryH

fThing

(a) MIT BibTEX ontology

ff
f
string

integer

Topic◮

ffUnpublishedThesis◮

ffProjectReportTechnicalReport

ff
ff
ff
ff
ff

ReportH

Proceedings

Misc

Manual

InProceedings

InCollection

InBook

Booklet

Book

Article

ff
ff
ff

PublicationH

Project◮

Product◮

Person◮

Organization◮

Event◮

fThing

(b) Karlsruhe BibTEX ontology

Figure 1: Two example ontologies about the domain of bibliography. The figures
show the class hierarchy of each ontology, i.e. indented classes are subclasses
of their parent, which denotes an is-a relationship between sub- and super-
classes. Note that there is only a partial overlap between the two ontologies,
since ontology 1b covers a wider domain.

3



become apparent in a medical information system which needs to incorporate
knowledge from a disease ontology, as well as from an ontology about human
anatomy. In order to retrieve information about which body parts are affected
by a certain disease, both ontologies need to be consulted. Since the disease
ontology contains information about anatomy in much less detail, a small over-
lap between the two ontologies exists. Again an ontology alignment system is
required to identify this overlap and provide an alignment, which can be used
by the medical information system.

An alignment is defined as a set of correspondences between ontological
entities, i.e. classes, properties, and individuals, from two ontologies. It is agreed
that finding a unique best alignment of two ontologies is an inherently difficult
task, which is hard or even impossible to accomplish. This does not only apply
to automatic ontology alignment systems, but often also for humans. Hence
the optimal alignment is often unknown, since there is no gold standard as
a reference. Another problem is the increasing size of ontologies, e.g. in the
medical domain, in library use cases, or in other large scale thesauri, where
ontologies with several ten thousand concepts are common. This article regards
the ontology alignment problem as an optimisation problem and then applies
an adapted discrete PSO (DPSO) algorithm to find an optimal alignment.

For ontology alignment problems the application of PSO provides several
potential benefits. Firstly, the approach can easily process very large inputs,
since an iterative traversal of large ontologies is avoided. Secondly, it serves
as a general framework, where the objective function, i.e. the evaluation of
an alignment can easily be adjusted and refined towards particular alignment
scenarios and domains. Furthermore, the strategy for particles to search for
an optimal alignment can easily be refined. Thirdly, due to the independent
computation of each particle, the algorithm is highly parallelisable, which is a
crucial feature to keep up with recent developments in computer architecture. A
final advantage is the inherent anytime behaviour of PSO, where the algorithm
can be interrupted at any time or after a certain number of iterations, and will
provide the best alignment found so far. This is important for time critical
tasks, where quality can be traded for speed.

PSO is adapted for ontology alignment to achieve the following two goals:

1. Identify the most reasonable alignment

2. Maximise the number of correspondences in the alignment

The first objective is what is most widely understood as the ontology alignment
problem. The second objective arises out of the observation, that there is most
likely not a complete overlap of ontologies to be aligned, i.e. not all ontological
entities of either ontology will be involved in the desired alignment. However,
one still does not want to miss any of the valid correspondences, so the goal is
to maximise the number of correspondences contained in the alignment.

The presented solution is based on a DPSO by Correa et al. [2, 3], who
applied this optimisation strategy for selecting the optimal set of attributes for
a classifier. The authors compared their DPSO with a more traditional version,
the binary PSO, and demonstrated that DPSO performs better for this task.
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Since the selection of correspondences for an alignment is a similar task, this
previous work is very relevant.

The work presented in this article has been implemented under the name
MapPSO (Ontology Mapping using Particle Swarm Optimisation), and exper-
iments demonstrating the feasibility of the approach have been conducted.

In the remainder of this article, the approach of adapting PSO to the on-
tology alignment problem is formally described and the implementation, called
MapPSO, is introduced. The following Section provides an overview of related
work and the basics behind PSO are recalled. Furthermore a relevant variant
of DPSO is explained. In Section 3 the ontology alignment problem will be
revisited as an optimisation problem. A DPSO algorithm for solving this opti-
misation problem is presented in Section 4. Section 5 presents a fitness function
in terms of so-called base matchers, which are used to evaluate a candidate
alignment. Finally, the MapPSO system as a prototypical implementation is
presented in Section 6 and experimental results are discussed in Section 7. Sec-
tion 8 summarises this article and provides an outlook on future work.

2. Related Work

This section gives an overview of scientific work that is related to this re-
search. Since this work relates to different fields, relevant work in PSO, ontology
alignment, and previous efforts to combine nature inspired optimisation tech-
niques with semantic web research are discussed separately.

2.1. Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a non-deterministic, population-based
optimisation technique originally developed by Kennedy and Eberhart [16] and
later refined by Shi and Eberhart [27]. It is commonly classified under the
paradigm of computational swarm intelligence [7]. The concepts of PSO are
derived from behavioural models of swarming animals such as swarms of bees
and fish schools.

Although it is relatively new in comparison to other common optimisation
techniques, such as Genetic Algorithms, PSO has quickly gained momentum
and has been successfully applied to a wide variety of optimisation problems
since. The performance of PSO in terms of speed of convergence and ability
to overcome local minima is on a similar good level as the performance of,
e.g. Genetic Algorithms. Yu et al. [32] even state that for the majority of
optimisation problems the convergence of PSO is superior to the one of Genetic
Algorithms as a result of the social information sharing that PSO incorporates.

For a single-objective optimisation problem with an n-dimensional parame-
ter space, PSO models a fixed number of particles that can freely swarm within
the parameter space such that each particle’s position is an input vector to the
objective function. In every iteration the current position of each particle is
evaluated against the objective function in order to acquire a fitness value for
the corresponding particle. Every particle also keeps a memory of the position
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with the highest fitness value it has discovered so far, denoted as the cognitive
component, and the swarm or neighbourhoods of particles within the swarm pre-
serve a memory of the best position any particle in the swarm has visited up to
that iteration, denoted as the social component. The movements of the particles
are based on velocity vectors which for continuous problems comprise a social
component, a cognitive component, and an inertia consisting of the weighted
previous velocity. These cognitive and social components are also weighted with
a constant factor and an additional random value in a certain range to allow
over- and undershooting of the personal and global best positions. The veloc-
ity for each particle is updated in every iteration based on the updated social
and cognitive component from the previous iteration and new positions for all
particles are determined based on the velocity and their previous positions.

While PSO is widely applicable to continuous problems, it is in its basic
form not applicable to discrete problems. For this, however, a series of adapted
PSO algorithms have been developed to fill this gap. Binary PSO has been
proposed by Kennedy and Eberhart [17]. It uses a discrete parameter space,
where its position in each dimension can be either 0 or 1. Binary PSO is
used for instance by Zhang et al. to tackle the problem of overlapping coalition
formation in multi-agent systems, particularly agents participating in multiple
virtual organisations [33]. More recently there has been work on discrete PSO,
which uses a more relaxed notion of dimensionality. The method of Correa et
al. [2, 3] for instance uses variable dimensionality for each particle. The authors
propose a novel DPSO algorithm for attribute selection in classification tasks.
The objectives in this case are to maximise the accuracy of the classifier and to
find the smallest subset of attributes necessary to achieve high accuracy. The
varying dimensionality of the particles entail a more natural adaptation to the
task of attribute selection. To this end, each particle can represent a different
number and selection of attributes. In the context of ontology alignment, where
an alignment is a set of correspondences between ontological entities, a similar
scenario is to be addressed.

2.2. Nature Inspired Optimisation Techniques for the Semantic Web

The idea of using nature inspired optimisation techniques in the semantic
web has recently been attracting increasing interest. For this purpose a work-
shop “Nature inspired Reasoning for the Semantic Web (NatuReS)” has been
set up at the International Semantic Web Conference (ISWC) in 2008 to attract
awareness of this possibility. A recent work by Oren et al. [23] addresses the
problem of query answering in RDF (Resource Description Framework) [20] by
utilising evolutionary algorithms. The intention is to achieve anytime behaviour
in this time critical task. However, the benefit gained in the domain of RDF
query answering is negligible, since highly optimised query engines are hard to
compete with.

In the context of ontology alignment, however, application of nature inspired
optimisation techniques is more promising. Martinez-Gil et al. introduce the
GOAL system [18], where a genetic algorithm is used to determine the optimal
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weight configuration for a weighted average aggregation of various base match-
ers. The system does not directly treat the ontology alignment problem as an
optimisation problem, but rather serves as a meta optimisation. It takes sev-
eral iterative runs of a matching algorithm to come up with an optimal weight
configuration for a given alignment task. The algorithm requires a reference
alignment in order to evaluate its fitness function and can hence only provide
an optimal weight configuration for alignment problems, where the optimal so-
lution is already known. For alignment problems with unknown solutions the
system can only serve as a heuristic, if the optimal weight configuration has been
determined for a similar problem with a known solution. Due to the different
objective of the GOAL system, it is not directly comparable to this proposed
PSO-based approach.

In contrast to GOAL, the GAOM system developed by Wang et al. [31]
tackles the ontology alignment problem as an optimisation problem, similar
to this approach. GAOM utilises a genetic algorithm, where each population
member (chromosome) represents an alignment of two ontologies. Each chro-
mosome is evaluated by a fitness function. To this end the authors distinguish
between extensional and intentional features of ontological concepts which are
compared using certain mapping rules to validate the alignment represented by
each chromosome. The system as described by the authors has several restric-
tions, which are overcome by this PSO-based approach. Firstly, in GAOM a
complete alignment is represented by each chromosome, i.e. all concepts from
the first ontology participate in the alignment. In situations where there is
only a partial overlap of ontologies, the algorithm cannot reduce the number of
correspondences accordingly. Secondly, it is unclear, how structural similarities
w.r.t. the concept hierarchy can be exploited. The system respects relations be-
tween concepts by comparing relations among them lexically, which is feasible
for object properties, but does not account for subsumption relations defining
the concept hierarchy. Thirdly, the system only considers classes in the ontolo-
gies, disregarding properties. These limitations do not effect the algorithm’s
performance on the Ontology Alignment Evaluation Initiative’s benchmark test
cases, but will bear problems for other more realistic ontology alignment scenar-
ios. The GAOM system is neither available for download, nor it has officially
participated in the Ontology Alignment Evaluation Initiative, which precludes
an experimental comparison with this PSO-based approach.

2.3. Ontology Alignment

The field of ontology alignment has been attracting more and more interest
in recent years. A comprehensive overview of state-of-the-art work in ontology
alignment is given by Euzenat and Shvaiko [9]. The most recent advances in the
field are reflected in the Ontology Matching Workshop series, such as in the OM-
2008 Workshop on Ontology Matching [28]. Many of the systems build a large
matrix of all possible combinations of entity matches and calculate their simi-
larities. This can become rather cumbersome, in particular when the ontologies
are very large. The PSO method does not face this problem, since it starts from
random though valid candidate alignments. Similar to traditional systems, such
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as Similarity Flooding [19], or FOAM [6] it converges to a stable optimum in
an iterative process. Similarity Flooding performs an iterative fix-point compu-
tation to approach this optimum, while FOAM performs a repeated similarity
computation and aggregation. Direct formulation of the ontology alignment
problem as an optimisation problem has also previously been stated [4, 31].

In the context of the Ontology Matching Workshop series, an Ontology
Alignment Evaluation Initiative (OAEI)2 has been set up in order to compare
different alignment systems. The OAEI has several tracks in order to validate
systems in different alignment scenarios. Core part of the OAEI is the bench-
mark track, which provides a number of test cases with reference alignments.
This allows alignment systems to be directly comparable in terms of precision
and recall w.r.t. the reference alignments. Tests in the benchmark track al-
ter a given ontology systematically by omitting several language features or
information. This requires alignment systems to consider different information
contained in the ontologies in order to come up with reasonable correspondences
between entities.

In order to evaluate alignment systems for large ontologies, one track in the
OAEI 2008 campaign was the vlcr3 track, where the focus was on scalability
in ontology alignment tasks. The DSSim system [21] was the only tool that
participated in this track. DSSim applies parallel computation techniques in
order to process the large thesauri. To this end it splits the ontologies into
several chunks which are processed in parallel. A similar technique has been
proposed by Paulheim [24]. However, the method of splitting large ontologies
inherently decreases the precision value of the alignment unless sophisticated
partitioning and combination methods are applied for the different chunks.

3. Ontology Mapping as Optimisation Problem

This section firstly formally defines an ontology alignment, and then formu-
lates the problem of finding a best alignment as an optimisation problem.

For the purpose of this article, the following simplified, informal notion of an
ontology is sufficient. An ontology O has a set of classes C, a set of properties P
and subsumption relations on the elements of C and P resp. For two ontologies
O1 and O2, the set of all possible pairs of entities allowed for an alignment is
defined as

C = (C1 × C2) ∪ (P1 × P2) (1)

with C1 and P1 the sets of classes and properties of O1, and C2 and P2 the sets
of classes and properties of O2 resp. An (equality) correspondence

c ∈ C (2)

2http://oaei.ontologymatching.org/2008/
3very large crosslingual resources
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denotes a pair of entities (e1, e2) meaning that e1 and e2 refer to the same
real-world entity. An alignment

A ⊆ C (3)

is a set of correspondences between entities of the two ontologies. In this ap-
proach only 1:1 alignments are considered, i.e. A denotes a bijective relation.
In other words, each entity e1 ∈ C1 ∪ P1 corresponds to exactly one entity
e2 ∈ C2 ∪ P2 and vice versa.

For a correspondence c, a fitness function

f(c) = Γ
(

~h(c), ~ω
)

(4)

evaluates c, according to an evaluation strategy Γ, a vector of rating functions
~h, and a vector of weights ~ω, where the weights determine the influence of
each rating function. In a simple example, vectors ~h and ~ω consist of a single
element each, where h(c) = h1(c) = lev(c) the Levenshtein distance of the
natural language labels of corresponding entities in c, ω = ω1 = 1, and the
strategy Γ = id. Thus f(c) = lev(c). The fitness of an alignment A

F (A) =

∑|A|
i=1 f(ci)

|A|
ci ∈ A (5)

is the average fitness of its correspondences, where |A| denotes the size, i.e. the
number of correspondences in A.

Since distance measures are used to evaluate correspondences, lower evalu-
ation values denote better correspondences / alignments. Apart from this, the
second objective is to maximise the size, i.e. the number of correspondences
in an alignment. Hence the goal is for all possible candidate alignments A to
identify

A∗ = argmin F (A) (6)

which is the alignment A which causes F (A) to be minimal, and at the same
time

A∗ = argmax |A| (7)

which is the alignment A which causes |A| to be maximal. The two objective
functions are aggregated to a single fitness value, representing the overall eval-
uation of the alignment, that also respects the size of the alignment. For this
purpose the following weighted average formula is used:

F̄ (A) = η(min{|C1 ∪ P1|, |C2 ∪ P2|} − |A|) + (1− η)F (A) (8)

The first part of the sum weighted by η, accounts for the maximisation of the
number of correspondences by calculating the number of entities of the smaller
ontology that are not part of the alignment A. The second part represents the
evaluation of A as in (5). Hence the best alignment A∗ can be determined as

A∗ = argmin F̄ (A) (9)

Since the number of possible candidate alignments is typically very large,
a sophisticated search strategy is needed for the PSO algorithm, which will be
discussed in the following section.
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4. A Particle Swarm Algorithm for Ontology Alignment

This section introduces an ontology alignment algorithm based on DPSO.
Firstly important notions and computation procedures are formally defined,
which will then be illustrated by an example. Finally the algorithm is sketched
in a condensed presentation.

4.1. Formal Definitions

In the proposed solution for ontology alignment by DPSO a particle swarm
consists of a number N of particles, the so-called population, which evolves in
a number I of iterations. In traditional PSO, in each iteration, each particle
evolves using a so-called velocity vector, which determines its new position in
the parameter space. This evolution happens via a guided, randomised re-
initialisation of each particle. Since this approach uses a modified discrete PSO,
this idea is partially relaxed, and particles and velocities are defined following
the approach of Correa et al. [2].

Each particle represents a candidate alignment. Particles can have different
dimensionality, i.e. the number of correspondences in the alignment it currently
represents, and hence differ from traditional PSO, where each particle has the
same dimensionality. A dimensionality of zero means that a particle represents
the empty alignment. For p ∈ {1, . . . , N}, a particle is defined as a vector4

~Xp =
{

c(p,1), c(p,2), . . . , c(p,k)
}

(10)

where for each j ∈ {1, . . . , k}, c(p,j) is a correspondence as in (2). This set
of correspondences is also called a configuration of the particle. Since only 1:1
alignments are considered so far, there can be at most n = min{|C1|, |C2|} +
min{|P1|, |P2|} correspondences in an alignment. The (variable) dimensionality

of a particle is k ∈ {0, . . . , n}. According to (5), the fitness of a particle ~Xp is

F ( ~Xp) (11)

Each particle maintains the configuration of the best alignment it has ever
represented w.r.t. F . This personal best (pBest) alignment of dimensionality
l ∈ {0, . . . , n} is denoted by

~Bp =
{

d(p,1), d(p,2), . . . , d(p,l)
}

(12)

where for each j ∈ {1, . . . , l}, d(p,j) is a correspondence. Note that the num-
ber of correspondences can change during the iteration of the swarm (see Sec-
tion 4.3). Hence the dimensionality l of the pBest configuration of a particle
does not need to coincide with the dimensionality k of its current configuration.

4Note that the exact mathematical notation is violated and the vector is denoted with
curly braces, as it can also be seen as a set.
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The global best (gBest), i.e. the best performing parameter configuration any
particle in the swarm has ever represented w.r.t. F is denoted by

~G = {d1, d2, . . . , dm} (13)

where for each j ∈ {1, . . . , m}, dj is a correspondence. Its dimensionality is
m ∈ {0, . . . , n}.

To ensure a guided convergence towards an optimal alignment during the
iterations, the influence of arbitrary random re-initialisation of each particle has
to be restricted. To this end, the likelihood is raised that those correspondences
in a particle are preserved, which (i) are evaluated best, and (ii) are also present
in the global (13) or personal (12) best alignment.

The fitness vector of a particle is denoted by a 2-by-k array

~Fp =

(

f(p,1) f(p,2) . . . f(p,k)
c(p,j1) c(p,j2) . . . c(p,jk)

)

(14)

mapping a fitness f(p,µ) to each correspondence c(p,jµ). (See (4) and Section 5.)
Note that the vector is ordered by its fitness values.

A velocity vector is defined as another 2-by-k array

~Vp =

(

v(p,1) v(p,2) . . . v(p,k)
c(p,l1) c(p,l2) . . . c(p,lk)

)

(15)

mapping a proportional likelihood v(p,µ) to each correspondence c(p,lµ). Note
that the vector is ordered by its proportional likelihoods. Proportional likeli-
hoods are used to raise the probability of those correspondences to be preserved
in a particle, that are also present in the personal and global best alignments.
Initially, for each c(p,lµ), v(p,µ) is set to 1. This initialisation is also done for
new correspondences joining the particle during its evolution. The update of
the proportional likelihoods is then done in two steps, using two parameters
β ∈ R

+ and γ ∈ R
+. Firstly, if c(p,lµ) is present in ~Bp, add β to v(p,µ). If it

is present in ~G, add γ to v(p,µ). These two parameters control the influence of
the fact that a correspondence is also present in the personal best (β) or the
global best (γ) alignment resp. After this, each v(p,µ) is multiplied by a uniform
random number φµ ∈ (0, 1).

To calculate a keep-set, which will not be replaced by a random re-initialisa-
tion during an iteration, two sets are defined as

F(p,κ) =
{

c(p,jµ) | µ ∈ {1, . . . , κ · k}, jµ a reordering as in ~Fp

}

(16)

V(p,κ) =
{

c(p,lµ) | µ ∈ {1, . . . , κ · k}, lµ a reordering as in ~Vp

}

(17)

with a parameter κ ∈ (0, 1) to control the size of the keep-set. The sets F(p,κ)

and V(p,κ) hence contain those correspondences of a particle, which are the κ · k
best evaluated, and highest ranked according to their proportional likelihood
resp. The keep-set is now defined as

K(p,κ) = F(p,κ) ∩ V(p,κ) (18)
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containing those correspondences, which are part of both sets F(p,κ) and V(p,κ).
For a more stringent convergence towards an optimum alignment, an addi-

tional safe-set is introduced as

S(p,σ) =
{

c(p,jµ) | f(p,µ) < σ
}

(19)

a set of correspondences, which will never be replaced in this particle. Here
σ ∈ (0, 1) is the fitness threshold for correspondences to be included in the
safe-set. Since there is the chance of getting stuck in a local optimum for the
alignment, one would typically choose a very small value for σ. In each iteration,
the update algorithm firstly computes a new particle length k′ according to a
self-adaptation process as discussed later in this section. Secondly, the particle
keeps the set S(p,σ) ∪ K(p,κ) and replaces the remaining k′ − |S(p,σ) ∪ K(p,κ)|
correspondences with new random ones. This behaviour ensures a convergence
of each particle towards an optimum according to (5), since the keep-set will
steadily increase, and the fluctuation due to random re-initialisation will become
less drastic as the swarm evolves.

The presented DPSO differs from the approach by Correa et al. mainly in
two aspects. Firstly, the size, i.e. dimensionality of each particle is updated in
each iteration, where in the approach of Correa et al. each particle is given a
randomly chosen size, which does not change throughout the iterations. In their
approach this is reasonable seeing that in their experiment [2] the authors used
a population size, which is much larger than the number of possible particle
lengths. For the problem of ontology alignment the number of possible particle
lengths can be much larger, since it depends on the size of the input ontologies,
i.e. their number of classes and properties. It might thus become difficult to in-
crease the population size accordingly, which makes it necessary to dynamically
adjust the particle lengths in order to find the optimal size of an alignment.
The second aspect in which this approach differs from the one of Correa et al.
is the particle update procedure. In this approach, the change of a particle’s
configuration does not only depend on the configuration of the personal best
and global best, but also on the evaluation of the single correspondences. This
is not possible in the use case of attribute selection for a classifier, as attributes
cannot be evaluated independently.

4.2. Example

In order to illustrate the theoretical procedure from Section 4.1, one iteration
is run through in this example, updating a particle ~Xp. Consider an alignment

of the two example ontologies presented in Fig. 1. Suppose, ~Xp represents an
alignment consisting of k = 5 correspondences

~Xp =
{

c(p,1), c(p,2), c(p,3), c(p,4), c(p,5)
}

which are allocated as in Table 1. Suppose the fitness values of the single
correspondences have been determined and are represented as follows

~Fp =

(

0.04 1.23 1.55 3.65 7.54
c(p,3) c(p,2) c(p,5) c(p,1) c(p,4)

)
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Table 1: Example set of correspondences and assigned fitness values for a candi-
date alignment represented by particle p of the two example ontologies presented
in Fig. 1.

Correspondence Fitness value
c(p,1) = (Unpublished, Publication) 3.65
c(p,2) = (Incollection, InCollection) 1.23
c(p,3) = (Book, Book) 0.04
c(p,4) = (Mastersthesis, Event) 7.54
c(p,5) = (TechReport, TechnicalReport) 1.55

Note, that the array is sorted by its fitness values in ascending order, as lower
values mean a better evaluation.

The velocity vector ~Vp has been initialised with all proportional likelihoods
set to 1:

~Vp =

(

1 1 1 1 1
c(p,1) c(p,2) c(p,3) c(p,4) c(p,5)

)

Now suppose, correspondences c(p,2), c(p,3), and c(p,5), are also present in ~Bp,

and c(p,3) is also present in ~G. Parameters β and γ are added accordingly (e.g.
β = 0.4 and γ = 0.5):

~Vp =

(

1 (1 + β) (1 + β + γ) 1 (1 + β)
c(p,1) c(p,2) c(p,3) c(p,4) c(p,5)

)

After adding the parameters, each proportional likelihood is multiplied by a
uniform random number φj ∈ (0, 1), ∀j ∈ {1, . . . , 5}. The array will then be
sorted by its proportional likelihoods in descending order, as higher values mean
a higher likelihood. This might result in something like

~Vp =

(

1.34 1.12 0.88 0.76 0.32
c(p,2) c(p,5) c(p,4) c(p,3) c(p,1)

)

Suppose κ = 0.6 is chosen, so the keep-set K(p,κ) is built as the intersection of

the first κ · k = 3 correspondences of the arrays ~Fp and ~Vp, which results in

K(p,κ) =
{

c(p,2), c(p,5)
}

Assume that σ = 0.1 is chosen and thus the safe-set S(p,σ) determined as

S(p,σ) =
{

c(p,3)
}

The update algorithm will now keep the set

S(p,σ) ∪K(p,κ) =
{

c(p,2), c(p,3), c(p,5)
}

and replaces the remaining two correspondences with random new ones.
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4.3. Self-Adaptation of Particle Length

A general problem when aligning two ontologies is that the actual number of
correspondences is not known upfront. This method approaches this by assign-
ing each particle a random number of correspondences during the initialisation.
As usual, no knowledge about the actual number of correspondences exist, the
initial guesses are uniformly distributed between zero and the maximum num-
ber of possible correspondences between the two ontologies considering only 1:1
alignments. Assuming that the chances for a particle to receive a good fitness
value are higher if its number of correspondences is close to the actual number
of correspondences, the heuristic below attempts to adjust the number of cor-
respondences for each particle and in each iteration based on the current global
best particle. Let kp be the number of correspondences represented by particle
p, and let kgBest be the number of correspondences represented by the gBest.
(Note that class and property correspondences are computed separately.) Each
particle adjusts its number of class / property correspondences if the following
expression becomes true







r1 ≥ τi if kgBest > kp
r1, r2 ≥ τi if kgBest < kp

false else
(20)

where r1 and r2 denote random values and τi an iteration dependent threshold
value defined as

τi = λ

(

i

imax

)2

(21)

where λ is a constant weighting factor and i and imax denote the current and
maximum iteration resp. The probability for a change therefore increases with
the number of iterations which prevents very rapid changes of the number of
correspondences at the beginning of the process where the prediction of the
actual number of correspondences is less accurate than later in the optimisation.
Furthermore the probability for decrease is always significantly lower than for an
increase. The underlying assumption behind this is that more correspondences
are generally more desirable and in the majority of tests this scheme has proven
to be successful.

For each of the particles whose number of correspondences are changed, the
maximum range of this change is determined by

∆kmax
p =

{

winc · (kgBest − kp) if kgBest > kp
wdec · (kp − kgBest) if kgBest < kp

(22)

where winc and wdec denote constant weighting factors for the size of the in-
terval. The extended range ensures, similar to the velocity update in continuous
PSO, that the interval exceeds the distance between the two values and allows
a new value to either under- or overshoot the reference value, i.e. the number of
correspondences of the global best particle. The new number of correspondences
of each type for a particle p is then adjusted by a random value ∆kp from the
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interval
[

0, ∆kmax
p

]

. The new number of correspondences k′p of particle p can
be computed as

k′p =

{

kp +∆kp if kgBest > kp
kp −∆kp if kgBest < kp

(23)

In the case of an increase the algorithm attempts to adopt these from the
keep-set of the global best particle. If more new correspondences are needed
than can be added this way the remaining correspondences are randomly cre-
ated. In either case only valid correspondences are added, i.e. the new corre-
spondences cannot violate constraints such as the restriction to 1:1 alignments,
etc. When on the other hand the number of correspondences decreases, a fitness
ranking of all correspondences is performed and the worst performing elements
are removed.

4.4. Algorithm

This subsection presents an algorithm that computes an ontology alignment
following the method presented in Section 4.1. In this presentation the algorithm
is split into three parts, an initialisation step, the swarm iteration, and an update
procedure to determine the new configuration of each particle.

The computation of an alignment starts with an initialisation, encoded in
algorithm 1. In this initialisation step, each particle is initialised with a random
number of correspondences. It also encompasses evaluation, i.e. computation of
the fitness value of each correspondence and the initial assertion of the personal
best alignment.

The execution of the algorithm is an iterative, guided evolution of the particle
swarm as outlined in algorithm 2. In each iteration, the globally best alignment
is updated, if a new best performing particle is seen. The guided evolution of
particles behaves according to the update procedure denoted by algorithm 3.
Note, that each particle can be evaluated and updated in parallel, which is one
of the main advantages of this approach.

The particle update procedure in algorithm 3 states the formal definitions
of Section 4.1 in a sequential manner. The single steps are explained in detail
there.

5. Fitness Scores by Correspondence Evaluation

As formally discussed in Section 3, the fitness of an alignment as denoted
in (5) calculates from the fitness values of each single correspondence in the
alignment as denoted in (4). To this end, each correspondence is evaluated
according to some rating functions which are weighted and aggregated to a single
fitness value. In the context of ontology alignment, a rating function is widely
known as base matcher, which computes a single similarity or distance measure
of ontological entities. The algorithm presented in Section 4 is adjustable in term
of which base matchers are to be used, i.e. how the fitness values are computed.
This section presents some base matchers, which are currently used as rating
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Algorithm 1 Initialisation of particles

Require: N the number of particles,
nC = min{|C1|, |C2|},
nP = min{|P1|, |P2|},
randC ∈ {1, . . . , nC}, a uniform random number,
randP ∈ {1, . . . , nP }, a uniform random number
for i = 1 to N do

kC ⇐ randC
for j = 1 to kC do

Randomly select classes e1 ∈ C1 and e2 ∈ C2 that have not already been
selected, and create correspondence cj = (e1, e2)
Compute f(cj) according to (4)
~Xi ⇐ ~Xi ∪ {cj}

end for

kP ⇐ randP
for j = 1 to kP do

Randomly select properties e1 ∈ P1 and e2 ∈ P2 that have not already
been selected, and create correspondence cj = (e1, e2)
Compute f(cj) according to (4)
~Xi ⇐ ~Xi ∪ {cj}

end for

Build ~Fi according to (14)

Compute F ( ~Xi) according to (5)
~Bi ⇐ ~Xi

end for

Algorithm 2 Swarm evolution

Require: N the number of particles,
I the number of iterations
for i = 1 to I do

for j = 1 to N do

Update particle according to algorithm 3
if F ( ~Xj) < F ( ~G) then

G ⇐ ~Xj

end if

end for

end for
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Algorithm 3 Update of particle ~Xi

Require: k the number of correspondences in this particle
β, γ, κ, σ parameters (see Section 4.1)
~Vi the proportional likelihood vector
~Fi the evaluation vector

k′ ⇐ updateParticleLength(k) {this also modifies ~Xi by adding or removing
correspondences according to the length adjustment}
for µ = 1 to k′ do

if c(i,lµ) ∈
~Bi then

v(i,µ) ⇐ v(i,µ) + β

end if

if c(i,lµ) ∈
~G then

v(i,µ) ⇐ v(i,µ) + γ

end if

v(i,µ) ⇐ v(i,µ) · φµ, φµ ∈ (0, 1) a uniform random number
end for

Sort ~Vi by vi in descending order
Sort ~Fi by fi in ascending order
Compute K(i,κ) according to (16), (17), and (18)
Compute S(i,σ) according to (19)

Replace correspondences ~Xi−(S(i,σ)∪K(i,κ)) by the same number of randomly
generated new ones.
For each newly generated correspondence c(i,j) compute f(c(i,j)) according
to (4)
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functions. This is by no means an exhaustive collection. In fact the quality of
the computed alignment depends to a large extent on the base matchers which
are used for evaluating the correspondences.

5.1. Base Matchers

The output of a base matcher is a distance between two ontological entities,
represented as a value between 0 and 1. Hereby, 0 is an exact match according
to the respective base matcher, and 1 is the clearest mismatch. Base matchers
can be categorised in lexical, linguistic, and structural base matchers.

5.1.1. Lexical Base Matchers

Lexical base matchers compute a string distance between named entity iden-
tifiers. In the ontologies that are considered by this approach each entity is
identified by a URI and can optionally have a natural language label. Currently
this approach utilises a string distance, designed for ontology matching [29], the
so-called smoa distance.

Entity Name Distance. Names of entities are encoded as a fragment in their
URI. In many cases, these URI fragments are based on natural language terms.
However, also other identifiers, such as numeric codes or other proprietary IDs
are common. This URI fragment is used by this base matcher.

Label Distance. Entities can be annotated by a label, which is typically a natural
language term. In the typical RDF/XML representation of ontologies these
labels occur as rdfs:label annotations. The lexical label distance base matcher
compares these labels in the same way the lexical entity name distance base
matcher compares URI fragments.

5.1.2. Linguistic Base Matchers

Linguistic base matchers compute a similarity between entity names/labels,
based on synonymy, hypernymy, and other linguistic relations. Here WordNet5

is used in order to compute a linguistic distance. The interface is extended by
a cache, since due to the (parallel) nature of the PSO algorithm, distances of
entities are computed more than once6. This caching effectively speeds up the
algorithm, since WordNet access is rather slow.

Entity Name Distance. Similar to the lexical entity name distance base matcher,
this version compares the same entity identifiers, but computes a WordNet
distance.

5http://wordnet.princeton.edu/
6The current implementation of this algorithm does not yet utilise a distributed hardware

architecture, i.e. all particles are computed in multiple threads on a single machine, where
a single WordNet base matcher instance is used for all particles. However, efficient caching
limits the impact of this bottleneck.
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Label Distance. Similar to the lexical label distance base matcher, this version
compares the same entity labels, but computes a WordNet distance.

Comment Distance. Entities can include an rdfs:comment annotation. Com-
ments may contain sentences or phrases to describe an entity in natural lan-
guage. A distance measure based on the vector space model presented by
Salton et al. [26] is used here to compare comments. To this end, let di be
an rdfs:comment of an ontological entity ei. Let Ti = {ti1 , ti2 , . . . , tin} be a
set of distinct terms occurring in di with n being the number of distinct terms
in di. For two comments d1 and d2 to be compared, a bag of words is con-
sidered as the union T = T1 ∪ T2. This set representation contains all terms
occurring in d1 or d2 with no duplicates and can now be denoted as a vector
~T = (t1, t2, . . . , tm). Let ~Ui = (ui1 , ui2 , . . . , uim) be a vector representation of
di, where each uj is the number of occurrences of tj in di. The similarity of two

comments d1 and d2 is now the cosine angle between ~U1 and ~U2

cosφ =
~U1 · ~U2

|~U1| |~U2|
(24)

and hence the comment distance of two entities e1 and e2 computes as

hcomment(e1, e2) = 1− cosφ (25)

5.1.3. Structural Base Matchers

Structural base matchers compute a similarity between ontological entities
based on their structural properties according to the “ontology graph”. A class
e1 in an ontology is said to be subsumed by a class e2, denoted by e1 ⊑ e2, if
any individual that is an instance of e1 is also an instance of e2. e1 is called
a subclass of e2, and e2 is a superclass of e1 analogously. There is also a sub-
sumption relation for properties with the notions of sub- and superproperties
resp. The subsumption relation can build a subsumption hierarchy for classes
and properties in the ontology. Properties can further be assigned domain and
range restrictions. Properties are relating individuals of their “domain” to in-
dividuals of their “range”. A property assertion r(i1, i2) states that individual
i1 is related to individual i2 via property r. Domains and ranges can be re-
stricted to (possibly complex) class descriptions by stating that dom(r) = eD
and ran(r) = eR, which means that each individual in the domain of r must be
a member of class eD, and each individual in the range of r must be a member
of class eR.

Current implementations of base matchers account for similarities arising out
of the subsumption hierarchy as well as from the domain and range restrictions
on properties.

Hierarchy Distance. According to the semantics of the subsumption relation in
ontologies, a correspondence between two classes/properties inherits a similarity
of the correspondence between their respective superclasses/superproperties, in
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case this correspondence is present in the alignment the particle represents.
More formally, let e1 and e2 be classes of different ontologies O1 and O2. If
e1 ⊑ f1 in O1 and e2 ⊑ f2 in O2, and there is a correspondence c = (f1, f2)
with an evaluation f(c), then

hhierarchy(e1, e2) = f(c) (26)

Property Domain/Range Distance. Intuitively, two properties can be regarded
as similar, if their domain and range restrictions are similar class descriptions. A
current implementation accounts for this in the case of named classes as domain
and range restrictions of properties. More formally, let s1 and s2 be (object)
properties of different ontologies O1 and O2. Let D1 and D2 be the sets of
domain class descriptions of s1 and s2 resp. Let R1 and R2 be the sets of range
class descriptions of s1 and s2 resp. Let A be the alignment represented by the
particle, whose fitness is to be computed. Let

CD = {(f1, f2) ∈ A | f1 ∈ D1 and f2 ∈ D2} (27)

CR = {(f1, f2) ∈ A | f1 ∈ R1 and f2 ∈ R2} (28)

be the sets of correspondences of the domain and range class descriptions, which
are also present in the alignment to be evaluated. The derived domain class
distance is

dder =











∑
c∈CD

f(c)

|CD| if |CD| 6= 0

1 else

(29)

which averages the distances of corresponding domain classes, if there are any.
In case the number of domain class correspondences present in A is close to the
maximum number possible (which is the smaller number of domain classes of
s1 or s2 resp.) this is also an indicator of similarity between s1 and s2. This is
defined as

dnum =
|CD|

min{|D1|, |D2|}
(30)

In order to also account for the number of potential domain class correspon-
dences, regardless of their presence in A, another distance can be approximated
by

dpot =
1

min{|D1|, |D2|}+ 1
(31)

The distance derived from the domain classes s1 and s2 now computes as

d = wderdder + wnumdnum + wpotdpot (32)

where wder, wnum, and wpot are weighting factors (summing up to 1) in order
to account for the influence of each similarity indicator.

20



Analogously the values are computed for range class distances, where

rder =











∑
c∈CR

f(c)

|CR| if |CR| 6= 0

1 else

(33)

rnum =
|CR|

min{|R1|, |R2|}
(34)

rpot =
1

min{|R1|, |R2|}+ 1
(35)

and accordingly
r = wderrder + wnumrnum + wpotrpot (36)

The total property domain/range distance computes as

hpropDomRan(s1, s2) =

(

d+ r

2

)3

(37)

which is exponentiated in order to lower the distances for bad scores that arise
due to the linear calculation of the domain and range class distances.

Class as Domain/Range Distance. Intuitively, two classes can be regarded as
similar, if they are domain/range classes of similar properties. Let e1 and e2
be classes of different ontologies O1 and O2. Let D1 and R1 be the sets of
properties, which have e1 as domain or range class resp. Let D2 and R2 the
sets of properties, which have e2 as domain or range class resp. For datatype
properties, only D1 and D2 are considered. Let A be the alignment represented
by the particle, whose fitness is to be computed. Let

CD = {(f1, f2) ∈ A | f1 ∈ D1 and f2 ∈ D2} (38)

CR = {(f1, f2) ∈ A | f1 ∈ R1 and f2 ∈ R2} (39)

be the sets of correspondences between properties, which have the classes of
interest (e1 and e2) as domain or range resp. The computation of the base
distance happens the same way as in equations (29), (30), (31), (32), (33), (34),
(35), (36), with the computation of hclsDomRan(e1, e2) as in (37).

5.2. Evaluation Strategies

In order to come up with a single evaluation of a correspondence, the various
base distances need to be aggregated using an evaluation strategy Γ, defined as

Γ : ~h(c)× ~ω → (0, 1) (40)

where
∑n

i=1 ωi = 1. There are three possible evaluation strategies implemented,
out of which one can be selected through system configuration.
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Minimum Aggregation. This simple evaluation strategy does not utilise the vec-
tor of weights, and just takes the minimum, i.e. the best result of all base
matchers.

Γ
(

~h(c), ~ω
)

= min{h1(c), h2(c), . . . hn(c)} (41)

Weighted Average Aggregation. This evaluation strategy computes the standard
weighted average of all base distances.

Γ
(

~h(c), ~ω
)

=

n
∑

i=1

ωihi(c) (42)

Ordered Weighted Average Aggregation. The ordered weighted average evalua-
tion strategy is similar to the weighted average aggregation, but applies a con-
stant vector of weights to a reordering of the base distances, such that the base
distances are in ascending order. It has successfully been applied to ontology
alignment by Ji et al. [14].

Γ
(

~h(c), ~ω
)

=

n
∑

i=1

ωihki
(c) (43)

where for i ∈ {1, . . . n}, ki is a reordering, such that hki
(c) < hkj

(c) for i < j.

6. Implementation

The algorithm for ontology alignment by DPSO as presented in Section 4
has been implemented under the name MapPSO7 (Ontology Mapping using
Particle Swarm Optimisation). The prototypical JavaTM implementation is
based on the Alignment API8 [8], which serves as an interface to ontologies and
alignments. Furthermore it provides basic base matching algorithms, such as the
smoa distance [29] and the WordNet distance, which are also used in MapPSO.
The API ships with a command line processor and a server implementation, and
allows for the use of MapPSO as a black box algorithm from within any semantic
application, that uses the Alignment API. Within this framework a generic
DPSO alignment method has been built, which can be tuned and adjusted
in several ways. In particular there are two critical components, namely the
evaluation method and the update method. Both implement the algorithms
presented in Section 4.

The MapPSO system can be configured by a parameter file, which deter-
mines size of the population, number of iterations, the base matchers and eval-
uation strategy to be used along with a set of weights. Furthermore, the pa-
rameters κ and σ to determine the size of the keep-set and safe-set resp., β
and γ to control the influence of personal and global best particle resp. as well

7http://mappso.sourceforge.net
8http://alignapi.gforge.inria.fr/
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as parameters to regulate self-adaptive behaviour can be configured. Table 2
shows the list of parameters that can be adjusted.

Particles in MapPSO are evaluated and updated in parallel running threads.
A flowchart of the system is illustrated in Fig. 2.

7. Experiments

This section demonstrates experiences drawn from initial experiments using
the MapPSO algorithm. The MapPSO system is evaluated by conducting two
kinds of experiments: alignment quality testing and scalability testing.

7.1. Alignment Quality

To demonstrate the correct operation of this approach the implementation
was tested on the datasets of the benchmark track of the 2008 Ontology Align-
ment Evaluation Initiative (OAEI)9. The benchmark consists of a number of
tests, where an ontology is aligned to different derivatives of itself, which are al-
tered by removing information that can be exploited by alignment tools. These
alternations change or remove natural language labels, comments, structural in-
formation, etc., in order to figure out the strengths and weaknesses of different
alignment systems.

In the OAEI, alignment systems are compared using precision and recall
metrics [9], which are well-known from information retrieval. For an alignment
A and a reference alignment R,

P (A, R) =
|A ∩R|

|A|
(44)

R(A, R) =
|A ∩R|

|R|
(45)

define precision and recall respectively. These classic metrics, however, bear
the problem, that correspondences either exactly match the reference or not.
In an ontology alignment however, this yes/no evaluation is infeasible, as cor-
respondences can be close to the reference or completely unacceptable. If for
instance an ontology alignment is used for query expansion, i.e. an additional
data source (ontology) is attached to retrieve additional results, correspondences
of an alignment might be interpreted as pointers to those classes of the additional
ontology, whose instances are to be added to the results. If the correspondence
determined by an alignment system does not exactly map to the correct class,
but to a sub- or superclass thereof, the result quality of the expanded query
would only slightly decrease. A classical precision and recall evaluation of that
correspondence would not account for this closeness but would simply count
the correspondence as a miss. Motivated by this observation, a relaxed preci-
sion and recall metric for ontology alignment was introduced [5, 9] in order to

9http://oaei.ontologymatching.org/2008/benchmarks/

23



�
�
��

�
�
��Output of

global best
alignment

?
true

�

false����

����HHHH

HHHHStopping
condition
reached

?

Permutate
mappings in
particle p

?

Adjust
length of
particle p

Parallel Execution

?

Determine
current global
best alignment

?

Evaluate
fitness score
of particle p

Parallel Execution
?

�
�

�
�

Initialise
particles

Figure 2: Flowchart of the MapPSO system.
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respect the closeness of correspondences to their references. Relaxed precision
and recall are defined as

Pω(A, R) =
ω(A, R)

|A|
(46)

Rω(A, R) =
ω(A, R)

|R|
(47)

where ω is a proximity function, such that

|A ∩R| ≤ ω(A, R) ≤ min(|A|, |R|) (48)

and thus Pω and Rω denote real generalisations of the traditional metrics.

7.1.1. Setup

In these tests, a swarm population of 50 particles and 200 iterations were
used. The algorithm uses a 2:3 ratio for weighting number maximisation to
alignment evaluation, as denoted in (8). The MapPSO algorithm is highly
adjustable via its parameter file and can be tuned to perform well on specific
problems, as well as to perform well in terms of precision or recall. To obtain the
results presented in Table 3, a compromise parameter configuration was used as
listed in Table 2.

7.1.2. Experiments

Table 3 shows the results of the experiments with the alignment benchmarks.
The numbers in the table refer to the globally best alignment found by the swarm
after the given number of iterations. The table shows classical, as well as relaxed
(symmetric [5]) precision and recall measures w.r.t. a given reference alignment.

For tests 101-104 MapPSO achieves precision values of around 90% and
recall values of 100%. Test 102 with a totally irrelevant ontology, however, still
determines a number of wrong correspondences.

As for tests 201-210 results are not as positive, as the quality of the align-
ment decreases with the number of linguistic features to exploit. For test case
202 where all names and comments are unavailable, MapPSO performs worst in
this group of tests. Regarding the relaxed metrics, results are much more stable
and constant around 90% symmetric precision and 100% symmetric recall.

In tests 221-247, where the structure of the ontologies varies, the results
are similar to the 10x tests. The reason is that the main focus of the current
implementation of MapPSO’s base matchers is on linguistic features, such as
string distance and WordNet distance. In these tests the relaxed precision and
recall metrics roughly coincide with the classical metrics.

The tests 248-266 combine linguistic and structural problems. As the
results show, the quality of the alignments is decreasing with the decreasing
number of features available in the ontologies. However, as Table 3, and Figs. 3
and 4 demonstrate, relaxed precision and recall values are much higher and
more stable throughout the tests.

For the real-life cases, tests 301-304, no uniform results can be derived as
the algorithm’s precision and recall values vary between 0 and 60%.
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Table 2: Parameter configuration as used for the OAEI 2008 campaign. Pa-
rameters are labelled as in the MapPSO parameter file. Symbols in parentheses
denote the corresponding variables used throughout this article.

Parameter Value
population (N) 50
iterations (I) 200
numberProportion (η) 0.4
propLikeLocalInc (β) 0.4
propLikeGlobalInc (γ) 0.5
kappa (κ) 0.7
sigma (σ) 0.1
changeCorrProbFactor (λ) 0.6
increaseCorrWeightStart (→ winc) 2.5
decreaseCorrWeightStart (→ wdec) 1.5
increaseCorrWeightEnd (→ winc) 1.5
decreaseCorrWeightEnd (→ wdec) 1.1
changeCorrWeightMethod (→ winc, wdec) linear

baseDistances (~h()) entityNameDistance
entityLabelDistance
entityNameWNDistance
entityLabelWNDistance
hierarchyDistance
classPropertyDistance
propertyDomainRangeDistance

weights (~ω) 0.3
0.2
0.15
0.15
0.1
0.05
0.05

aggregationFunction (Γ()) owaOperator
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Table 3: Experimental results for OAEI 2008 benchmark datasetsa.

Test Sym. Sym. Test Sym. Sym
Prec. Recall Prec. Recall Prec. Recall Prec. Recall

101 0.9 1 0.9 1 251-2 0.76 0.8 0.88 0.91
102 0 NaN n/a n/a 251-4 0.47 0.53 0.87 0.98
103 0.94 1 0.94 1 251-6 0.28 0.3 0.88 0.95
104 0.92 1 0.92 1 251-8 0.22 0.24 086 0.95
201 0.12 0.13 0.89 1 252 0.06 0.06 0.91 0.99
201-2 0.79 0.88 0.89 0.99 252-2 0.62 0.7 0.9 1
201-4 0.66 0.7 0.89 0.95 252-4 0.63 0.71 0.89 1
201-6 0.5 0.56 0.89 1 252-6 0.63 0.69 0.89 0.98
201-8 0.28 0.31 0.9 1 252-8 0.63 0.71 0.9 1
202 0.05 0.05 0.89 1 253 0.06 0.07 0.89 1
202-2 0.72 0.81 0.9 1 253-2 0.75 0.71 0.9 0.86
202-4 0.55 0.6 0.91 0.99 253-4 0.5 0.56 0.9 1
202-6 0.34 0.37 0.91 1 253-6 0.38 0.42 0.9 1
202-8 0.2 0.23 0.9 1 253-8 0.17 0.19 0.89 1
203 0.95 0.94 0.95 0.94 254 0 0 0 0
204 0.85 0.93 0.9 0.98 254-2 0.85 0.7 0.89 0.73
205 0.3 0.33 0.91 1 254-4 0.83 0.45 0.83 0.45
206 0.35 0.38 0.9 0.99 254-6 0.37 0.39 0.74 0.79
207 0.35 0.39 0.9 1 254-8 0.71 0.15 0.71 0.15
208 0.78 0.88 0.89 1 257 0.05 0.06 0.74 0.97
209 0.22 0.25 0.91 1 257-2 0.91 0.61 0.91 0.61
210 0.18 0.2 0.9 0.99 257-4 0.53 0.61 0.76 0.88
221 0.9 1 0.9 1 257-6 0.4 0.52 0.76 0.97
222 0.91 1 0.91 1 257-8 0.23 0.27 0.75 0.91
223 0.96 0.89 0.96 0.89 258 0.08 0.09 0.86 0.98
224 0.9 1 0.9 1 258-2 0.74 0.74 0.9 0.9
225 0.9 1 0.9 1 258-4 0.49 0.53 0.86 0.94
228 0.8 1 0.8 1 258-6 0.34 0.39 0.87 0.98
230 0.86 1 0.86 1 258-8 0.2 0.23 0.87 0.99
231 0.92 1 0.92 1 259 0.01 0.01 0.89 1
232 0.94 1 0.94 1 259-2 0.68 0.76 0.89 1
233 0.79 1 0.79 1 259-4 0.64 0.72 0.89 1
236 0.8 1 0.8 1 259-6 0.66 0.74 0.89 1
237 0.93 1 0.93 1 259-8 0.66 0.73 0.9 0.99
238 0.9 0.95 0.91 0.96 260 0.03 0.03 0.63 0.86
239 0.89 0.86 0.89 0.86 260-2 0.67 0.76 0.79 0.9
240 0.71 0.82 0.74 0.85 260-4 0.53 0.72 0.65 0.9
241 0.79 1 0.79 1 260-6 0.64 0.31 0.64 0.31
246 0.81 1 0.81 1 260-8 0.21 0.28 0.63 0.83
247 0.73 0.82 0.76 0.85 261 0.04 0.06 0.73 1
248 0.04 0.04 0.89 1 261-2 0.86 0.36 0.86 0.36
248-2 0.75 0.79 0.91 0.96 261-4 0.82 0.27 0.82 0.27
248-4 0.48 0.54 0.89 0.99 261-6 0.75 0.45 0.85 0.52
248-6 0.36 0.4 0.9 1 261-8 0.68 0.79 0.74 0.85
248-8 0.16 0.18 0.89 0.98 262 0.07 0.09 0.74 0.97
249 0.06 0.07 0.9 1 262-2 0.86 0.76 0.9 0.79
249-2 0.73 0.82 0.9 1 262-4 0.5 0.55 0.75 0.82
249-4 0.53 0.59 0.9 0.99 262-6 0.79 0.33 0.79 0.33
249-6 0.34 0.38 0.9 1 262-8 0.16 0.21 0.74 0.97
249-8 0.16 0.18 0.9 1 265 0.03 0.03 0.65 0.9
250 0.07 0.09 0.74 0.94 266 0.02 0.03 0.73 1
250-2 0.78 0.85 0.81 0.88 301 NaN 0 1 0
250-4 0.67 0.48 0.67 0.48 302 0.22 0.21 0.51 0.48
250-6 0.38 0.48 0.74 0.94 303 NaN 0 1 0
250-8 0.21 0.27 0.74 0.97 304 0.65 0.64 n/a n/a
251 0.07 0.08 0.86 0.97

aClassical precision and recall values are drawn from the official OAEI 2008 results pub-
lished at http://oaei.ontologymatching.org/2008/results/benchmarks/; symmetric preci-
sion and recall values are computed using the ExtGroupEval evaluation class shipped with the
Alignment API [8].
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Figure 3: Classical and symmetric precision results of MapPSO for the
OAEI 2008 benchmark datasets. Symmetric precision cannot be less than clas-
sical precision by (44), (46), and (48).
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Figure 4: Classical and symmetric recall results of MapPSO for the OAEI 2008
benchmark datasets. Symmetric recall cannot be less than classical recall
by (45), (47), and (48).
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7.1.3. Discussion

Since MapPSO is a heuristic search algorithm, it is non-deterministic and
therefore on a set of independent runs the quality of the results and the number
of correspondences in the alignments will be subject to slight fluctuations.

For many of the test cases in the benchmark dataset the current implemen-
tation of MapPSO could provide reasonably good solutions. However, particu-
larly alignments which are largely based on structural criteria currently impose
a problem on the algorithm if the goal is to maximise classical precision and
recall, and thus exactly match the reference. This behaviour is particularly re-
flected in test cases, where lexical and linguistic information is omitted, such as
in 201 and 202. However, the relaxed precision and recall results indicate, that
the alignments discovered by MapPSO are not completely different from the ref-
erence, but rather close. Obviously, in the current implementation the particle
swarm just slightly fails to find the global optimum. The results, however, do
show the feasibility of the approach but also the need for further development
such as the addition of appropriate base matchers that more accurately evaluate
the fitness scores of correspondences in the case that only structural features
are available.

The submitted results were all acquired using an identical configuration file
with a non-optimised and rather general set of parameters. For individual align-
ment problems, the quality of fitness values and thereby to some extent the
efficiency of the algorithm can be improved by limiting the selection of base
matchers to those that are most likely to provide useful ratings for the involved
ontologies.

Figures 5 and 6 illustrate the convergence of the swarm towards the global
optimum. The plots show the fitness of the globally best performing particle
in each iteration and the size of the alignment it represents. Lower values
thereby indicate shorter distances and therefore represent better solutions. The
graphs show a representative run on test cases 101 and 102 of the OAEI 2008
benchmark track. These two special test cases represent the tasks to align
an ontology with itself (101 ) or with a completely irrelevant one (102 ). The
parameter configuration is the same as listed in Table 2, however, the algorithm
ran 200 iterations with a population of 100 particles and a numberProportion
of 0.2. As Fig. 5 illustrates, the algorithm converges quickly towards the global
minimum on the 101 test case and reaches a stable state after 120 iterations,
where no further improvements on the situation occur. The convergence on test
case 102, as illustrated in Fig. 6, is significantly slower and the algorithm does
not reach a fitness value as good as on test case 101. This can be explained by
the low value for numberProportion which causes the fitness of the particle to
mainly depend on the evaluation of its correspondences. The fitness values in
this test yield bad scores since the ontologies are completely unrelated, resulting
in the overall fitness of the best particle strongly correlating with the number of
its correspondences. However, the convergence of the swarm also stagnates after
about 120 iterations. Since in this test case, the desired alignment is empty, the
convergence of the number of correspondences can be observed to approach zero
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Figure 5: Convergence of the global optimum and the number of its correspon-
dences during 200 iterations with 100 particles in the OAEI 2008 benchmark
test case 101, self-alignment.

during the run of the algorithm.
In the experiments the computational time was not taken into considera-

tion since the prototypical implementation was not deployed to a large parallel
computational system. Generally, however, parallel scalability is a strong ad-
vantage of population-based algorithms like PSO. A faster distributed parallel
implementation is currently under development and will be provided in the
near future. A significant speed-up on parallel architectures is expected from
this implementation.

7.2. Scalability

Aligning large ontologies is a challenge, which imposes problems for most
state-of-the-art mapping systems. In order to demonstrate scalability of the
MapPSO approach, a proof-of-concept experiment has been conducted, where
a single particle was used to process the alignment computation of two large
ontologies in one iteration. To this end, two large medical ontologies have
been used, namely the Foundational Model of Anatomy (FMA)10, with 78,988

10http://bioportal.bioontology.org/ontologies/4513
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Figure 6: Convergence of the global optimum and the number of its correspon-
dences during 200 iterations with 100 particles in the OAEI 2008 benchmark
test case 102, irrelevant ontology.
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named classes, and an OWL version of the International Classification of Dis-
eases (ICD10)11 with 11,290 named classes12. The experiment solely demon-
strates that MapPSO is able to process large ontologies successfully. In order
to provide high quality results, more particles would need to run through more
iterations, which has not been conducted yet.

8. Conclusion

In this article a novel ontology alignment algorithm based on Particle Swarm
Optimisation was presented. In order to allow the application of a PSO-based
method to discrete ontology alignment problems, where correspondences be-
tween ontological entities are either present or not present in an alignment, a
variety of changes and adaptations to the PSO model were developed. Fur-
thermore, to apply a heuristic optimiser to the ontology alignment problem,
ontology alignment was formulated as an optimisation problem with two ob-
jectives: (i) identify a set of correct correspondences, and (ii) maximise the
number of correspondences in this alignment. The DPSO algorithm by Correa
et al. [2] has been adapted to have a population of particles search for the opti-
mal alignment w.r.t. the two objectives. In the approach each particle represents
a candidate alignment of the two ontologies. The convergence of the swarm is
guided by proportional likelihood values assigned to each correspondence, based
on the best alignments that the swarm and each particle individually have so
far discovered. Initial experiments with a prototypical implementation showed
promising results in terms of alignment quality on benchmark datasets taken
from the Ontology Alignment Evaluation Initiative (OAEI) 2008. Furthermore,
the possibility to process extremely large ontologies was demonstrated using two
medical ontologies in a separate experiment.

The presented method is highly parallelisable, which, deployed on a highly
parallel architecture, potentially allows for very complex computations of sim-
ilarities in each particle without causing performance or memory issues. As
opposed to many state-of-the-art alignment tools, the population-based DPSO
approach does not require the computation of large similarity matrices making
it more scalable on parallel architectures.

Future work on MapPSO will focus on developing and adding additional base
matchers and methods to dynamically adapt the aggregating weight function.
To this end, a number of additional base matchers can potentially be adapted
from existing alignment systems. For instance, TBox axioms and descriptions
of entities can be taken into account (in the case of ontologies of higher ex-
pressivity), as demonstrated e.g. in the OLA approach [10]. Concepts from
the Anchor-PROMPT approach [22], where non-local contexts are considered,

11http://www.dimdi.de/static/en/klassi/diagnosen/icd10/index.htm
12The rational behind aligning anatomy and disease ontologies arises out of a real world

use case, where details about anatomical structures are requested according to their relevance
to certain diseases. This use case is also an example of the necessity to identify only partial
overlaps between ontologies.
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are promising candidates. Another possibility to further improve the algorithm
is the tuning of input parameters, such as size of the population, number of
iterations and potentially more intelligent termination criteria. Furthermore,
adjustment to the β, γ, κ, and σ parameters will be made as their current
values are mere estimates.

Automatic ontology alignment systems often utilise sophisticated background
knowledge bases to identify alignments. Semi-automatic systems typically serve
as assistants for humans, e.g. by working interactively. Integrating a human
decision making process appears promising to find alignments for particularly
difficult ontologies and could represent a viable compromise between poor re-
sults from automated systems and very labour intensive manual approaches. A
solution for an interactive component for multi-objective PSO algorithms was
investigated by Hettenhausen [12]. This work will be adapted to DPSO and the
proposed ontology alignment algorithm in particular.

On the implementation side adaptions will be made to allow execution on
static and ad-hoc distributed systems such as grids, clouds, or clusters to reveal
the full potential of the parallel nature of the algorithm for large-scale problems.
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[5] Marc Ehrig and Jérôme Euzenat. Relaxed Precision and Recall for Ontol-
ogy Matching. In Benjamin Ashpole, Marc Ehrig, Jérôme Euzenat, and
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[23] Eyal Oren, Christophe Guéret, and Stefan Schlobach. Anytime Query An-
swering in RDF through Evolutionary Algorithms. In Proceedings of the
7th International Semantic Web Conference, volume 5318 of LNCS, pages
98–113, Berlin, October 2008. Springer.

[24] Heiko Paulheim. On Applying Matching Tools to Large-scale Ontologies.
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