
Towards a Marketplace of Open Source Software Data

Fernando Silva Parreiras
Faculty of Business Sciences

FUMEC University
Belo Horizonte, Brazil

fernando.parreiras@fumec.br

Gerd Gröner
Ruhr Institute for Software Technology

University of Duisburg-Essen
Essen, Germany

gerd.groener@paluno.uni-due.de

Daniel Schwabe, Fernando de Freitas Silva
Departmnet of Informatics

PUC Rio
Rio de Janeiro, Brazil

{fernd,dschwabe}@inf.puc-rio.br

Abstract—Development, distribution and use of open source
software comprise a market of data (source code, bug reports,
documentation, number of downloads, etc.) from projects, de-
velopers and users. This large amount of data hampers people
to make sense of implicit links between software projects,
e.g., dependencies, patterns, licenses. This context raises the
question of what techniques and mechanisms can be used to
help users and developers to link related pieces of information
across software projects. In this paper, we propose a framework
for a marketplace enhanced using linked open data (LOD)
technology for linking software artifacts within projects as
well as across software projects. The marketplace provides the
infrastructure for collecting and aggregating software engineer-
ing data as well as developing services for mining, statistics,
analytics and visualization of software data. Based on cross-
linking software artifacts and projects, the marketplace enables
developers and users to understand the individual value of
components and their relationship to bigger software systems.
Improved understanding creates new business opportunities for
software companies: users will be able to analyze and compare
projects, developers can increase the visibility of their products,
and hosts may offer plugins and services over the data to paying
customers.

Keywords-semantic web; open source software; linked data

I. INTRODUCTION

In open source software projects, analysts, developers,
architects, project managers and testers produce a large
amount of data about software artifacts, from source code to
license information. Usually, it is hard to track information
crossing multiple artifacts [1], [2]. This lack of transparency
results in technical problems, legal problems and market
problems.

Technical problems comprise poor validation and tests of
source code dependencies and low reuse rates of pieces of
software. Legal problems include license decisions that are
closely related to the business model. Market problems cause
consumers to underestimate the value of a specific contribu-
tion or the expertise of small and medium enterprises.

Considering this context, in this paper, we address the
following research question: what techniques and mecha-
nisms can be used to help users and developers to understand
artifacts by using links between information across open
source software projects on the web?

The value of linking software engineering data comes
from a veritable ecosystem of software data producers (e.g.,
analysts, developers, deployment engineers) data consumers
(e.g., trainers, users and other stakeholders), and data hosts
connecting producers and consumers and providing services
to both.

For this ecosystem to work, participants must track
dependencies between software artifacts crossing project
boundaries. Although there exist multiple functional as well
as non-functional dependencies between artifacts (or infor-
mation sources) stored in various tools or databases, the
data contained in the artifacts are not interlinked. Hence,
producers and consumers currently do not have transparent
access to inter-dependencies.

Contemporary approaches to increasing transparency
(e.g., Krugle) provide unified search capabilities over mul-
tiple sources of software engineering data. However, these
approaches are confined within company’s boundaries where
a limited and ad-hoc set of repositories is covered. Text-
based search is still one of the main aspects (e.g., Snipplr
and Koders) for assisting developers with finding meaningful
pieces of code. However, none of the current approaches
takes advantage of the semantic information in the hidden
links between software artifacts; neither do they facilitate
external sources to improve search results.

In this paper, we present a framework for a marketplace
for open source software data. We build upon linked open
data (LOD) techniques as a flexible representation means for
software data and dependencies between software artifacts.
These LOD principles offer easy access to software data on
the marketplace for several marketplace actors. We outline
our contribution as follows. Section II describes the idea of a
marketplace for open source software and Section III derives
the opportunities of such a marketplace. In Section IV,
we present our solution for supporting the marketplace,
describing roles in Section IV-A and the architecture in
Section IV-B. In Section V, we present a proof of concept
to validate the approach. Section VII concludes the paper.

II. SCENARIO

A marketplace is a (real or virtual) location where pro-
ducers and consumers exchange their products and services.

2015 48th Hawaii International Conference on System Sciences

1530-1605/15 $31.00 © 2015 IEEE

DOI 10.1109/HICSS.2015.439

3651

Accordingly, a marketplace for software data is the place
where software producers and consumers carry on their
trade. In the following, we illustrate the marketplace and
its main actors.

Software producers (P) act as supplier on the marketplace.
They want to attract as many as possible customers that
download and use the offered product, either as standalone
or as companion product. In general, a prerequisite for
distributing a product is to get attraction and interest of
potential customers. Thus, software producers expect from
a marketplace to get a high visibility of their software data.

The consumers (C) are looking for open source software
data. For a certain need, they are searching for the best-suited
software. The marketplace should offer means for searching
and browsing for software according to certain individual
preferences. Visualization services should provide graphical
interfaces to help developers in making sense of the software
data and allow a comparison of alternative software data.
Consumers should also be able to analyze the context of
software like license issues and activity logs.

The marketplace for open source software requires yet
some hosting service (H) that provides the infrastructure
for the software data. This includes additional features like
facilities for software data analysis in order to compare
software data, to recognize and explore patterns and de-
pendencies between software. To remedy this, the software
data themselves and the metadata of software have to be
incorporated into the hosting service.

Hosting a marketplace requires complex software that
covers a variety of features. A marketplace for open source
software data should follow the good principles of open
source software such that the marketplace is not set up by
a single monolithic system but rather in terms of various
loosely coupled subsystems and plugins. Thus, a hosting
service consists of multiple plugin developers that offer
plugins for dedicated purposes of the marketplace, e.g., for
the analysis of software components.

III. POSSIBLE OUTCOMES

The scenario presented above, open opportunities for a
marketplace of open source software engineering data as
follows.

A. Improved Competitive Position by Providing Better Ser-
vices to Businesses

Open source software has seen a massive growth during
the last decade. Thus, open source software development is
strategic for lowering the barriers to entry for new service
producers and enabling them to develop and innovate faster.

A marketplace for open source software data facilitates
the entry for open source software producers and providers
by offering visualization services. It gives visibility, trust
and opportunities to open source software producers for

placing their products with all their dependencies into the
open source software market.

The marketplace enables open source software consumers
to understand, reuse and extend pieces of open source
software in a holistic way. Linking data across software
artifacts allows software consumers to make sense of the
impact of adopting a component from multiples points of
view, e.g., technical and legal.

B. Reduced Development Costs and Shorter Time-to-Market

Empowering open software producers and consumers with
high value added information improves visibility, increase
reuse, support decision-making activities and management
of software licenses, reducing development costs and short-
ening time-to-market.

An open source software marketplace enables software
developers to produce software visible to the market. Even
small projects have a chance to be found and selected for
being used as a third party library, which is the basis of
many business models of small software developing compa-
nies. Furthermore, developers are able to find products and
analyses to help to improve their own software engineering
processes.

IV. A MARKETPLACE FOR OPEN SOURCE SOFTWARE

DATA

We follow the notion of large-scale distributed data rep-
resentation defined in the linked open data (LOD) princi-
ples [3], where a LOD cloud is a distributed store of multiple
data sources with inter and intra links between data items.
Thus, a marketplace for open source data consists of a LOD
cloud, which is fed with linked software engineering data
that are generated by LOD-extractors. In the following, we
describe the actors (roles) in such a marketplace, followed
by a detailed presentation of the marketplace architecture
and the underpinning technology.

A. Marketplace Services and Roles

To deal with data quality, the marketplace has to provide
services for each role. Based on the software data cloud,
services have to align artifacts, matching bug reports with
commit messages, or linking forum entries and information
about methods of a class with commonly used datasets (e.g.,
DBpedia).

Figure 1 illustrates the marketplace for open source soft-
ware data and the involved roles, which are explained in the
remainder of this subsection.

1) Software Data Producers: A marketplace allows open
source software producers to expose the data they produce
to the cloud, hence maximizing the visibility of their prod-
ucts and the sharing of data across open source software
communities. The marketplace brings the following new
functionalities to open source software producers: ability
to share data using standard formats and advanced tools

3652

�������	

����
���

���

�������������������������������

������

�������������

���

����
�

�������	

�������	�

�������	�

�������	�

����

�	�
���	�

����

�	����

�
���

�	����

�
�

���

��	����

�	����

Figure 1. A marketplace for open source software data, including players (producers, consumers, and hosts), projects (A, B, C) and their artifacts (bug
reports, versions, source code) and the open source software linked data cloud.

for extracting, storing, querying and visualizing the data
about open source software; ability to follow projects clones
and to interlink each project information system with the
ones of other open source software producers. Typically,
each large open source software integrator maintains its
own database about the packages it comprises, and the
associated bugs, patches, configurations, discussions, etc. A
marketplace offers means for publishing this data into the
cloud using standard formats, and for facilitating the creation
of new links across distributed information systems. For
example, standard mechanisms that allow for automating
the tracking of bug reports across different bug trackers
typically for notifying the upstream projects of changes in
the bug statuses from within a downstream community.

2) Software Data Consumers: The usage of open source
software components for creating complex software solu-
tions within the industry is increasing. The marketplace
eases the processes for creating, reusing, maintaining and
evolving these solutions, by bringing the following ca-
pabilities to open source software consumers: ability to
analyze the impact of new software releases, new security
vulnerabilities, new bug reports, new hardware compati-
bility information, new features or new projects; ability
to assess the activity of open source software projects by
taking into account the clones, the downstream projects,
the user communities, etc.; ability for open source software
consumers to interlink the data produced internally around
open source software with the public open source software
linked open data thanks to the availability of data extractors
and connectors; ability to collaboratively correct, enhance,

rate, compare, integrate, export, the data provided by the
marketplace.

Another challenge facing producers and consumers of
open source software is to determine which software pack-
age providing specific functionality is actively maintained.
In order to gather this information, currently, users typically
need to read mailing lists, read commit logs, browse bug
trackers and use word of mouth to determine whether a
project is actively maintained. Providing metadata about
project activity, use, similar projects and projects using
specific code help consumers to choose which software is
suitable in a given situation.

3) Software Data Hosting Services: Hosts of open source
software data are able to provide advanced services for
analyzing the dependencies of the projects they host, includ-
ing external dependencies that go across hosting services.
Currently, sites hosting open source software projects focus
on providing the source code itself, along with collaboration
services for producers of open source software.

In the future, the proposed approach for representing
and linking open source software data will provide solu-
tions for dealing with decentralized software repositories.
In particular, version control software has seen a shift from
centralized to decentralized systems over the years. As there
is no longer a canonical version of the source code, it
is hard to know which features have been added to other
clones of a source code repository, or where a specific
bug has been resolved. Information alignment services will
simplify the process of identifying the correct links even for
decentralized repositories. As a result, hosts will be able to

3653

Figure 2. A three-layered architecture for the open source software data
marketplace.

attract customers by offering suitable hosting services.

B. Conceptual Architecture

The conceptual architecture describes the components of
the marketplace and their functionality. The marketplace
relies upon the data produced from the LOD extractors. The
ontologies serve as metamodel supporting the generation
of LOD from a software artifact, e.g., an ontology that
describes how to ask for method and class names. Here, we
use common vocabularies for programming languages like
Java and C#, for issue trackers and software repositories, as
described below.

1) Representation Formalism and Data Extraction: The
backbone of the marketplace is a flexible data representation
formalism that allows managing software data from loosely
coupled, interconnected software artifacts. The language and
reasoning paradigm for flexible data representation is the
Resource Description Framework (RDF) and the more ex-
pressive family of description logic languages covered by the
W3C recommendation Web Ontology Language (OWL) [4].

Based on these representation formalisms, the next step
is to extract software data from all kinds of software
artifacts that adhere to a certain language or metamodel.
We use a generic approach to extract the schema and the
content of controlled natural languages that use Ecore-based
models [5]. Ecore and OWL have many similar constructs,
e.g., classes, attributes and references.

Based on these similarities, we use a generic transfor-
mation script to transform any Ecore-based languages into
OWL TBox/ABox – The OWLizer [6]. Fig. 3 depicts the
conceptual schema of transforming Ecore-based languages
into OWL.

The four lanes, Actor, Ecore, Model Transformation and
OWL show three modeling levels according to the OMGs

M1 Model

M2 Metamodel Metamodel to TBox

Ontology

M3 Ecore
Metametamodel

conformsTo

conformsTo

OWL Metamodel

conformsTo

Transformation

conformsTo

Model to ABox

Language User

Language
Designer

O
W

Lizing

Annotations

Figure 3. OWLizer: A generic extractor for transforming artifacts written
in controlled natural language into OWL.

Four layered metamodel architecture [7]: the metameta-
model level (M3), the metamodel level (M2) and the model
level (M1). Vertical arrows denote instantiation whereas
the horizontal arrows are transformations from the Ecore
modeling space to the OWL modeling space. The ontology
consists of the TBox that represents the metamodel and the
ABox that expresses the model.

Thus, the language designer can create new attributes and
references and define axioms for them in OWL by using
reference properties. It is possible to add further modeling
axioms in OWL for the model elements, e.g., expressing two
artifacts as identical.

A model transformation takes the metamodel and the
annotations as input and generates an OWL ontology where
the concepts, enumerations, properties and data types (TBox)
correspond to classes, enumerations, attributes/references
and data types in the metamodel. Another transformation
takes the model created by the language user and generates
individuals in the ABOX of the same OWL ontology. The
whole process is transparent for language users.

The structural mapping from Ecore-based metamodels and
models to OWL makes MOF models available as feder-
ated, accessible and query-ready LOD resources. Extractors
transform models into a common representation in OWL
ontologies according to this structural mapping. Having
models represented in OWL ontologies, one might connect
these ontologies and process these ontologies in a federated
way. Thus, the resulting OWL representations offers an inte-
gration management functionality (transforming and linking)
within the marketplace architecture.

2) Inferencing: The inferencing layer is realized by rea-
soning services that operate over OWL vocabularies. Rea-
soning services are services provided by reasoning systems
with respect to the ontology. Standard reasoning services
are services available in all reasoning systems, whereas non-
standard reasoning services are extensions of basic reasoning
services.

The standard reasoning services for TBox are satisfiability
and subsumption. A class 𝐶 is unsatisfiable (𝐶 ⊑ ⊥) with

3654

respect to an ontology 𝒪 if 𝐶 is empty (does not have
any instances) in all models of 𝒪. Satisfiability checking
is useful for verifying whether an ontology is meaningful,
i.e., whether all classes are instantiable.

Subsumption is useful to organize hierarchically classes
according to their generality. A class 𝐶 is subsumed by
another class 𝐷 with respect to an ontology 𝒪 if the set
denoted by 𝐶 is a subset of the subset denoted by 𝐷 for
every model of 𝒪.

The standard reasoning services for ABox are instance
checking, consistency, realization and retrieval. Instance
checking proves whether a given individual 𝑖 belongs to the
set described by the class 𝐶. An ontology is consistent if
every individual 𝑖 is instance of only satisfiable classes. The
realization service identifies the most specific class a given
individual belongs to. Finally, the retrieval service identifies
the individuals that belong to a given concept.

3) Data Integration and Mapping: Linking between dif-
ference sources of software data is an essential aspect of
a data cloud in order to enable searching and exploration
among data of different but related software artifacts. Ac-
cordingly, one requires services for community collaboration
and system coordination as well as matching between data
in the cloud.

Common Vocabulary: Open Services for Lifecycle
Collaboration (OSLC) is an open community that aims
to standardize data sharing between tools that are part of
Application Lifecycle Management. Initially proposed by
IBM in 2008, but currently involving other organizations and
independent developers, OSLC specifications allow tools
from different vendors to integrate their data and workflows
to support the complete lifecycle of an application, from con-
ception to implementation. These specifications are defined
as RDF vocabularies and follow the principles of Linked
Data. The following are the OSLC vocabularies used:

1) OSLC Automation Management Vocabulary: defines a
vocabulary of terms that are often used in the automa-
tion of development tasks. This includes automation
plan, automation request and automation result. This
vocabulary was used to represent information from
build definitions and build execution records that are
extracted from continuous integration tools.

2) OSLC Change Management Vocabulary 1: defines
terms commonly used in this area, such as change
request, activity, task, and the relationships between
these resources. This vocabulary was used to represent
information from bugs, tasks and activities present in
issue trackers.

3) OSLC Asset Management Vocabulary: describes in-
formation present in Asset Management systems. One
example of software asset is the executable generated
by an automation plan, such as a Java Archive (JAR)

1http://open-services.net/bin/view/Main/CmSpecificationV2

or a dynamic-link library (DLL). This vocabulary was
used to represent information extracted from project
dependencies, such as library name, version and lo-
calization.

4) OSLC Quality Management Vocabulary 2: models
artifacts such as test plans, test cases and their results.
This vocabulary was used to represent information
from executed unit tests in continuous integration tools
during the build of a project.

5) OSLC Source Control Management Vocabulary 3:
include resources related to Source Control Manage-
ment Systems like Change Set, Change, Baseline and
Snapshot.

The usage of a common vocabulary still requires the
reconciliation of resources expressed using distinct con-
trolled natural languages before usage. This reconciliation
of concepts across controlled natural languages is the object
of study in ontology matching discipline. For a deeper
understanding of this topic, please refer to [8].

Ontology matching is the discipline responsible for study-
ing techniques for reconciling multiple resources on the web.
It comprises two steps: match and determine alignments and
the generation of a processor for merging and transforming.
Matching identifies the correspondences. A correspondence
for two ontologies A and B is a quintuple including an id,
an entity of ontology A, an entity of ontology B, a relation
(equivalence, more general, disjointness) and a confidence
measure. A set of correspondences is an alignment. Corre-
spondences can take place at the schema-level (metamodel)
and at the instance-level (model).

Matchings use multiple criteria: name of entities, structure
(relations between entities, cardinality), background knowl-
edge, e.g., existing ontologies or wordnet. Techniques can
be string-based or rely on linguistic resources. Furthermore,
matchings are established according to the structures: (i)
Internal structure comparison: this includes property, key,
datatype, domain and multiplicities comparison. (ii) Rela-
tional structure comparison: the taxonomic structure between
the ontologies is compared. (iii) Extensional techniques:
extensional information is used in this method, e.g., formal
concept analysis.

4) Querying: Querying ontologies is a research field
that comprises multiple techniques and languages. We limit
the scope of our analysis to the SPARQL-like language
SPARQL-DL. The reason for using SPARQL is that it is
a W3C standard query language [9], and it includes the
definition of graph pattern matching for OWL 2 Entailment
Regime [10].

SPARQL 1.0 [9] is the triple-based W3C standard query
language for RDF graphs. The semantics of SPARQL 1.0
is based on graph pattern matching and does not take into

2http://open-services.net/bin/view/Main/QmSpecificationV2
3http://open-services.net/bin/view/Main/ScmSpecV1

3655

Figure 4. The UML Component Diagram of the semantic project explorer
(SPE), complying with the proposed three-layered architecture (Fig. 2).

account OWL, although the specification allows for extend-
ing the SPARQL basic graph matching. SPARQL 1.1 [9]
addresses this problem by specifying an OWL entailment
regime for SPARQL.

Sirin and Parsia [11] have done preliminary work on an-
swering full SPARQL queries on top of OWL ontologies on
SPARQL-DL. SPARQL-DL enables users to write queries
relying on the expressiveness of OWL. Next, we describe
the abstract syntax of SPARQL-DL and its semantics.

The semantics of SPARQL-DL extends the semantics of
OWL to provide query evaluation. We say that there is a
model of the query 𝑄 = 𝑞1∧ . . .∧𝑞𝑛 (ℐ ∣= 𝜎𝑄) with respect
to an evaluation 𝜎 iff ℐ ∣= 𝜎𝑞𝑖 for every 𝑖 = 1, . . . , 𝑛.

A solution to a SPARQL-DL query 𝑄 with respect to
an OWL ontology 𝒪 is a variable mapping 𝜇 : 𝒱𝑣𝑎𝑟 →
𝒱𝑢𝑟𝑖 ∪ 𝒱𝑙𝑖𝑡 such that 𝒪 ∣= 𝜇(𝑄).

In the next section, we illustrate the usage of SPARQL
queries with an example of a software design pattern.

V. VALIDATION

The realization of the marketplace for open source soft-
ware has been the scope of PhD and MSc theses. In this
paper, we illustrate some preliminary results of applying
our approach with two plugins at the Querying level of the
architecture (Section IV-B4).

A. The Semantic Project Explorer

We invite the readers to consider the following scenario. A
new developer (software data consumer) joins the develop-
ment team (software data producer) and needs to understand
how the existing source code has been build. An efficient

Figure 5. Screenshot of the Context Menu of the SPE Plugin for the
Eclipse Framework.

way of learning about source code is by observing the
occurrence of software design patterns [12]. Understanding
of applying design patterns into the source code enables
newcomers to learn how the source code is structured. In the
marketplace, the new developer finds a plugin (developed by
software data hosting services) to help software developers
in verifying the quality of their source code – the semantic
project explorer (SPE).

The SPE is an example of a plugin we have developed to
test our approach. Figure 4 shows the components used by
the SPE plugin, complying with the conceptual architecture
explained in Section IV-B. The component Data Extractor
comprises the set of components required to extract informa-
tion from artifacts and upload them to the cloud (layer rep-
resentation formalism and data extraction, Section IV-B1).
The component Eclipse IDE groups the components the
front-end representing interaction points with users (layer
Querying, Section IV-B4). Finally, the component Query
Execution comprises the set of components required for
supporting inferencing and query execution (layer Inferenc-
ing, Section IV-B2)

In order to use the plugin, the new developer firstly needs
to extract information from artifacts into a common vocab-
ulary, by uploading source code and other related artifacts
like bug reports and versioning information. Figure 5 depicts
the context menu used for triggering this task. The artifacts
are then extracted and transformed into OWL and linked to
common vocabularies existing in the cloud.

Using our approach, we are able to extract information
from a internal project as proof of concept. Table I presents
the list of artifacts part of our development process and
the corresponding metrics. For each artifact, we present
the number of classes (C) on the metamodel, the number
of instances (I), the number of non commenting source
statements (NCSS) for source code and the number of RDF
triples (T).

The developers are now able to use the plugin to assess
the quality of the source code. The component Eclipse IDE
(Figure 4) retrieves automatically from the cloud the updated
list of software design patterns found in the source code.
By clicking on the name of the design pattern on the left
side, the console shows the list of the classes matching the

3656

design pattern on the bottom (Figure 5). Listing 1 shows
the example of the SPARQL query executed for finding the
Singleton Design Pattern.

Table I
METRICS OF THE TWOUSE TOOLKIT PROJECT

Phase Artifact C I NCCS T

Requirements Requirements
specification

24 212 - -

UML diagrams 261 174 - -

Analysis BPMN diagram 24 754 - -

Design Metamodel 23 5370 - -

Generator spec-
ification

20 3374 - -

Grammar spec-
ification

38 7611 - -

Model transfor-
mation

46 8043 - -

Code manifest 53 2824 - -

source code 345 - 454.350 616.643

Management Versioning 22 7032 22366

Listing 1. A SPARQL Querying that matches the occurrences of the
Singleton Design Pattern

1 PREFIX r d f s :
<h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#>

PREFIX owl : <h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 / owl#>
PREFIX j a v a : <h t t p : / / www. r d f c o d e r . o rg / 2 0 0 7 / 1 . 0 / >
PREFIX j a v a 0 : <h t t p : / / www. r d f c o d e r . o rg /2007/1 .0# >

5 PREFIX evo :
<h t t p : / / www. i f i . u n i z h . ch / d d i s / e v o o n t /2008/11/ >

PREFIX f o a f : <h t t p : / / xmlns . com / f o a f /0 .1 / >
SELECT ? f i l e ? L a s t A u t h o r ? Commitment
WHERE{

? c l a z z r d f s : s u b C l a s s O f j a v a 0 : J C l a s s .
10 ? c l a z z j a v a : h a s l o c a t i o n ? f i l e .

? c l a z z j a v a : c o n t a i n s a t t r i b u t e ? i n s t a n c e .
? i n s t a n c e j a v a : a t t r i b u t e t y p e ? t y p e .
? t y p e owl : sameAs ? c l a z z .
? c l a z z j a v a : c o n t a i n s c o n t r u c t o r ? c o n s t r u c t o r .

15 ? c o n s t r u c t o r j a v a : h a s v i s i b i l i t y ” p r i v a t e ” .
? f i l e evo : message ? Commitment .
? f i l e evo : hasAu tho r ? p e r s o n .
? p e r s o n f o a f : name ? L a s t A u t h o r

}

B. The Semantic Miner

SemanticMiner is a plugin addressing the challenge of
Mining Software Repositories [13]. In order to demonstrate
the role of SemanticMiner, we present the example of mining
information from the source code of a project: its structure,
versions, tests and dependencies.

In the following, we rely on field studies carried out
with software practitioners [14], [15] that identified a set of
questions that are recurrent among actual developers. These
questions are difficult to be answered by the lack of support
of existing tools. We focus specifically on the information
related to the source code of a project: its structure, versions,

tests and dependencies. The answers to these questions were
reported by practitioners as being used as a basis in decision
making during the project, for example, who should be
allocated to fix a specific piece of code, or what changes
should be postponed due to the impact it may cause on other
systems.

We illustrate how SemanticMiner is able to answer such
questions by giving two representative examples. For each
natural language question, we show it is translated into
a SPARQL query that can be executed against a specific
project’s mined data, extracted through the SemanticMiner.

The selected project was Apache Mahout 4, a scalable
machine learning library maintained by the Apache Foun-
dation. The choice of this project was made due to its
characteristics: it is written in Java, uses Apache Maven
for dependency management, its continuous integration is
executed in Jenkins and uses Atlassian Jira as its issue
tracker tool. The project currently contains about 1860
commits and 1220 issues created over six years.

1) Who to assign a code review to? / Who has the
knowledge to do the code review?: This question was
translated as a query to search all the owners of commits
that caused an impact on one or more source entities that
are part of the code in focus (Listing 2). The rationale is
that if a developer committed changes that alter that specific
piece of code, s/he should be qualified to review it.

Listing 2. A SPARQL Querying that matches the occurrences of the
Singleton Design Pattern

1PREFIX sm:< h t t p : / / s e m a n t i c m i n e r />
PREFIX

r d f :< h t t p : / / www. w3 . org /1999/02/22− r d f−syn t ax−ns#>
PREFIX os lc scm :< h t t p : / / o p e n s e r v i c e s . n e t / ns / scm#>
PREFIX f o a f :< h t t p : / / xmlns . com / f o a f /0 .1 / >

5PREFIX d c t e r m s :< h t t p : / / p u r l . o rg / dc / t e r m s />

SELECT ? d e v e l o p e r ? e l e m e n t (COUNT(? i m p a c t) AS
? c o u n t)

WHERE { ? d e v e l o p e r a sm : Pe r so n .
? d e v e l o p e r ˆ sm : commitAuthor ? c h a n g e S e t .

10 ? c h a n g e S e t a sm : ChangeSet .
? c h a n g e S e t sm : commitDate ? i m p a c t D a t e .
? c h a n g e S e t ˆ sm : c o n t e x t T o ? i m p a c t .
? i m p a c t sm : i m p a c t O f A f t e r ? e l e m e n t .
FILTER NOT EXISTS { ? im p ac t sm : impactType

’NOTHING’ }
15FILTER (? e l e m e n t IN ($ e l e m e n t)) }

GROUP BY ? d e v e l o p e r ? e l e m e n t
ORDER BY DESC(? c o u n t) DESC(? i m p a c t D a t e)

As input to this query we have chosen
the two most invoked methods in the project:
AbstractJob.addOption(String) and
AbstractJob.getOption(String). Listing 3
presents the results.

4http://mahout.apache.org

3657

Figure 6. Screenshot of the User Interface of the SPE plugin: the updated list of software on the right-hand side; after choosing a design pattern, the
console shows the list of classes in the source code that matches the design pattern on the bottom.

Listing 3. The result of the execution of the Query in Listing 2
1 Deve lope r ∣ API Method
−−
Gran t I n g e r s o l l ∣ A b s t r a c t J o b . addOpt ion (S t r i n g)
Gran t I n g e r s o l l ∣ A b s t r a c t J o b . g e t O p t i o n (S t r i n g)

5 Sean Owen ∣ A b s t r a c t J o b . addOpt ion (S t r i n g)
Sean Owen ∣ A b s t r a c t J o b . g e t O p t i o n (S t r i n g)

While we cannot directly determine the actual correctness
of these answers, there is evidence that it is reasonable, given
by the GitHub. Indeed, looking at the Github page of the
Class that contains these two methods, these two developers
are shown as its main contributors.

2) Who should you to talk to if you have to work with
libraries you havent worked with?: This query takes as input
a specific version of a library and returns the developers
who made changes to code that includes adding references
to entities present in the library (Listing 4). The rationale
is that if a developer added a reference to the library in
question to the code, s/he must be familiar with it.

Listing 4. A SPARQL Querying that matches the occurrences of the
Singleton Design Pattern

1 PREFIX sm:< h t t p : / / s e m a n t i c m i n e r />

PREFIX
r d f :< h t t p : / / www. w3 . org /1999/02/22− r d f−syn t ax−ns#>

PREFIX os lc scm :< h t t p : / / o p e n s e r v i c e s . n e t / ns / scm#>
PREFIX f o a f :< h t t p : / / xmlns . com / f o a f /0 .1 / >

5 PREFIX d c t e r m s :< h t t p : / / p u r l . o rg / dc / t e r m s />

SELECT ? d e v e l o p e r (COUNT (? i m p a c t) AS ? t o t a l)
WHERE { ? c h a n g e S e t a sm : ChangeSet .
? c h a n g e S e t sm : commitCommiter ? d e v e l o p e r .

10 ? c h a n g e S e t ˆ sm : c o n t e x t T o ? i m p a c t .
? i m p a c t sm : i m p a c t O f A f t e r ? r e l a t i o n s h i p .
? r e l a t i o n s h i p r d f : v a l u e ? e n t i t y .
? e n t i t y ˆ sm : e l e m e n t s $ l i b r a r y V e r s i o n .
FILTER NOT EXISTS { ? im p ac t sm : impactType

’NOTHING’ } }
15GROUP BY ? d e v e l o p e r ORDER BY DESC(? t o t a l)

Since this query needs a Library as input, we chose a
version of the Apache Lucene 5 library, since it is one of the
libraries used by Apache Mahout. This library is used for
the creation of applications that require ”full text search”
functionality. It is highly scalable and provides various
search algorithms in its distribution. Listing 5 presents the
result of this query with Lucene Core 3.5.0.

5http://lucene.apache.org/core/

3658

Listing 5. The result of the execution of the Query in Listing 4
1 Deve lope r
−−−−−−−−−−−−
P a r i t o s h Ranjan
J e f f Eastman

5 Robin An i l

VI. RELATED WORK

The integration of software artifacts has been the topic of
works including [16], [17]. These approaches present dedi-
cated extractors for specific systems, e.g., for bug tracking
and version control systems. Domain-specific declarations
of rules for data integration are presented in [18]. For
the model integration, there are also techniques based on
traceability [19] in order to capture relationships of elements
across model boundaries. In contrast to our work, neither
of these approaches presents formats for publishing data
suitable to the linked-data approach, i.e., they do not share
the principles of interoperability for connecting federated
software models across the Web.

Kiefer et al. [20] and Iqbal et al. [21] explore semantic
web approaches for transforming software artifacts such as
data from version control systems, bug tracking tools and
source code into linked data. Both approaches use artifact-
specific extractors and thus work only for a fixed number
of software artifacts. Witte et al. [22] use semantic web
technologies for the joint representation of source code and
documentation in OWL. Based on the OWL representation,
SPARQL queries are used to analyze software repositories.
Our work proposes a more generic approach for transform-
ing and managing controlled natural languages in an OWL
representation.

A Linked Data platform for publishing data sets of
software repositories is presented in [23]. The authors use
RDF as representation formalisms and restrict OWL repre-
sentations to object-oriented source code. The Linked Data
framework in [24] provides source code representation in
RDF. The source code repository is connected to Linked
Data sources like DBpedia, Freebase and OpenCyc. Our
approach presents a complementary solution that provides
generic extractors and enables the development of services
for visualization and analysis of software data.

Related to our research is the work on code search, where
search engines like Google code search6, Krugle7, Koders8

and the search engine of the sourcerer project9 offer dedi-
cated search facilities over large code bases. The proposed
code search engine in [25] exploits an OWL representation
of the source code. Like in our approach, the source code

6http://code.google.com
7http://www.krugle.com
8http://www.koders.com
9http://sourcerer.ics.uci.edu

is extracted from repositories and afterwards transformed to
OWL ontologies. A framework for querying for source code
based on sample code snippets is presented in [26]. Query
snippets are transformed to XPath queries. The source code
is represented in the repository as abstract syntax trees. We
use an approach based on expressful vocabularies using the
OWL language.

Trustability for code search is presented in [27]. They
specify a metric for trust of source code that incorporates
the trustworthiness of persons (e.g., of the developer) that are
associated with a program code. The Sourcerer search engine
is extended by reputation of source code developers [28].
Thus, users might search for source code and chose their
preferred source code by incorporating social characteristics
like their opinion of others. We propose a marketplace that
comprises the foundations for developing plugins that might
also include trustability.

VII. CONCLUSION

In this paper we outline a marketplace for open source
software engineering data and propose its architecture. The
marketplace (1) maximizes the reuse of pieces of software by
making them easy to find, analyze and integrate; (2) creates
incentives for open source software producers, consumers
and hosts and provide mechanisms for stimulating the
creation of additional services; and (3) develops services
demanded by software consumers that create value (e.g.,
mining, statistics, analytics, visualization and operation) over
the linked software engineering data cloud. Its architecture is
realized using semantic web technologies for the representa-
tion and management of loosely coupled software artifacts
and their dependencies. Currently, we build on top of the
Linked Data repository of source code proposed by [23]
and focus on helping developers to make sense of massive
data volumes, as described in Section V. For the future,
we are working on plugins for fostering awareness and
collaboration in global software engineering.

VIII. ACKNOWLEDGMENTS

This work is partially supported by the Brazilian funding
agencies FAPEMIG, CNPq and CAPES.

REFERENCES

[1] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. T. Devanbu, “Fair and balanced?: bias in
bug-fix datasets,” in Proceedings of the ESEC/FSE 2009,
Amsterdam, The Netherlands, August 24-28, 2009, H. van
Vliet and V. Issarny, Eds. ACM, 2009, pp. 121–130.

[2] A. Bachmann, C. Bird, F. Rahman, P. T. Devanbu, and
A. Bernstein, “The missing links: bugs and bug-fix commits,”
in Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010,
Santa Fe, NM, USA, November 7-11, 2010, G.-C. Roman and
K. J. Sullivan, Eds. ACM, 2010, pp. 97–106.

3659

[3] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data – The
Story So Far,” International Journal on Semantic Web and
Information Systems, vol. 5, no. 3, pp. 1–22, 2009.

[4] W. O. W. Group, “OWL 2 Web Ontology Language
Document Overview,” W3C Working Draft 27 March
2009, 2009. [Online]. Available: http://www.w3.org/TR/
2009/WD-owl2-overview-20090327//

[5] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro,
EMF: Eclipse Modeling Framework. Pearson Education,
2008. [Online]. Available: http://books.google.de/books?id=
sA0zOZuDXhgC

[6] T. Walter, F. S. Parreiras, G. Gröner, and C. Wende,
“Owlizing: transforming software models to ontologies,”
in Ontology-Driven Software Engineering, ser. ODiSE’10.
New York, NY, USA: ACM, 2010, pp. 7:1–7:6. [Online].
Available: http://doi.acm.org/10.1145/1937128.1937135

[7] “Meta object facility (MOF) 2.0 core specification,” OMG,
Specification, 2003, version 2.

[8] J. Euzenat and P. Shvaiko, Ontology matching. Springer
Berlin, 2007, vol. 18.

[9] S. Harris and A. Seaborne, “SPARQL 1.1 Query Language,”
W3C Working Draft 1 June 2010, 2010. [Online]. Available:
http://www.w3.org/TR/2010/WD-sparql11-query-20100601/

[10] B. Glimm and C. Ogbuji, “SPARQL 1.1 Entailment
Regimes,” W3C Working Draft 1 June 2010,
2010. [Online]. Available: http://www.w3.org/TR/2010/
WD-sparql11-entailment-20100601/

[11] E. Sirin and B. Parsia, “SPARQL-DL: SPARQL Query for
OWL-DL,” in Proceedings of the OWLED 2007 Workshop
on OWL: Experiences and Directions, Innsbruck, Austria,
June 6-7, 2007, ser. CEUR Workshop Proceedings, vol. 258.
CEUR-WS.org, 2007.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Pearson Education, 1994.

[13] F. de Freitas Silva, “A new approach for mining software
repositories with semantic web tools,” MSc Thesis. PUC Rio.

[14] T. Fritz and G. C. Murphy, “Using information fragments to
answer the questions developers ask.” in ICSE (1), 2010, pp.
175–184.

[15] T. D. LaToza and B. A. Myers, “Hard-to-answer questions
about code,” in Evaluation and Usability of Programming
Languages and Tools, ser. PLATEAU ’10. New York, NY,
USA: ACM, 2010, pp. 8:1–8:6.

[16] G. Antoniol, M. D. Penta, H. Gall, and M. Pinzger, “Towards
the Integration of Versioning Systems, Bug Reports and
Source Code Meta-Models,” Electr. Notes Theor. Comput.
Sci., vol. 127, no. 3, pp. 87–99, 2005.

[17] A. Mockus and J. D. Herbsleb, “Expertise browser: a quan-
titative approach to identifying expertise,” in Proceedings of
the 22rd International Conference on Software Engineering,
ICSE 2002, 19-25 May 2002, Orlando, FL, USA. ACM,
2002, pp. 503–512.

[18] A. Königs and A. Schürr, “MDI: A Rule-based Multi-
document and Tool Integration Approach,” Software and
System Modeling, vol. 5, no. 4, pp. 349–368, 2006.

[19] R. F. Paige, N. Drivalos, D. S. Kolovos, K. J. Fernandes,
C. Power, G. K. Olsen, and S. Zschaler, “Rigorous identifica-
tion and encoding of trace-links in model-driven engineering,”
Software and System Modeling, vol. 10, no. 4, pp. 469–487,
2011.

[20] C. Kiefer, A. Bernstein, and J. Tappolet, “Mining Software
Repositories with iSPARQL and a Software Evolution Ontol-
ogy,” in Proceedings of the 29th International Conference on
Software Engineering Workshops (ICSEW ’07), Minneapolis,
MN, USA, May 20-26, 2007, 2007.

[21] A. Iqbal, O. Ureche, M. Hausenblas, and G. Tummarello,
“LD2SD: Linked Data Driven Software Development,” in
Proceedings of SEKE 2009, Boston, MA, USA, July 1-3,
2009. Knowledge Systems Institute Graduate School, 2009,
pp. 240–245.

[22] R. Witte, Y. Zhang, and J. Rilling, “Empowering Software
Maintainers with Semantic Web Technologies,” in 4th Eu-
ropean Semantic Web Conference (ESWC), ser. LNCS, vol.
4519. Springer, 2007, pp. 37–52.

[23] I. Keivanloo, C. Forbes, A. Hmood, M. Erfani, C. Neal,
G. Peristerakis, and J. Rilling, “A Linked Data platform for
mining software repositories,” in 9th IEEE Working Confer-
ence on Mining Software Repositories (MSR), 2012, pp. 32–
35.

[24] I. Keivanloo, C. Forbes, J. Rilling, and P. Charland, “Towards
sharing source code facts using linked data,” in Proceedings
of SUITE 2011. ACM, 2011, pp. 25–28. [Online]. Available:
http://doi.acm.org/10.1145/1985429.1985436

[25] I. Keivanloo, L. Roostapour, P. Schugerl, and J. Rilling,
“SE-CodeSearch: A scalable Semantic Web-based source
code search infrastructure,” in Proceedings of ICSM 2010.
Washington, DC, USA: IEEE Computer Society, pp. 1–
5. [Online]. Available: http://dx.doi.org/10.1109/ICSM.2010.
5609533

[26] O. Panchenko, J. Karstens, H. Plattner, and A. Zeier, “Precise
and scalable querying of syntactical source code patterns
using sample code snippets and a database,” in 19th IEEE In-
ternational Conference on Program Comprehension, (ICPC),
2011, pp. 41–50.

[27] F. S. Gysin and A. Kuhn, “A trustability metric for code
search based on developer karma,” in Proceedings of SUITE
2010. New York, NY, USA: ACM, pp. 41–44. [Online].
Available: http://doi.acm.org/10.1145/1809175.1809186

[28] R. E. Gallardo-Valencia, P. Tantikul, and S. E. Sim,
“Searching for reputable source code on the web,” in
Proceedings of the 16th ACM international conference on
Supporting group work, ser. GROUP ’10. ACM, 2010,
pp. 183–186. [Online]. Available: http://doi.acm.org/10.1145/
1880071.1880102

3660

