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Abstract. Ontology alignment is an important problem for the linked
data web, as more and more ontologies and ontology instances get pub-
lished for specific domains such as government and healthcare. A num-
ber of (semi-)automated alignment systems have been proposed in re-
cent years. Most combine a set of similarity functions on lexical, seman-
tic and structural features to align ontologies. Although these functions
work well in many cases of ontology alignments, they fail to capture
alignments when terms or structure varies vastly across ontologies. In
this case, one is forced to rely on manual alignment. In this paper, we
study whether it is feasible to re-use such expert provided ontology align-
ments for new alignment tasks. We focus in particular on many-to-one
alignments, where the opportunity for re-use is feasible if alignments are
stable. Specifically, we define the notion of a cluster as being made of
multiple entities in the source ontology S that are mapped to the same
entity in the target ontology T . We test the stability hypothesis that
the formed clusters of source ontology are stable across alignments to
different target ontologies. If this hypothesis is valid, the clusters of an
ontology S, built from an existing alignment with an ontology T , can be
effectively exploited to align S with a new ontology T ′. Evaluation on
both manual and automated high-quality alignments show remarkable
stability of clusters across ontology alignments in the financial domain
and the healthcare and life sciences domain. Experimental evaluation
also demonstrates the effectiveness of utilizing the stability of clusters in
improving the alignment process in terms of precision and recall.

1 Introduction

Ontology alignment is an important problem for the linked data web, as more
and more ontologies get published for specific domains such as government
and healthcare. A number of (semi-)automated alignment systems have been
developed in recent years (e.g., Lily [16], ASMOV [8], Anchor-Flood [11], Ri-
MOM [13]). Most systems combine a large set of similarity functions on lexical,
semantic and structural features to align ontologies (for surveys, see [2], [14]).
While these similarity functions are important and effective for many cases of
ontology alignments, there are also cases where none of the similarity functions



adequately capture the nature of the alignment; this is particularly true when
the two ontologies of extremely different modeling granularities are involved.
For instance, one alignment exercise frequently conducted by IBM consultants
in the field is to align models that describe assets at an IT level (e.g., the IBM
Information FrameWork model used to describe IT assets in the banking indus-
try) to models that describe the same assets at a business level (e.g., the IBM
Component Business Model for banking). Because the two models describe the
same assets in different terms and different structures, traditional approaches to
automated ontology alignment fail abysmally (the mapping precision we have
measured can be as low as 1% in these cases). In fact, the only alternative in
such cases is to rely on a domain expert who can provide the alignment between
these types of models. However, if the expert has actually done the hard work
of mapping the models once, is it feasible to re-use these high-quality manual
ontology alignments, to improve the alignment process for new alignments when
the two models evolve, or when the same model needs to be aligned to new
models? This is the research focus of our paper.

For the purpose of investigating the re-use of manual mappings, we direct our
attention in this paper to many-to-one (or conversely, one-to-many) mappings,
because this is where mapping re-use can be readily applied while similarity
functions fail to produce valuable information for alignments. In many-to-one
mapping scenarios, multiple entities in one ontology S get mapped to a single
entity in a target ontology T 1. The grouping of multiple entities in S can be
viewed as user-specified clustering of source entities. In principle, there is a
chance that prior ontology alignments can provide some guidance for the current
alignment task in hand, if there is some stability in mapping certain entities in
one ontology to the same entity in target ontologies. Put it another way, the
question is whether the user-specified clusters based on the alignment of S to
T 1 tend to appear when S is aligned with ontology T 2 different from T 1. If the
user-specified clustering in S is in fact stable, then the clustering information can
be exploited when alignment needs to be performed from S to T 2. Specifically,
a mapping provided by an expert on one of the entities in a cluster of S can be
automatically generalized to map other members of this cluster.

To evaluate the stability hypothesis, we define two novel metrics to measure
the similarity of clusters constructed for an ontology S based on its alignment
results to different ontologies. These metrics are conceptually similar to Lev-
enshtein and Jaccard measures of string similarity. We also design a mapping
strategy that utilizes the clustering information for new alignments and study
the effectiveness of this strategy in terms of the classical mapping quality metrics
such as precision and recall. Furthermore, we characterize mapping efficiency in
terms of the amount of saving in human effort required in the alignment task
with and without the clustering information. We apply these metrics to com-
pare two independent alignments that were performed by IBM consultants in the
field. The first alignment involved the mapping of the IBM Component Business
Model (CBM), a flat model of business functions expressed in business terms to
Information FrameWork (IFW), a structured and detailed model of enterprise



processes described from an IT perspective. The second alignment involved a
very different version of the CBM model which was aligned to a mostly un-
changed IFW model. The alignment process was conducted about a year apart,
by different consultants. As mentioned earlier, applying any of the standard sim-
ilarity functions to either model pair fails to detect any meaningful alignments.
Manual mappings produced by IBM consultants had most CBM entities mapped
to multiple IFW entities. Using these expert created mappings as reference, we
tested whether the user defined clusters of IFW entities stayed stable when it
was mapped to a very different version of CBM. Our evaluation of the previously
defined metrics showed remarkable stability of clustering of IFW entities (the
average similarity of clusters is 0.89, within the range of [0, 1]). For the same
dataset, the improvement in mapping precision is 0.4, and the efficiency is 0.95
within a scale of 0 to 1; the higher the better. For repeatability purposes, we
evaluated these same metrics for 2312 ontology comparisons publicly available
on the BioPortal web site3 with again remarkable stability of clustering of source
ontology entities (the average similarity of clusters is 0.84). From these positive
stability results, the opportunity for re-use is quite clear: clustering information
generated from existing alignments is very helpful for new alignment tasks. For
instance, if entities a, and b in ontology S are mapped to entity c in ontology
T 1, and a is mapped to entity d in another ontology T 2, we know b should be
mapped to d in T 2 as well.

Our main contributions in this paper are as follows:

– We present a novel technique to uncover, from existing many-to-one (or
conversely, one-to-many) alignments, internal structures of related entities
(i.e., clusters of entities) in ontologies.

– We show the stability of those clusters across alignments in two different do-
mains (finance and healthcare & life sciences) and on both manually created
mappings and automatically generated high-quality mappings.

– We describe how clusters discovered in existing many-to-one and one-to-
many alignments can be exploited for performing new alignments, and eval-
uate the impact on both mapping quality (precision/recall) and mapping
efficiency (saving in human effort).

The remainder of the paper is organized as follows. In the next section, we
present an overview of our clustering-based ontology alignment approach and the
fundamental stability hypothesis it relies on. In Section 3, we describe cluster
similarity measures needed to validate the stability hypothesis. The evaluation
results on many-to-one alignments are presented in Section 4. Finally, after dis-
cussing related work in Section 5, we conclude in Section 6.

2 Overview of Clustering-based Ontology Alignment

In many-to-one alignment scenarios, multiple entities in the source ontology S
get matched to the same entity in the target ontology T . One way to interpret

3 http://bioportal.bioontology.org



the alignment result of S → T is that the entities in S are partitioned into
clusters (i.e., groups) such that each cluster of entities are matched to the same
entity in T . Consider a simple example.

Source ontology S = {a, b, c, d}, target ontology T = {e, f}, and their align-
ment result: S → T = {a → e, b → e, c → f, d → f}. In this case, ontology S is
partitioned into 2 clusters: Ps = {{a, b}, {c, d}}.

It naturally follows that a source ontology could be partitioned in differ-
ent ways based on its alignment results with different target ontologies. Our
clustering-based ontology alignment approach relies on the following fundamen-
tal hypothesis:

Hypothesis (H): The partitions of a source ontology (based on alignment
results with different target ontologies) are stable across ontology alignments.

If this hypothesis is valid, it is feasible to leverage the alignment result of
ontology S to ontology T 1 to help a new alignment of S to ontology T 2 as
follows:

– Generate a partition (i.e., a set of clusters) of S, denoted as Ps, from the
alignment result of S → T 1;

– To perform the alignment task of S → T 2, instead of matching individual
entities in S independently with the entities in T 2, it may be more efficient
and more accurate to match a cluster of entities in Ps to the entities in T 2.
The intuition is that the entities in one cluster are expected to match to the
same entity in T 2.

This approach would be particularly valuable to maintain alignments as on-
tologies evolve. For example, if a high-quality alignment from ontology S to
ontology T 1 has been produced through a manual or semi-automated process
and ontology T 1 then evolves to a new version T 1’, this approach would signifi-
cantly reduce the amount of pairwise mappings to consider in order to build an
alignment from S to T 1’.

IFW CBM

Provide FMO Transaction Reconciliation Account Reconciliation
Request Amended Counterparty Confirmation Account Reconciliation
Accumulate Futures Transaction Values Account Reconciliation
Analyze FMO Transaction Details Account Reconciliation
Compare FMO Transaction Details Account Reconciliation
Verify FMO Transaction Details Account Reconciliation

Table 1. Example of an IFW cluster based on manual alignment to CBM

Tables 1 and 2 show two examples of clusters obtained respectively through
manual alignment and through automated alignment.

In Table 1, most entities in the IFW cluster (i.e., ‘Provide FMO Transaction
Reconciliation’, ‘Request Amended Counterparty Confirmation’, ‘Accumulate
Futures Transaction Values’, and ‘Analyze FMO Transaction Details’) show lit-
tle to no lexical or structural similarity between themselves or with the target



Mouse Anatomy Brenda Tissue

intestine (no synonym) intestine (synonyms: bowel, gut)
bowel (no synonym) intestine (synonyms: bowel, gut)
gut (no synonym) intestine (synonyms: bowel, gut)

Table 2. Example of a Mouse Anatomy cluster based on lexical alignment to Brenda
Tissue Ontology

CBM entity, ‘Account Reconciliation’. In fact, applying standard similarity func-
tions to directly map IFW to CBM produce extremely poor results because, as
mentioned in Section 1, the two models are very different from almost all per-
spectives: different vocabularies (IT vocabulary for IFW vs. business vocabulary
for CBM), very different structures (deep nested structure for IFW vs. flat struc-
ture for CBM), modeling at different levels of abstraction (modeling at the IT
process level for IFW vs. modeling at the business functions level for CBM).
The semantic similarity between IFW entities in the cluster, which could not be
computed from information present in both models, was indirectly identified by
the domain experts (IBM consultants) when they map these IFW entities to the
same CBM entity.

Table 2 shows partial results of aligning the adult Mouse Anatomy Ontol-
ogy (MA) and Brenda Tissue Ontology (BTO) using the automated process 4

described in [9]. Like the IFW-CBM case, entities in the cluster of MA ontology
do not exhibit any meaningful similarity that could be computed based only on
information in MA ontology. However, as opposed to the previous IFW case,
entities in MA are lexically similar to the mapped entity (i.e., intestine which
has as explicit synonyms bowel and gut) in the target ontology. In this case,
the alignment to BTO serves as a dictionary look up that uncovers the semantic
similarity between intestine, bowel, and gut. This uncovered semantic similarity
could then be used in the next alignment involving MA ontology.

3 Measures of Cluster Similarity

To test our stability hypothesis (H), we need to evaluate the similarity between
the partitions of the same ontology, which requires a similarity measure on a pair
of partitions (i.e., sets of clusters). To ease presentation, consider two alignments,
S to T 1 and S to T 2. Based on their alignment results, we can generate two
partitions of S: Ps,1 = {C1, C2, . . . , Cm} and Ps,2 = {C ′

1, C
′
2, . . . , C

′
n}, where

each cluster Ci or C
′
j is a collection of entities in the source ontology S. So the

real challenge is to define an appropriate measure to evaluate the similarity of
Ps,1 and Ps,2. A good measure needs to be symmetric and have a fixed range of
values, preferably [0, 1], such that similarity values computed for different pairs
of partitions are comparable. Here we consider two similarity measures which
are conceptually similar to similarity metrics for strings.

4 The ontologies and the alignments are available at http://bioportal.bioontology.org/



3.1 Measure I: Jaccard Similarity on Entity Pairs

For each cluster C in the partition Ps of ontology S, we can generate all pairs
of entities in cluster C. Thus, the partition Ps can be represented as the union
of all the sets of entity pairs (one set per cluster in Ps). The generated set
of entity pairs is equivalent to the original partition in the sense that we can
re-generate the partition from the set of entity pairs. For instance, consider a
partition P1 = {{a, b}, {c, d, e}}. The corresponding set of entity pairs is P ′

1 =
{{a, b}, {c, d}, {c, e}, {d, e}}. Note that given P ′

1, we can re-generate the original
partition P1. For another partition P2 (say, P2 = {{a, b, c}, {d, e}}), we can also
generate a set of entity pairs as P ′

2 = {{a, b}, {a, c}, {b, c}, {d, e}}. The similarity
of the two sets P ′

1 and P ′
2 can then be computed with the standard Jaccard

similarity [1] by treating each entity pair (without considering the sequence of
entities) as the basic element of a set. Therefore, the similarity of P1 and P2

can be computed as follows:

PSim1(P1,P2) =
|P ′

1 ∩ P ′
2|

|P ′
1 ∪ P ′

2|
(1)

where the numerator is the size of set intersection, and the denominator is
the size of set union, with each entity pair as a basic unit in the set. The
similarity measure PSim1 has the desired property that it is symmetric (i.e.,
Sim1(P1, P2) = Sim2(P2, P1)) and the range of the similarity value is [0, 1].
Furthermore, PSim1 captures the effect of big clusters in a partition, because
big clusters will generate entity pairs that are exponential in size to cluster size;
thus reflecting the natural preference for big clusters.

3.2 Measure II: Partition Edit Distance

One measure that is closely related to similarity is distance. The distance be-
tween two partitions can be intuitively characterized by the minimum amount
of work to transform one partition into the other, which is conceptually similar
to edit distance (i.e., the minimum number of edits, including insertion, dele-
tion, and substitution) between two strings. The basic operations for partitions
we consider include Split and Merge. A Split operation on a cluster C1 creates
two non-overlapping clusters C2 and C3, with the union of C2 and C3 including
all the elements in C1. Merge is an inverse operation of Split. To continue with
the previous example, to transform partition P1 into partition P2, we need 2
operations: a Split operation on the cluster {c, d, e} generates two clusters {c}
and {d, e}; and a Merge operation of the two clusters {a, b} and {c} creates a
new cluster {a, b, c}, thus resulting in partition P2. So the edit distance between
P1 and P2 is 2.

Definition: The edit distance between two partitions P1 and P2, denoted
as ED(P1,P2), is the length of the shortest edit path composed of Splits and
Merges from P1 to P2. A nice property of the partition edit distance is that it
is symmetric, i.e., ED(P1,P2) = ED(P2,P1). Although the edit path from P1

to P2 is different from the path of transforming P2 to P1, these two paths have



the same length, since the two basic operations of Merge and Split are inverse
of each other.

Because the edit distance between two partitions of the same ontology is
dependent on ontology size, we need a normalization factor to transform edit
distance into a similarity measure. The normalization factor we consider here
is ontology size, i.e., the number of entities in a source ontology. Thus, the
similarity measure derived from edit distance of two partitions P1 and P2 is:

PSim2(P1,P2) = 1− 1

|S|
ED(P1,P2) (2)

where |S| is the size of the source ontology. The similarity measure PSim2 is
also symmetric.

3.3 Measure III: Mapping Quality

The above two measures reflects the stability of partitions from the similarity
perspective. We also propose another measure to evaluate the actual quality
of mappings which are generated based on the clustering information. To this
end, we simulate the procedure of generating partitions of a source ontology and
applying the clustering information for a new alignment that involves the same
source ontology:

– Generate a partition P1 of the source ontology S based on the mapping
result from S to a target ontology T 1;

– For a new alignment task from S to another target ontology T 2, generate
the mappings as follows:
• For each cluster C in the partition P1, randomly pick one entity s from

C and find the mapped entity t in T 2;
• Generalize the mapping to other entities in the same cluster, with the

mappings being {⟨s′, t⟩|s′ ∈ C}.

Since in this paper we focus on many-to-one mappings, we exclude the one-
to-one mappings from the estimation of precision and recall, the two classical
metrics for measuring mapping quality.

precision =
|M ∩MGS |

|M|
, recall =

|M ∩MGS |
|MGS |

where M is the mappings generated using the strategy described above, and
MGS is the gold-standard (i.e., reference) mappings. Note that |M| and |MGS |
are equal in this scenario, so precision and recall are equal, and we will only
report results in precision in the experiment section. In addition to the map-
ping quality, we also measure the amount of saving of human effort to generate
the mappings, compared to the baseline approach of independently generating
mappings for each entity in the source ontology from scratch. The human effort
is estimated as the number of mappings that require human input. We thus
define mapping efficiency with utilization of clustering information as:



efficiency = 1− |Pm2o|/|Sm2o|

where |Pm2o| is the number of non-singleton clusters (i.e., clusters with more
than one entity) in the partition P of the source ontology S, and |Sm2o| is the
total number of entities in the non-singleton clusters. Intuitively, the bigger the
clusters, the more efficient the approach based on clustering. At the same time,
however, bigger clusters tend to be more impure (i.e., meaning entities in the
same cluster are mapped to different entities in the target ontology). Therefore,
clusters of size exceeding the optimal value will adversely affect mapping quality.

3.4 Discussion

The three measures described above reflect different information aspects for
the hypothesis testing about partition stability. The Jaccard similarity indicates
whether the partitions generated based on mappings to different target ontologies
are at the same granularity. For example, if the target ontology T 1 is more fine-
grained than another target ontology T 2, we expect that the Jaccard similarity
of the two partitions of the source ontology is relatively low. A simple example
will illustrate this fact. Suppose we have one partition containing just one cluster
{a, b, c, d}, and the other partition is {{a, b}, {c, d}}. It is easy to see that the
target ontologies in the two alignments are at different granularity. The Jaccard
similarity of the two partitions is 1/3, which is relatively low. The partition
edit distance, on the other hand, is insensitive to such partition granularity.
Continue that simple example. We can see that the edit distance between the
two partitions is 1, so the normalized similarity based on the edit distance is
1 - 1/4 = 0.75. The advantage of edit distance is that it can capture both the
cases where entities mapped to the same entity are mapped to different entities in
another target ontology, and the cases where entities mapped to different entities
in one target ontology are mapped to the same entities in another ontology.
The third measure, mapping quality, provides information about whether the
partition information is reliable for end use. That is, how much the users can trust
the partition information provided by one alignment task, when they perform
a related alignment task in the same domain with the same source ontology.
In some sense, mapping quality is a hybrid measure of Jaccard similarity and
partition edit distance, and can provide an estimate of usefulness of the clustering
information for end users.

4 Evaluating Partitioning Stability

In this section, we evaluate the stability of partitioning, using the three measures
defined in Section 2, on one dataset from the financial domain and one from the
life sciences domain that is publicly available on the BioPortal website.



4.1 IFW - CBM: Ontology Evolution Scenario

As discussed earlier in Section 1, we first studied the case where we had two high-
quality manual alignments: IFW-CBM1 and IFW-CBM2, where CBM2 reflects
an evolution of CBM1. CBM1 has 65 entities, and CBM2 has 120 entities; they
overlap in 37 entities. There are 2165 entities in IFW that are involved in many-
to-one mappings. The partition of IFW based on the mappings from IFW to
CBM1 consists of 62 clusters, and the partition based on the mappings from
IFW to CBM2 consists of 111 clusters. The average cluster size in both partitions
is 25. Recall that the average cluster size determines the mapping efficiency,
i.e., the amount of human effort that can be saved by leveraging the clustering
information. Therefore, the mapping efficiency in this case is expected to be high;
the actual efficiency value is 0.95. We also calculated the similarity of the two
partitions: (1) The similarity based on partition edit distance is 0.89; and (2)
the Jaccard similarity is 0.53. The low Jaccard similarity is likely due to the fact
that the number of clusters in two partitions is quite different (62 vs. 111), as
is the cluster size. As a consequence, the number of entity pairs generated from
the clusters of IFW entities changes significantly. Because Jaccard similarity is
quite sensitive to the size of the sets of entity pairs, the two partitions have a
low Jaccard similarity. Jaccard similarity clearly reflects the actual change in
granularity of the two versions of CBM.

The mapping precision metric is not symmetric, which means using the clus-
tering information based on the mappings from IFW to CBM1 to generate map-
pings for IFW to CBM2 may have a precision quite different from that in the
other direction. Therefore, we estimated mapping precision in both directions,
and the average precision is 0.78. To determine the improvement in precision
due to the use of clustering information, we measured the overlap between the
two alignment results (i.e., IFW-CBM1 and IFW-CBM2) as the baseline. The
intuition is that, if we directly use one alignment result to generate mappings
for the other alignment, only the overlap of the two alignments can generate
correct mappings; the precision for this approach is 0.38. So through the uti-
lization of clustering information from one alignment for the other alignment,
we improve the mapping precision by 0.4; which is statistically significant. As
mentioned in Section 1, the lexical and structural similarity between IFW and
CBM is extremely low; we actually ran our alignment algorithm [5] for the two
alignments IFW-CBM1 and IFW-CBM2 and got a precision around 0.01. In this
scenario, manual mapping is therefore a must, and improving precision by 0.4
by alignment re-use is a significant saving.

4.2 Large Scale Evaluation on BioPortal Ontologies

The BioPortal website contains 149 ontologies, 9.3K ontology comparisons, and
1.75 million matchings of elements in various ontologies that were largely lexi-
cally generated.

Recall that we can create one partition of the source ontology from one
ontology alignment result. For a given source ontology S, there could be multiple



#entities in a partition pair

F
re

qu
en

cy
 o

f p
ar

tit
io

n 
pa

irs

0 200 400 600 800 1000

0
20

00
40

00
60

00
80

00
10

00
0

Fig. 1. Histogram of #entities in partition pairs

Average cluster size of a partition pair
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Fig. 2. Histogram of average cluster size per partition

partitions of S, based on the alignment results with respect to different target
ontologies. We used the two similarity measures (described in Section 3) to
estimate pairwise similarity of the partitions on the same source ontology. If
an ontology S is aligned with k ontologies, we will generate k partitions of S,
and there will be

(
k
2

)
similarity computations of the pairs of partitions. Therefore,

the total number of pairwise comparison of partitions is
∑K

i=1

(
ki

2

)
, where K

is the number of ontologies, and ki is the number of times an ontology Si is
aligned with other ontologies. In this setting, we have altogether 24K similarity
computations between generated partitions.

Since we were focused on many-to-one matching scenarios, we needed to
preprocess the expected matchings from the BioPortal website before analyzing
the similarity of partitions on the same source ontology, using the following steps:



Similarity score of partition pair (Jaccard)
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Fig. 3. Histogram of Jaccard similarity values

1) For a pair of partitions on the same source ontology, we identified the entities
that appeared in both partitions. We removed from further analysis those
entities that only appeared in one of the partitions. The rationale for this
pruning was that these entities were really analogous to missing observations.
That is, if an entity is missing from the partition it could be either due to
incomplete alignment by domain experts, or because it is a singleton in this
alignment, or because it should have been mapped to a different cluster.
Since we had no way of knowing which of the three cases these entities fell
into, we basically eliminated the entities from the analysis.

2) For any entity that is a singleton cluster in both partitions, we also removed
them from further analysis; although the singleton clusters common in two
partitions do not actually affect the similarity values, due to the robustness
of our similarity measures.

3) To make the analysis meaningful, we also removed ontology comparisons
that contained less than 10 entities involved in many-to-one matchings.

After preprocessing the expected matchings, we had 10.4K pairs of partitions
for the similarity comparison. Figure 1 shows the distribution of the number
of entities in each pair of partitions. The average number of entities involved
in many-to-one matching scenarios is 64, which ensures that our analysis of
partitioning stability is based on a reasonable number of data points and is
reliable. Figure 2 shows the distribution of average cluster size per partition. It
is clear that a majority of the partitions have small clusters, with a size of 2
or 3; note that we have excluded singleton clusters generated from one-to-one
mappings. Since the mapping result is incomplete and often only covers a small
part of the ontology, we made only considered the entities mentioned in both
matchings, which partially explains small clusters.



Similarity score of partition pair (based on edit distance)
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Fig. 4. Histogram of similarity values based on partition edit distance

Figure 3 shows the distribution of the similarity values of all pairs of parti-
tions using Jaccard similarity on entity pairs (see Section 3.1). The mean of the
similarity values is 0.72, and the standard deviation is 0.26. Figure 4 shows the
distribution of the similarity values of all pairs of partitions based on partition
edit distance (see Section 3.2). The mean of the similarity values is 0.84, and the
standard deviation is 0.16.

Both Figure 3 and Figure 4 show that the partition of an ontology S is
reasonably stable based on the results of aligning S with different ontologies.
This observation indicates that we can leverage the partition of ontology S con-
structed from an existing alignment result to help new ontology alignments,
which can be done in the following way: (1) Given the result of aligning S to
T 1, we can generate a partition (i.e., clusters) of S, denoted as Ps; (2) For a
new alignment from S to T 2, we match each cluster of entities in Ps to the same
entity in T 2. This alignment strategy has two benefits: (i) it improves alignment
quality, since the alignment tool can aggregate the information from all entities
in a cluster to make alignment decisions rather than make decisions based on
individual entities independently; and (ii) it improves alignment efficiency, be-
cause the alignment of one entity in a cluster can be easily generalized to the
other entities in the same cluster. Figure 5 shows the distribution of precision
when we apply the mapping strategy to the 10.4K ontology pairs. The average
precision is 0.92, with a standard deviation of 0.11. This result verifies that it
is viable to utilize the clustering information from one ontology pair for the
alignment of another pair in the same domain, certainly with the same source
model. Figure 6 shows the distribution of mapping efficiency in terms of the
percentage of mappings that can be automatically generated by leveraging the
partition information. The average efficiency is 0.37, with a standard deviation
of 0.19. As explained in the previous section, the efficiency is highly dependent
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Fig. 5. Histogram of mapping precision values

Mapping efficiency
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Fig. 6. Histogram of mapping efficiency values

on the average cluster size; the bigger the average cluster size, the higher the
efficiency. Since the average cluster size of the partitions is small (see Figure 2),
the efficiency is thus modest.

We also note that the observed stability of clusters for the BioPortal ontolo-
gies is not simply an artifact of the fact that the mappings were computed using
lexical matching. For instance, the concepts COO:F0005386 hyaluronidase activ-
ity, CCO:F0004395 hyaluronate lyase activity, and CCO:F0000824 hyalurononglu-
cosaminidase activity are all mapped to PHI:0000199 hyaluronidase activity
based on their broad synonyms. Yet, each of the 3 concepts is mapped to differ-
ent concepts in the Gene Ontology (GO). It is clear that stability is independent
of whether or not lexical similarity drives the alignment process, which was also
shown earlier with the IFW-CBM alignments.



Can the use of clustering information improve the alignment for BioPortal
ontologies? Unfortunately, we do not have the luxury of having overlaps between
two versions of the same model, like the IFW-CBM case, that can be used as a
baseline. We do note, however, that there were a substantial number (48,261) of
mappings, generated by our clustering-based approach, that are missing from the
BioPortal website. Since the mappings provided by BioPortal are incomplete [9],
it is unclear whether some entities in part of a cluster should not be mapped
to any entity in the target ontology or the extra mappings we found are valid.
Although we were unable to verify the validity of all the mappings due to lack of
expertise, a number of them seemed correct based on their synonyms (see Table
3 for a few examples below). In the table, CLL is missed because it is an acronym
for chronic lymphocytic leukemia, lung neoplasms is missed because it is a syn-
onym of lung cancer, and similarly, RB1 is missed because it is an acronym for
retinoblastoma. This observation indicates that our clustering-based alignment
approach can improve the recall for the alignments of BioPortal ontologies; note
that the average precision estimated with the existing mappings is 0.92.

Concept 1 Concept 2

estrogen receptor alpha (CDR0000322904) estrogen receptor (PRO 000007204)
retinoblastoma (MPATH:378) RB1 (CDR0000043571)
non-small cell lung cancer (CDR0000040862) Lung neoplasms (D008175)
renal cell carcinoma (CDR0000038140) carcinoma, renal cell (C1534)
B-cell chronic lymphocytic leukemia (CDR0000039824) CLL (LP34550-1)

Table 3. Examples of missed matches as defined by clustering

5 Related Work

The alignment technique we proposed in this paper, which exploits internal
structures of ontologies discovered through existing high-quality alignments, can
be contrasted with previous work in terms of its singular focus on many-to-
one and one-to-many alignments and in terms of the novelty of its approach to
learning from existing alignments.

Although many approaches have been proposed to perform ontology align-
ment in the literature, there have been, to the best of our knowledge, no signif-
icant efforts to tailor the alignment process for alignments with cardinality dif-
ferent from one-to-one. After computing an aggregate similarity score for each
candidate matching, most state-of-the art systems (e.g., AgreementMaker [3]
and BLOOMS [15]) simply return the matchings above a given threshold under
a given alignment cardinality constraint (e.g., one-to-one, one-to-many, many-
to-one) without any consideration for the internal structures implied by one-to-
many or many-to-one alignments. Other systems (e.g., ASMOV [12]) have been
optimized for one-to-one alignments to the point of considering multiple entity



correspondences, where the same entity in one ontology is matched with multi-
ple entities in the other ontology, as an inconsistency check in the final semantic
verification step. This bias for one-to-one alignments also transpires from the
relatively large collection of mostly one-to-one ontology alignments used to eval-
uate and systematically characterize the performance of state-of-the-art ontol-
ogy alignment systems at the annual Ontology Alignment Evaluation Initiative 5

event.

Prior work on learning from existing high-quality alignments (e.g., [5], [4], [7]
and [6]) has typically taken a machine learning approach to customize the align-
ment process either for a given pair of ontologies, for which a partial reference
alignment is available, or for a domain where multiple reference alignments are
available. The outcome of this traditional learning approach is the specification
of the optimal value for each parameter of the alignment process for a particular
alignment or for alignments in a given domain. However, the learning approach
does not work well when there is little or no lexical/structural similarity between
the ontologies to align; in which cases the similarity functions can provide little
signal for the learning process. Furthermore, no information is learned about
the intrinsic structure of ontologies and then used to help new alignment. In
contrast, in this paper, we describe how existing many-to-one (or one-to-many)
alignments can be used to discover internal structures (i.e., grouping entities
within an ontology); such structures can then be leveraged in new ontology
alignment as discussed in Section 2.

To the best of our knowledge, [9] and [10] are the only related work which
attempts to learn structural characteristics of ontologies from matchings. How-
ever, our work is different from [9] in terms of its goals. The main goal of [9] is
to uncover the network structure of the set of ontologies, and learn from their
links (i.e., entity matchings) the interesting properties of the ontologies in the
particular domain; for example, which ones are the most relevant and most ap-
propriate to serve as background knowledge for domain-specific tools. Our goal
is to uncover internal ontological structures to enhance future alignments. Refer-
ence [10] proposed an alignment technique to generate mappings between source
ontology and target ontology by composing previously determined mappings that
involve intermediate ontologies. Our work differs from [10] in that we evaluated
the soundness of the hypothesis that the partition (i.e., clustering of entities)
of the source ontology is stable across ontology alignments, which validates the
underlying assumption made by [10]; so our work is complementary to [10].

6 Conclusions

In this paper we proposed the hypothesis that the internal structure of an on-
tology, i.e., clusters of its entities discovered from the many-to-one alignment
scenario, is stable across ontology alignments in the same domain. To evalu-
ate this hypothesis, we defined two novel metrics to measure the similarity of

5 http://oaei.ontologymatching.org/2010/



clusters generated for one ontology based on its alignments with different target
ontologies. Experimental evaluation with datasets from the financial domain and
the healthcare and life sciences domain demonstrated that the stability hypoth-
esis is valid. In addition, we designed a mapping strategy that can leverage the
clustering information for new alignment tasks, and characterized the effective-
ness of this mapping strategy in terms of the impact on mapping quality and
mapping efficiency. Experimental evaluation showed that clustering information
discovered from one alignment can help improve, with a statistical significance,
the mapping quality and mapping efficiency of a new alignment.
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