
Automatically Generating Data Linkages Using
a Domain-Independent Candidate Selection

Approach

Dezhao Song and Jeff Heflin

Department of Computer Science and Engineering, Lehigh University,
19 Memorial Drive West, Bethlehem, PA 18015, USA

{des308,heflin}@cse.lehigh.edu

Abstract. One challenge for Linked Data is scalably establishing high-
quality owl:sameAs links between instances (e.g., people, geographical
locations, publications, etc.) in different data sources. Traditional ap-
proaches to this entity coreference problem do not scale because they
exhaustively compare every pair of instances. In this paper, we pro-
pose a candidate selection algorithm for pruning the search space for
entity coreference. We select candidate instance pairs by computing a
character-level similarity on discriminating literal values that are chosen
using domain-independent unsupervised learning. We index the instances
on the chosen predicates’ literal values to efficiently look up similar in-
stances. We evaluate our approach on two RDF and three structured
datasets. We show that the traditional metrics don’t always accurately
reflect the relative benefits of candidate selection, and propose additional
metrics. We show that our algorithm frequently outperforms alternatives
and is able to process 1 million instances in under one hour on a single
Sun Workstation. Furthermore, on the RDF datasets, we show that the
entire entity coreference process scales well by applying our technique.
Surprisingly, this high recall, low precision filtering mechanism frequently
leads to higher F-scores in the overall system.

Keywords: Linked Data, Entity Coreference, Scalability, Candidate Se-
lection, Domain-Independence

1 Introduction

One challenge for the Linked Data [4] is to scalably establish high quality
owl:sameAs links between instances in different data sources. According to the
latest statistics1, there are currently 256 datasets (from various domains, e.g.,
Media, Geographic, Publications, etc.) in the Linked Open Data (LOD) Cloud
with more than 30 billion triples and about 471 million links across different
datasets. This large volume of data requires automatic approaches be adopted
for detecting owl:sameAs links. Prior research to this entity coreference problem2

1 http://www4.wiwiss.fu-berlin.de/lodcloud/state/
2 Entity Coreference is also referred to as Entity Resolution, Disambiguation, etc.

2 Dezhao Song and Jeff Heflin

[1, 10, 15] has focused on how to precisely and comprehensively detect coreferent
instances and good results were achieved. However, one common problem with
previous algorithms is that they were only applied to a small number of instances
because they exhaustively compare every pair of instances in a given dataset.
Therefore, such algorithms are unlikely to be of practical use at the scale of
Linked Data. Although Sleeman and Finin [14] adopted a filtering mechanism
to select potentially matching pairs, their filter checks every pair of instances
by potentially having to consider all associated properties of an instance; this is
unlikely to scale for datasets with many properties.

To scale entity coreference systems, one solution would be to efficiently de-
termine if an instance pair could be coreferent by only comparing part of the
pair’s context, i.e., candidate selection. Other researchers have used the term
blocking [12] but with two different meanings: finding non-overlapping blocks of
instances such that all instances in a block will be compared to each other or
simply locating similar instance pairs. This second usage is what we refer to as
candidate selection in this paper. For an instance, we select other instances that
it could be coreferent with, i.e., selecting a candidate set of instance pairs. Sev-
eral interesting questions then arise. First, manually choosing the information
to compare might not work for all domains due to insufficient domain exper-
tise. Also, candidate selection should cover as many true matches as possible
and reduce many true negatives. Finally, the candidate selection algorithm itself
should scale to very large datasets.

In this paper, we propose a candidate selection algorithm with the properties
discussed above. Although our algorithm is designed for RDF data, it generalizes
to any structured dataset. Given an RDF graph and the types of instances to do
entity coreference on, through unsupervised learning, we learn a set of datatype
properties as the candidate selection key that both discriminates and covers the
instances well in a domain-independent manner. We then utilize the object values
of such predicates for candidate selection. In order to support efficient look-up for
similar instances, we index the instances on the learned predicates’ object values
and adopt a character level n-gram based string similarity measure to select
candidate pairs. We evaluate our algorithm on 3 instance categories from 2 RDF
datasets and on another 3 well adopted structured datasets for evaluating entity
coreference systems. Instead of only using traditional metrics (to be described
in Section 2) for evaluating candidate selection results, we propose to apply
an actual entity coreference system to the selected candidate pairs to measure
the overall runtime and the final F1-score of the coreference results. We show
that our proposed algorithm frequently outperforms alternatives in terms of the
overall runtime and the F1-score of the coreference results; it also commonly
achieved the best or comparably good results on the non-RDF datasets.

We organize the rest of the paper as following. We discuss the related work in
Section 2. Section 3 presents the process of learning the predicates for candidate
selection and Section 4 describes how to efficiently look up and select candidate
instance pairs by comparing the object values of the learned predicates. We
evaluate our algorithm in Section 5 and conclude in Section 6.

Domain-Independent Candidate Selection 3

2 Related Work

Several candidate selection algorithms have been proposed. Best Five [18] is a set
of manually identified rules for matching census data. However, developing such
rules can be expensive, and domain expertise may not be available for various
domains. ASN [21] learns dynamically sized blocks for each record with a man-
ually determined key. The authors claim that changing to different keys didn’t
affect the results but no data was reported. Marlin [3] uses an unnormalized
Jaccard similarity on the tokens between attributes by setting a threshold to 1,
which is to find an identical token between the attributes. Although it was able
to cover all true matches on some datasets, it only reduced the pairs to consider
by 55.35%.

BSL [12] adopted supervised learning to learn a blocking scheme: a disjunc-
tion of conjunctions of (method, attribute) pairs. It learns one conjunction each
time to reduce as many pairs as possible; by running iteratively, more conjunc-
tions would be learned to increase coverage on true matches. However, super-
vised approaches require sufficient training data that may not always be avail-
able. As reported by Michelson and Knoblock [12], compared to using 50% of
the groundtruth for training, 4.68% fewer true matches were covered on some
dataset by training on only 10% of the groundtruth. In order to reduce the needs
of training data, Cao et. al. [5] proposed a similar algorithm that utilizes both
labeled and unlabeled data for learning the blocking scheme.

Adaptive Filtering (AF) [9] is unsupervised and is similar to our approach in
that it filters record pairs by computing their character level bigram similarity.
All-Pairs [2], PP-Join(+) [20] and Ed-Join [19] are all inverted index based ap-
proaches. All-Pairs is a simple index based algorithm with certain optimization
strategies. PP-Join(+) proposed a positional filtering principle that exploits the
ordering of tokens in a record. Ed-Join proposed filtering methods that explore
the locations and contents of mismatching n-grams. Silk [17] indexes ontology
instances on the values of manually specified properties to efficiently retrieve
similar instance pairs. Customized rules are then used to detect coreferent pairs.

Compared to Best Five and ASN, our approach automatically learns the
candidate selection key for various domains. Unlike Marlin, our system can both
effectively reduce candidate set size and achieve good coverage on true matches.
Although BSL achieved good results on various domains, its drawbacks are that
it requires sufficient training data and is not able to scale to large datasets
[13]. Cao et. al. [5] used unlabeled data for learning. However the supervised
nature of their method still requires a certain amount of available groundtruth;
while our algorithm is totally unsupervised. Similar to AF and Ed-Join, we also
exploit using n-grams. However, later we show that our method covers 5.06%
more groundtruth than AF on a census dataset and it generally selects one
order of magnitude (or even more) fewer pairs than Ed-Join. All-Pairs and PP-
Join(+) treat each token in a record as a feature and select features by only
considering their frequency in the entire document collection; while we select
the information for candidate selection on a predicate-basis and consider both if
a predicate discriminates well and if it is used by a sufficient number of instances.

4 Dezhao Song and Jeff Heflin

The Ontology Alignment Evaluation Initiative (OAEI) [7] includes an in-
stance matching track that provides several benchmark datasets to evaluate
entity coreference systems for detecting equivalent ontology instances; however,
some of the datasets are of small scale and thus cannot sufficiently demonstrate
the scalability of a candidate selection algorithm. Three metrics have been well
adopted for evaluating candidate selection (Eq. 1): Pairwise Completeness (PC),
Reduction Ratio (RR) and F-score (Fcs) [6, 21]. PC and RR evaluate how many
true positives are returned by the algorithm and the degree to which it reduces
the number of comparisons needed respectively; Fcs is their F1-score, giving a
comprehensive view of how well a system performs.

PC =
|true matches in candidate set|

|true matches|
, RR = 1− |candidate set|

N ∗M
(1)

where N and M are the sizes of two instance sets that are matched to one
another. As we will show in Section 5.3, when applied to large datasets (with
tens of thousands of instances), a large change in the size of the candidate set
may only be reflected by a small change in RR due to its large denominator.

3 Learning the Candidate Selection Key

As discussed, candidate selection is the process of efficiently selecting possibly
coreferent instance pairs by only comparing part of their context information.
Therefore, the information we will compare needs to be useful in disambiguating
the instances. For example, a person instance may have the following triples:

person#100 has-last-name “Henderson”
person#100 has-first-name “James”
person#100 lives-in “United States”

Intuitively, we might say that last name could disambiguate this instance from
others better than first name which is better than the place where he lives in.
The reason could be that the last name Henderson is less common than the
first name James; and a lot more people live in the United States than those
using James as first name. Therefore, for person instances, we might choose
the object values of has-last-name for candidate selection. However, we need to
be able to automatically learn such disambiguating predicate(s) in a domain-
independent manner. Furthermore, the object values of a single predicate may
not be sufficiently disambiguating to the instances. Take the above example
again, it could be more disambiguating if we use both last name and first name.

Algorithm 1 presents the process for learning the candidate selection key, a
set of datatype predicates, whose object values are then utilized for candidate
selection. Triples with datatype predicates use literal values as objects. The
goal is to iteratively discover a predicate set (the candidate selection key) whose
values are sufficiently discriminating (discriminability) such that the vast ma-
jority of instances in a given dataset use at least one of the learned predicates

Domain-Independent Candidate Selection 5

Algorithm 1 Learn Key(G, C), G is an RDF graph, consisting a set of triples,
C is a set of instance types

1. key set← a set of datatype properties in G
2. IC ← {i| < i,rdf:type, c >∈ G ∧ c ∈ C}
3. satisfied← false
4. while not satisfied and key set ̸= ∅ do
5. for key ∈ key set do
6. discriminability ← dis(key, IC , G)
7. if discriminability < β then
8. key set← key set− key
9. else
10. coverage← cov(key, IC , G)
11. FL ← 2∗discriminability∗coverage

discriminability+coverage

12. score[key]← FL

13. if FL > α then
14. satisfied← true
15. if not satisfied then
16. dis key ← argmaxkey∈key set dis(key, IC , G)
17. key set← combine dis key with all other keys
18. G← update(IC , key set,G)
19. return argmaxkey∈key set score[key]

(coverage). The algorithm starts with an RDF graph G (a set of triples, <i,p,o>)
and it extracts all the datatype predicates (key set) and the instances (IC) of
certain categories (C) (e.g., person, publication, etc.) from G. Then, for each
predicate key ∈ key set, the algorithm retrieves all the object values of the key
for instances in IC . Next, it computes three metrics: discriminability, coverage
as shown in Equations 2 and 3 respectively and a F1-score (FL) on them.

dis(key, IC , G) =
|{o|t =< i, key, o >∈ G ∧ i ∈ IC}|
|{t|t =< i, key, o >∈ G ∧ i ∈ IC}|

(2)

cov(key, IC , G) =
|{i|t =< i, key, o >∈ G ∧ i ∈ IC}|

|IC |
(3)

Note, i and o represent the subject and object of a triple respectively. In the
learning process, we remove low-discriminability predicates. Because the dis-
criminability of a predicate is computed based upon the diversity of its object
values, having low-discriminability means that many instances have the same
object values on this predicate; therefore, when utilizing such object values to
look up similar instances, we will not get a suitable reduction ratio.

If any predicate has an FL (line 11) higher than the given threshold α, the
predicate with the highest FL will be chosen to be the candidate selection key.
If none of the keys have an FL above the threshold α, the algorithm combines
the predicate that has the highest discriminability with every other predicate to
form |key set|-1 virtual predicates, add them to key set and remove the old ones.
Furthermore, via the function update(IC , key set,G), for a new key, we concate-
nate the object values of different predicates in the key for the same instance to

6 Dezhao Song and Jeff Heflin

form new triples that use the combined virtual predicate as their predicate and
the concatenated object values as their objects. These new triples and predicates
are added to G. The same procedure can then be applied iteratively.

Worst case Algorithm 1 is exponential in the number of candidate keys be-
cause of its two loops; but typically only a few passes are made through the
outer loop before the termination criteria is met in our current evaluations. For
future work, we will explore how to prune the initial list of candidate keys and
reduce the data complexity of functions dis and cov with sampling techniques.

4 Index based Candidate Selection

With the learned predicates, for each instance, we present how to efficiently look
up similar instances and compute their similarity based on the objects of such
predicates. One simple approach is to compare the object values of the learned
predicates for all pairs of instances, e.g., comparing names for people instances.
However, this simple method itself might not even scale for large scale datasets.
So, we need a technique that enables efficient look-up for similar instances.

4.1 Indexing Ontology Instances

We adopt a traditional technique in Information Retrieval (IR) research, the
inverted index, to speed up the look-up process. Many modern IR systems allow
us to build separate indexes for different fields. Given an RDF graph G and the
datatype properties PR learned by Algorithm 1, we use this feature to build
indexes for the learned predicates, each of which has posting lists of instances
for each token in that field. For a learned predicate p ∈ PR, we extract tokens
from the object values of triples using p; for each such token tk, we collect all
instances that are subjects of at least one triple with predicate p and token
tk contained in its object value. With the learned predicates, each instance is
associated with tuple(s) in the form of (instance, predicate, value) by using the
learned predicates individually. We define a function search(Idx, q, pred) that
returns the set of instances for which the pred field matches the boolean query
q using inverted index Idx.

4.2 Building Candidate Set

With the index, Algorithm 2 presents our candidate selection process where
t is a tuple and t.v, t.p and t.i return the value, predicate and instance of t
respectively. For each tuple t, we issue a Boolean query, the disjunction of its
tokenized values, to the index to search for tuples (results) with similar values
on all predicates comparable to that of t. The search process performs an exact
match on each query token. is sim(t, t′) returns true if the similarity between
two tuple values is higher than a threshold.

First of all, we look up instances on comparable fields. For example, in one
of our datasets used for evaluation, we try to match person instances of both the

Domain-Independent Candidate Selection 7

Algorithm 2 Candidate Selection(T ,Idx), T is a set of tuples using predicates
in the learned key; Idx is an inverted index

1. candidates← ∅
2. for all t ∈ T do
3. query ← the disjunction of tokens of t.v
4. results←

∪
p∈Comparable(t.p)

search(Idx, query, p)

5. for all t′ ∈ results do
6. if is sim(t, t′) then
7. candidates← candidates ∪ (t.i, t′.i)
8. return candidates

citeseer:Person and the dblp:Person classes where the key is the combination
of citeseer:Name and foaf:Name. So, for a tuple, we need to search for similar
tuples on both predicates. Assuming we have an alignment ontology where map-
pings between classes and predicates are provided, two predicates p and q are
comparable if the ontology entails p ⊑ q (or vice versa).

To further reduce the size of the candidate set, it would be necessary to adopt
a second level similarity measure between a given instance (i) and its returned
similar instances from the Boolean query. Otherwise, any instance that shares a
token with i will be returned. In this paper, we compare three different definitions
of the function is sim. The first one is to directly compare (direct comp) two
tuple values (e.g., person names) as shown in Equation 4.

String Matching(t.v, t′.v) > δ (4)

where t and t′ are two tuples; String Matching computes the similarity between
two strings. If the score is higher than the threshold δ, this pair of instances
will be added to the candidate set. Although this might give a good pairwise
completeness by setting δ to be low, it could select a lot of non-coreference pairs.
One example is person names. Person names can be expressed in different forms:
first name + last name; first initial + last name, etc.; thus, adopting a low δ
could help to give a very good coverage on true matches; however, it may also
match people with the same family name and similar given names.

Another choice is to check the percentage of their shared highly similar tokens
(token sim) as shown in Equation 5:

|sim token(t.v, t′.v)|
min(|token set(t.v)|, |token set(t′.v)|)

> θ (5)

where token set returns the tokens of a string; sim token is defined in Eq. 6:

sim token(si, sj) =

{tokeni ∈ token set(si)|∃tokenj ∈ token set(sj),

String Matching(tokeni, tokenj) > δ)} (6)

where si/j is a string and tokeni/j is a token from it. Without loss of generality,
we assume that the number of tokens of si is no greater than that of sj . The

8 Dezhao Song and Jeff Heflin

intuition is that two coreferent instances could share many similar tokens, though
the entire strings may not be sufficiently similar on their entirety. One potential
problem is that it may take longer to calculate because the selected literal values
could be long for some instances types (e.g., publication titles).

Instead of computing token level similarity, we can check how many character
level n-grams are shared between two tuple values as computed in Equation 7:

|gram set(n, t.v)
∩
gram set(n, t′.v)|

min(|gram set(n, t.v)|, |gram set(n, t′.v)|)
> θ (7)

where gram set(n, t.v) extracts the character level n-grams from a string. We
hypothesize that the n-gram based similarity measure is the best choice. The
intuition is that we can achieve a good coverage on true matches to the Boolean
query by examining the n-grams (which are finer grained than both tokens and
entire strings) while at the same time effectively reducing the candidate set
size by setting an appropriate threshold. We use min in the denominator for
Equations 5 and 7 to reduce the chance of missing true matches due to missing
tokens, spelling variations or misspellings (e.g., some tokens of people names
can be missing or spelled differently). When building/querying the index and
comparing the literal values, we filter stopwords, use lowercase for all characters
and ignore the ordering of the tokens and n-grams.

5 Evaluation

Our system is implemented in Java and we conducted experiments on a Sun
Workstation with an 8-core Intel Xeon 2.93GHz processor and 6GB memory.

5.1 Datasets

We evaluate our n-gram based approach on 2 RDF datasets: RKB3 [8] and
SWAT4. For RKB, we use 8 subsets of it: ACM, DBLP, CiteSeer, EPrints, IEEE,
LAAS-CNRS, Newcastle and ECS. The SWAT dataset consists of RDF data
parsed from downloaded XML files of CiteSeer and DBLP. Both datasets de-
scribe publications and share some information; but they use different ontologies,
and thus different predicates are involved. Their coverage of publications is also
different. We compare on 3 instance categories: RKB Person, RKB Publication
and SWAT Person. The groundtruth was provided as owl:sameAs statements
that can be crawled from RKB and downloaded from SWAT as an RDF dump
respectively. Since the provided groundtruth was automatically derived and was
incomplete and erroneous, we randomly chose 100K instances for each category,
applied our algorithm with different thresholds to get candidate selection results,
and manually checked the false positives/negatives to verify and augment the

3 http://www.rkbexplorer.com/data/
4 http://swat.cse.lehigh.edu/resources/data/

Domain-Independent Candidate Selection 9

groundtruth to improve their quality. We are in the process of completing SWAT
Publication groundtruth and will conduct relevant experiments for future work.

We also evaluate on 3 other structured datasets frequently used for evalu-
ating entity coreference systems. Each dataset has a pre-defined schema with
several attributes: name, date, etc. We convert them into RDF by treating each
attribute as a datatype property. The first one is the Restaurant dataset [16],
matching segmented online posts (records) from Fodors (331 records) to Zagat
(533 records) with 112 duplicates. It has 4 attributes: name, address, type and
city. Another dataset is the Hotel dataset [13] that has 5 attributes: name, rating,
area, price and date, matching 1,125 online hotel bidding posts from the Bidding
For Travel website5 to another 132 hotel information records from the Bidding
For Travel hotel guides with 1,028 coreferent pairs. The last one is dataset4 [9],
a synthetic census dataset, with 10K records and 5K duplicates within them-
selves. We remove the Social Security Number from it as was done in BSL [12]
to perform a fair comparison and match the 10K records to themselves.

5.2 Evaluation Methods and Metrics

In this paper, we adopt a two-phase approach for evaluating our proposed can-
didate selection algorithm. In phase one, we use the 3 well adopted metrics PC,
RR and Fcs from previous works [21, 6] as discussed in Section 2. For phase two,
we adopt an actual entity coreference algorithm for detecting owl:sameAs links
between ontology instances [15] that measures the similarity of two instances
by utilizing the triples in an RDF graph as context information. Not only does
this context include the direct triples but also triples two steps away from an
instance. We apply our candidate selection technique on the RDF datasets dis-
cussed in the previous section to select candidate pairs and run this algorithm
on the candidate sets to get the F-score of the coreference phase and the runtime
of the entire process, including indexing, candidate selection and coreference.

As for parameter settings, for the learning process (Algorithm 1), there are
two parameters α, determining if a key could be used for candidate selection and
β, determining if a key should be removed. To show the domain independence of
our algorithm, we set them to be 0.9 and 0.3 respectively for all experiments. We
tested our algorithm on different α and β values and it is relatively insensitive
to β, but requires high values for α for good performance. When β is low, only
a few predicates are removed for not being discriminating enough; when α is
high, then we only select keys that discriminate well and are used by most of
the instances. For Algorithm 2, different similarity measures may use different
parameters. For Equations 4, 5, 6 and 7, we set θ to be 0.8; for direct comp and
token sim, we varied δ from 0.1 to 0.9 and report the best results. We extract
bigrams and compute Jaccard similarity for string matching in all experiments.

5.3 Evaluation Results on RDF Datasets

From Algorithm 1, we learned the key for each RDF dataset as following:

5 www.BiddingForTravel.com

10 Dezhao Song and Jeff Heflin

RKB Person: full-name, job, email, web-addr and phone

RKB Publication: title

SWAT Person: citeseer:name and foaf:name

For RKB Person, full-name has good coverage but is not sufficiently discrimi-
nating; while the other selected predicates have good discriminability but poor
coverage. So, they were combined to be the key. For SWAT Person, neither of
the two selected predicates has sufficient coverage; thus both were selected.

We compare our method bigram (Eq. 7) to direct comp (Eq. 4) and token sim
(Eq. 5) that use different string similarity measures; we also compare to All-
Pairs [2], PP-Join(+) [20] and Ed-Join [19]; lastly, we compare to Naive [15]
that detects owl:sameAs links without candidate selection. Since Ed-Join is not
compatible with our Sun machine, we run it on a Linux machine (dual-core 2GHz
processor and 4GB memory), and estimate its runtime on the Sun machine by
examining runtime difference of bigram on the two machines. For coreference
results, we report a system’s best F-Score from threshold 0.1-0.9. We split each
100K dataset into 10 non-overlapping and equal-sized subsets, index each subset,
run all algorithms on the same input and report the average. We conduct a two-
tailed t-test to test the statistical significance on the results of the 10 subsets
from two systems. On average, there are 6,096, 4,743 and 684 coreferent pairs for
each subset of RKB Person, RKB Publication and SWAT Person respectively.

The results are shown in Table 1. Comparing within our own alternatives, for

Table 1. Candidate Selection Results on RDF Datasets
|Pairs|: candidate set size; RR: Reduction Ratio; PC: Pairwise Completeness; Fcs: the F1-score for
RR and PC; F-Score: the F1-Score of Precision and Recall for the coreference results; Total: the
runtime for the entire entity coreference process

Dataset System
Candidate Selection Coref

Total (s)|Pairs| RR(%) PC(%) Fcs(%) Time(s) F-score (%)

RKB Per

bigram (Eq. 7) 14,024 99.97 99.33 99.65 13.32 93.48 25.45
direct comp (Eq. 4) 104,755 99.79 99.82 99.80 14.00 92.55 51.04
token sim (Eq. 5) 13,156 99.97 98.52 99.24 15.72 93.37 27.13
All-Pairs [2] 680,403 98.64 99.76 99.20 1.34 92.04 195.37
PP-Join [20] 680,403 98.64 99.76 99.20 1.36 92.04 195.38
PP-Join+ [20] 680,403 98.64 99.76 99.20 1.39 92.04 195.42
Ed-Join [19] 150,074 99.70 99.72 99.71 1.73 92.38 72.79
Naive [15] N/A N/A N/A N/A N/A 91.64 4,765.46

RKB Pub

bigram (Eq. 7) 6,831 99.99 99.97 99.98 18.26 99.74 31.73
direct comp (Eq. 4) 7,880 99.98 99.97 99.97 22.23 99.68 36.74
token sim (Eq. 5) 5,028 99.99 99.80 99.89 79.91 99.70 88.96
All-Pairs [2] 1,527,656 96.94 97.95 97.44 3.93 98.59 877.80
PP-Join [20] 1,527,656 96.94 97.95 97.44 3.79 98.59 877.66
PP-Join+ [20] 1,527,656 96.94 97.95 97.44 4.00 98.59 877.87
Ed-Join [19] 2,579,333 94.84 98.57 96.67 409.08 99.04 1,473.47
Naive [15] N/A N/A N/A N/A N/A 99.55 34,566.73

SWAT Per

bigram (Eq. 7) 7,129 99.99 98.72 99.35 13.46 95.07 21.21
direct comp (Eq. 4) 90,032 99.82 99.86 99.84 14.30 95.06 51.33
token sim (Eq. 5) 6,266 99.99 96.81 98.37 16.58 95.07 23.70
All-Pairs [2] 508,505 98.98 99.91 99.44 1.00 95.06 108.89
PP-Join [20] 508,505 98.98 99.91 99.44 1.01 95.06 108.90
PP-Join+ [20] 508,505 98.98 99.91 99.44 1.04 95.06 108.92
Ed-Join [19] 228,830 99.54 99.79 99.66 1.48 95.01 51.66
Naive [15] N/A N/A N/A N/A N/A 95.02 12,139.60

Domain-Independent Candidate Selection 11

all datasets, both bigram and token sim have the best RR while direct comp
commonly has better PC. bigram selected almost as few pairs as token sim,
and always has better PC.

On RKB Person, bigram’s Fcs was not as good as that of direct comp and
Ed-Join; statistically, the difference between bigram and direct comp is signif-
icant with a P value of 0.0106; the difference between bigram and token sim
and All-Pairs/PP -Join(+) is statistically significant with P values of 0.0004
and 0.0001 respectively. Also, by applying our entity coreference system to the
selected pairs, bigram has the best F-score that is statistically significant com-
pared to that of All-Pairs/PP -Join(+) with a P value of 0.0093.

We observed similar results on SWAT Person. For Fcs, the difference between
bigram to direct comp, token sim and Ed-Join is statistically significant with
P values of 0.0011, 0.0001 and 0.0263 respectively but not to All-Pairs/PP -
Join(+). Similarly, all other systems took longer to finish the entire process
than bigram. As for the F -score of the coreference results, we didn’t observe
any significant difference among the different systems.

On RKB Publication, bigram dominates the others in all aspects except
for |pairs|. For Fcs, except for direct comp, the difference between bigram and
others is statistically significant with P values of 0.0001. As for the corefer-
ence results, although no statistical significance was observed between bigram
and direct comp/token sim, statistically, bigram achieved a better F-score than
All-Pairs/PP -Join(+)/Ed-Join with P values of 0.0001. Similarly, adopting
bigram gave the best runtime.

Note that token sim took longer to finish than bigram even with fewer se-
lected pairs because it took longer to select candidate pairs. It would poten-
tially have to compare every pair of tokens from two strings, which was time-
consuming. This was even more apparent on RKB Publication where titles gen-
erally have more tokens than people names do.

Finally, we ran our coreference algorithm (Naive) on the subsets of each RDF
dataset. Although our proposed candidate selection algorithms were typically
slower than their competitors, they filtered out many more pairs, which led to
faster times for the complete system. Table 1 shows that using bigram was the
fastest of all options; it was 169.08, 529.65 and 938.30 times faster than Naive on
RKB Person, SWAT Person and RKB Publication; and by applying candidate
selection, the F-score of the coreference results doesn’t drop and even noticeably
better performance was achieved. For RKB Person and RKB Publication, the
improvement on the F-score is statistically significant with P values of 0.0020 and
0.0005. Such improvement comes from better precision: by only comparing the
disambiguating information selected by Algorithm 1, candidate selection filtered
out some false positives that could have been returned as coreferent by Naive.
E.g., Naive might produce a false positive for RKB Person for two frequent
co-authors, because the titles and venues of their papers are often the same;
however, by only considering their most disambiguating information, they could
be filtered out. In this case, candidate selection doesn’t only help to scale the
entire entity coreference process but also improves its overall F-score.

12 Dezhao Song and Jeff Heflin

To further demonstrate the capability of our technique (bigram) in scaling
entity coreference systems, we run Naive with and without it on up to 20K
instances from each of the RDF datasets respectively and measure the speedup
factor, computed as the runtime without bigram divided by the runtime with it,
as shown in Figure 1. The runtime includes both the time for candidate selection

Fig. 1. Runtime Speedup by Applying Candidate Selection

and entity coreference. The entire coreference process was speeded up by 2 to
3 orders of magnitude. RKB Person shows less speedup than the others: first,
candidate selection found more pairs for RKB Person; second, RKB Person has
fewer paths than the other datasets, so there is less to prune.

5.4 Evaluation Results Using Standard Coreference Datasets

To show the generality of our proposed algorithm, we also evaluate it on three
non-RDF but structured datasets frequently used for evaluating entity corefer-
ence algorithms: Restaurant, Hotel and Census as described earlier. We learned
the candidate selection key for each dataset as following:

Restaurant: name
Hotel: name
Census: date-of-birth, surname and address 1

Here, we compare to five more systems: BSL [12], ASN [21], Marlin [3], AF [9]
and Best Five [18] by referencing their published results. We were unable to
obtain executables for these systems.

Here, we apply candidate selection on each of the three full datasets. First,
the scale of the datasets and their groundtruth is small. Also, each of the Restau-
rant and the Hotel datasets is actually composed of two subsets and the entity
coreference task is to map records from one to the other; while for other datasets,
we detect coreferent instances within all the instances of a dataset itself. So, it is
difficult to split such datasets. We didn’t apply any actual coreference systems
to the candidate set here due to the small scale and the fact that we couldn’t
run some of the systems to collect the needed candidate sets. Instead, in order to
accurately reflect the impact of RR, we suggest a new metric RRlog computed

Domain-Independent Candidate Selection 13

as 1− log |candidate set|
log (N∗M) . In Table 1, on RKB Person, an order of magnitude differ-

ence in detected pairs between bigram and Ed-Join is only represented by less
than 1 point in RR; however, a more significant difference in the total runtime
was observed. With this new metric, bigram and Ed-Join have an RRlog of
46.13% and 32.77% respectively where the difference is now better represented
by 13.36%. We also compute a corresponding Fcs log using RRlog. For systems
where we reused reported results, we calculated |pairs| from their reported RR;
because BSL is supervised (thus the blocking was not done on the full dataset),
we assumed the same RR as if it was done on the full dataset.

Table 2 shows the results. Since not all systems reported results on all
datasets, we only report the available results here. Comparing within our own al-

Table 2. Candidate Selection Results on Standard Coreference Datasets

Dataset System
Candidate Selection

|Pairs| RR(%) PC(%) Fcs(%) RR log(%) Fcs log(%)

Restaurant

bigram (Eq. 7) 182 99.90 98.21 99.05 56.92 72.07
direct comp (Eq. 4) 2,405 98.64 100.00 99.31 35.56 52.46
token sim (Eq. 5) 184 99.90 95.54 97.67 56.83 71.27
All-Pairs [2] 1,967 98.89 99.11 99.00 37.22 54.12
PP-Join [20] 1,967 98.89 99.11 99.00 37.22 54.12
PP-Join+ [20] 1,967 98.89 99.11 99.00 37.22 54.12
Ed-Join [19] 6,715 96.19 96.43 96.31 27.06 42.26
BSL [12] 1,306 99.26 98.16 98.71 40.61 57.45
ASN [21] N/A N/A <96 <98 N/A N/A
Marlin [3] 78,773 55.35 100.00 71.26 6.67 12.51

Hotel

bigram (Eq. 7) 4,142 97.21 94.26 95.71 30.06 45.58
direct comp (Eq. 4) 10,036 93.24 96.69 94.94 22.63 36.67
token sim (Eq. 5) 4,149 97.21 90.56 93.77 30.04 45.12
All-Pairs [2] 6,953 95.32 95.91 95.62 25.71 40.55
PP-Join [20] 6,953 95.32 95.91 95.62 25.71 40.55
PP-Join+ [20] 6,953 95.32 95.91 95.62 25.71 40.55
Ed-Join [19] 17,623 88.13 98.93 93.22 17.90 30.31
BSL [12] 27,383 81.56 99.79 89.76 14.20 24.86

Census

bigram (Eq. 7) 166,844 99.67 97.76 98.70 32.17 48.41
direct comp (Eq. 4) 738,945 98.52 98.08 98.30 23.77 38.27
token sim (Eq. 5) 163,207 99.67 96.36 97.99 32.30 48.38
All-Pairs [2] 5,231 99.99 100.00 99.99 51.70 68.16
PP-Join [20] 5,231 99.99 100.00 99.99 51.70 68.16
PP-Join+ [20] 5,231 99.99 100.00 99.99 51.70 68.16
Ed-Join [19] 11,010 99.98 99.50 99.74 47.50 64.30
AF [9] 49,995 99.9 92.7 96.17 38.97 54.87
BSL [12] 939,906 98.12 99.85 98.98 22.42 36.62
Best Five [18] 239,976 99.52 99.16 99.34 30.12 46.21

ternatives, for all datasets, direct comp has the best PC; bigram and token sim
have identical RR, but bigram always has better PC. Furthermore, bigram al-
ways has the best Fcs log and has better RRlog on Restaurant and Hotel but
only slightly worse on Census than token sim.

Compared to other systems, on both Restaurant and Hotel, bigram has the
best RR, Fcs, RRlog and Fcs log, though its Fcs log was only slightly better than
that of All-Pairs/PP -Join(+). Also, with better RR, it only has slightly worse
PC than All-Pairs/PP -Join(+)/Marlin on Restaurant. Particularly, bigram
has significantly better RR (15.65% and 9.08% higher) than BSL and Ed-Join

14 Dezhao Song and Jeff Heflin

on Hotel; however it was not able to achieve a PC as good as these two systems
did. If we consider larger datasets, such a significant difference in RR may save a
great amount of runtime. Note that with the two new metrics, the impact of the
number of selected pairs becomes more apparent, which we believe more accu-
rately reflects its impact. On Census, All-Pairs/PP -Join(+) achieved the best
Fcs and Fcs log; while bigram still achieved better RR than BSL and BestF ive
with slightly worse PC. bigram only has a PC of 97.76% because our method
only performs exact look-ups into the index; however, in this synthetic dataset,
coreferent records were generated by modifying the original records, including
adding misspellings, removing white spaces, etc. Therefore, some of the corefer-
ent records couldn’t even be looked up. In future work, we will explore techniques
for efficient fuzzy retrieval to overcome this problem.

5.5 Scalability of Candidate Selection

Figure 2 presents the runtime by applying bigram on up to 1 million instances
of RKB Person, RKB Publication, SWAT Person and Census, showing that it
scales well on large scale datasets. Due to limited availability of high quality
groundtruth, we only measured the runtime. For SWAT Person, there are only
500K instances in the dataset. bigram scales better on RKB Person since few
instances actually use the selected predicates other than full-name. Note that

Fig. 2. Scalability of the Proposed Candidate Selection Algorithm

All-Pairs/PP-Join(+) couldn’t scale to 200K instances on any of these datasets
due to insufficient memory, though they fared significantly better Fcs on Census.

5.6 Discussion

One limitation of our algorithm is that it currently targets datasets that are
primarily composed of strings, and we adopt the same string similarity measure
for numeric values, e.g., telephone number. Given that a lot of telephone numbers
could be very similar to each other, counting the shared bigrams between two
such numbers might greatly increase candidate set size, particularly when the
data is primarily describing instances in the same geographic area.

Domain-Independent Candidate Selection 15

Another problem is that we currently perform exact match on each query
token when looking up similar instances with the index. This should work well
on datasets with decent data quality; however, when there are a lot of errors (e.g.,
misspellings, missing characters or tokens, etc.), our algorithm may not even be
able to retrieve all coreferent instances for a given instance. One possible solution
to this problem is to adopt fuzzy matching. We could compute the Soundex code
for each token and tokens with the same code are treated similar. For a given
token, we query the index with all its similar tokens.

Finally, although bigram was only tested on 1 million instances (which is
relatively small compared to the entire Linked data), it is larger than the number
of instances in many Linked Data sets. Also, the number of instances is much
smaller than the number of triples (e.g., DBPedia has 672 million triples but only
3.5 million instances), and we perform an initial filtering that instances must be
of comparable types. Assuming around 100 million instances exist in Linked Data,
they could be conservatively grouped into at least 10 sets of comparable types
with no more than 10 million instances each. Extrapolating from Figure 2, our
candidate selection could be computed in about 5.5 hours for each.

6 Conclusion

In this paper, we present an index based domain-independent candidate selection
algorithm for scalably detecting owl:sameAs links. We learn a set of predicates
for candidate selection through unsupervised learning. By indexing the instances
on the learned predicates’ object values, our algorithm is able to efficiently look
up similar instances. In the author, publication, restaurant, hotel and census
domains, using a bigram-based similarity measure, our algorithm almost always
had a better RR than all alternatives, and when a full entity coreference algo-
rithm was applied to the results, it led to the best F-score. As a result of its
high RR, it frequently runs the fastest. Interestingly, our technique enables the
overall system to produce coreference results with better F1-score by filtering
out possible false positives when comparing only on the most disambiguating in-
formation. In the future, we will apply our technique to other entity coreference
systems (e.g., [11]) to verify its capability of scaling those systems and improving
their overall performances. Also, instead of doing exact lookup into the index,
we are interested in exploring methods for efficient fuzzy retrieval.

References

1. Aswani, N., Bontcheva, K., Cunningham, H.: Mining information for instance uni-
fication. In: The 5th International Semantic Web Conference. pp. 329–342 (2006)

2. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: Pro-
ceedings of the 16th International Conference on World Wide Web. pp. 131–140
(2007)

3. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 39–48 (2003)

16 Dezhao Song and Jeff Heflin

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. 5(3), 1–22 (2009)

5. Cao, Y., Chen, Z., Zhu, J., Yue, P., Lin, C.Y., Yu, Y.: Leveraging unlabeled data
to scale blocking for record linkage. In: Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI) (2011)

6. Elfeky, M.G., Elmagarmid, A.K., Verykios, V.S.: Tailor: A record linkage tool box.
In: Proceedings of the 18th International Conference on Data Engineering (ICDE).
pp. 17–28 (2002)

7. Euzenat, J., Ferrara, A., Meilicke, C., Nikolov, A., Pane, J., Scharffe, F., Shvaiko,
P., Stuckenschmidt, H., Svb-Zamazal, O., Svtek, V., Trojahn dos Santos, C.: Re-
sults of the ontology alignment evaluation initiative 2010. In: Proceedings of the
4th International Workshop on Ontology Matching (2010)

8. Glaser, H., Millard, I., Jaffri, A.: Rkbexplorer.com: A knowledge driven infrastruc-
ture for linked data providers. In: The 5th European Semantic Web Conference
(ESWC). pp. 797–801 (2008)

9. Gu, L., Baxter, R.A.: Adaptive filtering for efficient record linkage. In: Proceedings
of the Fourth SIAM International Conference on Data Mining (2004)

10. Hassell, J., Aleman-Meza, B., Arpinar, I.B.: Ontology-driven automatic entity dis-
ambiguation in unstructured text. In: 5th International Semantic Web Conference
(ISWC). pp. 44–57 (2006)

11. Hu, W., Chen, J., Qu, Y.: A self-training approach for resolving object coreference
on the semantic web. In: Proceedings of the 20th International Conference on
World Wide Web (WWW). pp. 87–96 (2011)

12. Michelson, M., Knoblock, C.A.: Learning blocking schemes for record linkage. In:
The Twenty-First National Conference on Artificial Intelligence (AAAI) (2006)

13. Michelson, M., Knoblock, C.A.: Creating relational data from unstructured and
ungrammatical data sources. J. Artif. Intell. Res. 31, 543–590 (2008)

14. Sleeman, J., Finin, T.: Computing FOAF co-reference relations with rules and
machine learning. In: Third International Workshop on Social Data on the Web
(2010)

15. Song, D., Heflin, J.: Domain-independent entity coreference in RDF graphs. In:
Proceedings of the 19th ACM Conference on Information and Knowledge Manage-
ment (CIKM). pp. 1821–1824 (2010)

16. Tejada, S., Knoblock, C.A., Minton, S.: Learning domain-independent string trans-
formation weights for high accuracy object identification. In: Proceedings of the
8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. pp. 350–359 (2002)

17. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links
on the web of data. In: 8th International Semantic Web Conference (ISWC). pp.
650–665 (2009)

18. Winkler, W.E.: Approximate string comparator search strategies for very large
administrative lists. Tech. rep., Statistical Research Division, U.S. Census Bureau
(2005)

19. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins
with edit distance constraints. Proc. VLDB Endow. 1(1), 933–944 (2008)

20. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate
detection. In: Proceedings of the 17th International Conference on World Wide
Web (WWW). pp. 131–140 (2008)

21. Yan, S., Lee, D., Kan, M.Y., Giles, C.L.: Adaptive sorted neighborhood methods
for efficient record linkage. In: ACM/IEEE Joint Conference on Digital Libraries
(JCDL). pp. 185–194 (2007)

