
The VLDB Journal (2007) 16:97–122
DOI 10.1007/s00778-006-0024-z

SPECIAL ISSUE PAPER

eTuner: tuning schema matching software using synthetic scenarios

Yoonkyong Lee · Mayssam Sayyadian ·
AnHai Doan · Arnon S. Rosenthal

Received: 15 January 2006 / Accepted: 11 June 2006 / Published online: 14 September 2006
© Springer-Verlag 2006

Abstract Most recent schema matching systems
assemble multiple components, each employing a par-
ticular matching technique. The domain user must then
tune the system: select the right component to be exe-
cuted and correctly adjust their numerous “knobs” (e.g.,
thresholds, formula coefficients). Tuning is skill and time
intensive, but (as we show) without it the matching accu-
racy is significantly inferior. We describe eTuner, an
approach to automatically tune schema matching sys-
tems. Given a schema S, we match S against synthetic
schemas, for which the ground truth mapping is known,
and find a tuning that demonstrably improves the per-
formance of matching S against real schemas. To effi-
ciently search the huge space of tuning configurations,
eTuner works sequentially, starting with tuning the low-
est level components. To increase the applicability of
eTuner, we develop methods to tune a broad range
of matching components. While the tuning process is
completely automatic, eTuner can also exploit user assis-
tance (whenever available) to further improve the tun-
ing quality. We employed eTuner to tune four recently

Y. Lee (B) · M. Sayyadian · A. Doan
University of Illinois,
Urbana, IL 61801, USA
e-mail: ylee11@cs.uiuc.edu

M. Sayyadian
e-mail: sayyadia@cs.uiuc.edu

A. Doan
e-mail: anhai@cs.uiuc.edu

A. S. Rosenthal
The MITRE Corporation,
Bedford, MA 01730, USA
e-mail: arnie@mitre.org

developed matching systems on several real-world
domains. The results show that eTuner produced tuned
matching systems that achieve higher accuracy than us-
ing the systems with currently possible tuning methods.

Keywords Schema matching · Tuning · Synthetic
schemas · Machine learning · Compositional approach

1 Introduction

Schema matching finds semantic correspondences called
matches between the schemas of disparate data sources.
Example matches include “location = address” and
“name = concat(first-name,last-name)”. Application
that manipulates data across different schemas often
must establish such semantic matches, to ensure inter-
operability. Prime examples of such applications arise
in numerous contexts, including data warehousing, sci-
entific collaboration, e-commerce, bioinformatics, and
data integration on the World-Wide Web [62].

Manually finding the matches is labor intensive, thus
numerous automatic matching techniques have been
developed (see [5,24,29,55,62] for recent surveys). Each
individual matching technique has its own strength and
weakness [23–25,62]. Hence, increasingly, matching
tools are being assembled from multiple components,
each employing a particular matching technique
[23–25,29,62].

The multi-component nature is powerful in that it
makes matching systems highly extensible and (with
sufficient skills) customizable to a particular applica-
tion domain [10,63]. However, it places a serious bur-
den on the domain user: given a particular matching

98 Y. Lee et al.

situation, how to select the right matching components
to execute, and how to adjust the multiple “knobs” (e.g.,
threshold, coefficients, weights, etc.) of the components?
Without tuning, matching systems often fail to exploit
domain characteristics, and produces inferior accuracy.
Indeed, in Sect. 5 we show that the untuned versions
of several off-the-shelf matching systems achieve only
14–62% F-1 accuracy on four real-world domains. (The
accuracy measure F-1 combines precision and recall,
and is commonly used in recent schema matching work
[22,23,41,46,62]; see Sect. 5 for more details.)

High matching accuracy is crucial in many applica-
tions, so tuning will be quite valuable. To see this, con-
sider two scenarios. First, consider data exchange
between automated applications, e.g., in a supply chain.
People do check correctness of each data value transmit-
ted, so erroneous matches will cause serious real world
mistakes. Thus, when building such applications, people
check and edit output matches of the automated system,
or use a system such as Clio [73] to elaborate matches
into semantic mappings (e.g., in form of SQL queries
[73] which specify exact relationships between elements
of different schemas, see a more detailed description in
[19,67,73]). Here, improving the accuracy of the auto-
mated match phase can significantly reduce peoples’
workload, and also the likelihood that they overlook
or introduce mistakes.

Second, large-scale data integration, peer-to-peer,
and distributed IR systems (e.g., on the Web [1]) often
involve tens or hundreds of sources, thus thousands or
tens of thousands of semantic matches across the sources
or metadata tags. At this scale, humans cannot review
all semantic matches associated with all sources. Instead,
the systems are likely to employ the automated match
results, and return the apparent best answers for hu-
man review. The work [66] for example develops Kite, a
system that enables keyword search over multiple het-
erogeneous relational databases. Kite first automatically
finds semantic matches across the schemas of the data-
bases, then leverages these matches to return the best
ranked list of answers to the human user. In such sce-
narios, each improvement in matching accuracy directly
improves the result the user receives.

While valuable, tuning is also very difficult, due to
the large number of knobs involved, the wide variety of
matching techniques employed (e.g., database,
machine learning, IR, information theory, etc.), and the
complex interaction among the components. Writing a
“user manual” for tuning seems nearly impossible. For
example, tuning a matching component that employs
learning techniques often involves selecting the right set
of features [20], a task that is difficult even for learning
experts [20]. Further, since we rarely know the ground

truth for matches, it is not clear how to compare the
quality of knob configurations.

For all above reasons, matching systems are still tuned
manually, largely by trial and error – a time consum-
ing, frustrating, and error prone process. Consequently,
developing efficient techniques for tuning seems an
excellent way to improve matching systems to a point
where they are attractive in practice.

In this paper we describe eTuner, an approach to
automatically tune schema matching systems. In devel-
oping eTuner, we address the following challenges:

Define the tuning problem Our first challenge is to
develop an appropriate model for matching systems,
over which we can define a tuning problem. To this
end, we view a matching system as a combination of
matching components. Figure 1a shows a matching sys-
tem which has (n + 2) components: n matchers, one
combiner, and one selector (Sect. 2 describes these com-
ponents in detail).

To the user (and eTuner) the components are black-
boxes, with “exposed knobs” whose values can be
adjusted. For example, a knob allows the user to set a
threshold α such that two schema attributes are
declared matched if and only if their similarity score
exceeds α. Other knobs allow the user to assign reliabil-
ity weights to the component matching techniques. Yet
another knob controls how many times a component
should run. In addition, given a library of components,
the user also has the freedom to select which compo-
nents to be used, and where in the matching system.

Given the above knobs, many possible tuning prob-
lems can be defined. As a first step, in this paper we
consider the following: given a schema S, an instance
of S (i.e., data tuples that conform to S), and a schema
matching system M, how to tune M so that it achieves
high accuracy when we subsequently apply it to match
S with other schemas. This is a very common problem
that arises in many settings, including data warehousing
and integration [25,62].

Synthesize workload with known ground truth Tuning
the system M mentioned above amounts to searching

Schemas S and T

Matcher 1 . . . Matcher nMatcher 2

Combiner

Match Selector

Similarity
matrix

Semantic matches

EMPLOYEES

1 Mike Brown 40,000
6 Jean Laup 60,000
3 Bill Jones 70,000
4 Kevin Bush 30,000

(b)(a)

id first-
name

last-
name

salary

Fig. 1 An example of multi-component matching systems

eTuner: tuning schema matching software using synthetic scenarios 99

for the “best” knob configuration for matches to S. The
quality of a particular knob configuration of M is defined
as an aggregate accuracy of the matching system, when
applied with that configuration. Accuracy metrics exist
(e.g., precision, recall, and combinations thereof [22]).
How can they be evaluated? How can we find a cor-
pus of match problems where ground truth (i.e., “true”
matches) are known? This is clearly a major challenge
for any effort on tuning matching systems.

To address this challenge, our key idea is to employ a
set of synthetic matching scenarios involving S, for which
we already know the correct matches, to evaluate knob
configurations. Specifically, we apply a set of common
transformation rules to the schema and data of S, in
essence randomly “perturbing” schema S to generate a
collection of synthetic schemas S1, S2, . . . , Sn. For exam-
ple, we can apply the rule “abbreviating a table name to
the first three letters” to change the name EMPLOYEES
of the table in Fig. 1b to EMP, and the rule “replacing
,000 with K” to the column salary of this table. We note
that these rules are created only once, independent of
any schema S.

Since we generated schemas S1, S2, . . . , Sn from S,
clearly we can infer the correct semantic matches
between these schemas and S. Hence, the collection of
schema pairs {(S, S1), (S, S2), . . . , (S, Sn)}, together with
the correct matches, form a synthetic matching workload,
over which the average accuracy of any knob configura-
tion can be computed. We then use this accuracy as the
estimated accuracy of the configuration over matching
scenarios involving S.

While the above step of generating the synthetic
workload (and indeed the entire tuning process) is com-
pletely automatic, eTuner can also exploit user assis-
tance, whenever available. Specifically, it can ask the
user to do some simple preprocessing of schema S, then
exploit the preprocessing to generate an even better
synthetic workload.

Search The space of knob configurations is often
huge or infinite, making exhaustive search impractical.
Hence we implement a sequential, greedy approach,
denoted staged tuning. Consider the matching system
M in Fig. 1a. Here, we first tune each of the matchers
1, . . . , n in isolation, then tune the combination of the
combiner and the matchers, assuming that the knobs
of the matchers have been set. Finally, we tune the
entire matching system, assuming that the knobs of the
combiner and matchers have been set. Many different
types of knob exist (e.g., discrete, continuous, set valued,
ordered, etc.), each raising a different tuning challenge.
We describe in detail how to address these challenges in
Sect. 4.

In summary, we make the following concrete contri-
butions:

• Establish that it is feasible to tune a matching system,
automatically.

• Describe how to synthesize matching problems for
which ground truth is known. Leverage such syn-
thetic workload to estimate the quality of a match-
ing system’s result. For potential applications beyond
the tuning context, see Sects. 6.4 and 7.

• Establish that staged tuning is a workable optimiza-
tion solution for the problem of finding the “best”
knob configuration without doing an exhaustive
search. The solution can also leverage human assis-
tance to further increase tuning quality.

• Extensive experiments over four real-world domains
with four matching systems. The results show that
eTuner achieves higher accuracy than the alternative
(manual and semi-automatic) methods. The cost of
using eTuner consists mainly of “hooking” it up with
the knobs of a matching system, and would presum-
ably be born by vendors and amortized over all uses.

The key contribution of this paper, we believe, is the
demonstration that leveraging synthetic workload can
provide a principled approach to tuning schema match-
ing systems, a long-standing problem. However, this is
just a first step. Significant works remain to fully real-
ize the potentials of the approach, and are discussed in
Sect. 7.

The paper is organized as follows. The next section
defines the problem of tuning matching systems.
Sections 3–4 describe the eTuner approach in detail.
Section 5 presents experimental results. Section 6 dis-
cusses related work, and Sect. 7 concludes.

2 The match tuning problem

In this section, we describe our model of a matching
system, then use the model to define the match
tuning problem. The vast majority of current schema
matching systems consider only 1–1 matches, such as
contact-info = phone [62]. Hence, in this paper we focus
on the problem of tuning such systems, leaving those that
finds complex matches (e.g., address = concat(city, state)
[19,35,72]) as future work. In this paper, we handle only
relational schemas, and defer handling other data rep-
resentations (e.g., XML schemas) to the future work.

2.1 Modeling 1–1 matching systems

We define a 1–1 matching system M to be a triple
(L, G, K), where L is a library of matching components,

100 Y. Lee et al.

G is a directed graph that specifies the flow of execution
among the components of M, and K is a collection of
control variables (henceforth knobs) that the user (or a
tuning system such as eTuner) can set. The description
of each component in L lists the set of knobs available
for that component.

In what follows we elaborate on the above concepts,
using the matching system in Fig. 2 as a running exam-
ple. This system is a version of LSD, a learning-based
multi-component matching system described in [24–26].

2.1.1 Library of matching components

Such a library contains the following four types of com-
ponents, variants of which have often been proposed in
the literature [29,62]:

• Matcher (schemas → similarity matrix): A matcher
takes two schemas S and T and outputs a similar-
ity matrix, which assigns to each attribute pair si of
S and tj of T a similarity score between 0 and 1.
(In the rest of the paper, we will use “matrix” as
a shorthand for “similarity matrix”.) Library L in
Fig. 2a has five matchers. The first two compare the
names of two attributes (using q-gram and TF/IDF
techniques, respectively) to compute their similarity
score [23,25]. The remaining three matchers exploit
data instances [25].

• Combiner (matrix × · · · × matrix → matrix): A com-
biner merges multiple similarity matrices into a sin-
gle one. Combiners can take the average, minimum,
maximum, or a weighted sum of the similarity scores
(Fig. 2a) [23,25,30]. More complex types of combiner
include stacking (an ensemble learning method,
employed for example in LSD [25]), decision tree
[30], and elaborate (often hand-crafted) scripts (e.g.,
in Protoplasm [10]).

• Constraint enforcer (matrix × constraints → matrix):
Such an enforcer exploits pre-specified domain con-
straints or heuristics to transform a similarity
matrix (often coming from a combiner) into another
one that better reflects the true similarities. The con-
straints can refer to those over the relational rep-
resentation (e.g., R . X ≤ 10), or over the domain
of discourse. For example, library L in Fig. 2a has
a single constraint enforcer, which exploits integrity
constraints such as “lot-area cannot be smaller than
house-area” [25].

• Match Selector (matrix → matches): This component
selects matches from a given similarity matrix. The
simplest selection strategy is thresholding: all pairs
of attributes with similarity score exceeding a given

threshold are returned as matches [23]. More com-
plex strategies include formulating the selection as
an optimization problem over a weighted bipartite
graph [46] (Fig. 2a).

2.1.2 Execution graph

This is a directed graph whose nodes specify the com-
ponents of M and whose edges specify the flow of
execution among the components. The graph has mul-
tiple levels, and must be well formed in that (a) the
lowest-level components must be matchers that take
as input the schemas to be matched, (b) the highest-
level component must be a match selector that outputs
matches, and (c) all components must get their input.
In the following we describe the execution graphs of
four matching systems that we experimented with in this
paper. (Section 5 gives a complete description of the four
systems.)

LSD The execution graph of LSD [25] is shown in
Fig. 2b and has four levels. It states that LSD first ap-
plies the n matchers; then combines their output sim-
ilarity matrices using a combiner. Next, LSD applies a
constraint enforcer, followed finally by a match selector.
(We omit displaying domain constraints as an input to
the enforcer, to avoid clutter.) The following example
illustrates the working of LSD:

Example 1 Consider matching the schemas of data
sources realtor.com and homes.com in Fig. 4. Suppose
LSD consists of two matchers: name matcher and Naive
Bayes matcher. Then it starts by applying these two
matchers to compute similarity scores between the attri-
butes of the schemas. Consider the two attributes agent-
name of schema realtor.com and contact-agent of
homes.com. The name matcher examines the similar-
ity of their names (“contact agent” vs. “agent name”)
and outputs a similarity score, say 0.5. The similarity
scores of all such attribute pairs are stored in a similarity
matrix, shown in the upper half of Fig. 4b.

The Naive Bayes matcher examines the similarity
of the attributes based on their data instances (e.g.,
“James Smith” and “Mike Doan” vs. “(206) 634 9435”
and “(617) 335 4243”, see Fig. 4a), and outputs another
similarity matrix (see the lower half of Fig. 4b). In this
particular example, notice that the Naive Bayes matcher
assigns the low score of 0.1 to the two attributes agent-
name and contact-agent, because their data instances
are not similar to one another.

The combiner then merges the two similarity matrices.
Suppose that the combiner simply takes the average of
the corresponding scores, then it outputs a similarity
matrix as shown in Fig. 4c. Notice that the combined

eTuner: tuning schema matching software using synthetic scenarios 101

Threshold
selector

Bipartite
graph selector

Integrity constraint enforcer

Average
combiner

Min
combiner

Max
combiner

Weighted
sum combiner

q-gram name
matcher

Decision tree
matcher

Naïve Bays
matcher

TF/IDF
name matcher

SVM
matcher

(a) (b) (c)

Constraint
enforcer

Match
selector

Combiner

Matcher 1 Matcher 3…

Characteristics
of attr.

Post-prune?

Size of
validation set

Split measure
Decision

tree

matcher

KnobsComponent
Constraint
enforcer

Match
selectors

Combiners

Matchers

Fig. 2 The LSD system: a library of matching components, b execution graph, and c sample knobs

(a)

Constraint
enforcer

Match
selector

Matcher

(b)

Matcher
Combiner

…Matcher 1 Matcher 3

Constraint
enforcer

Match
selector

Combiner

Fig. 3 Execution graphs of a the SimFlood matching system, and
b the LSD–SF matching system

score of agent-name and contact-agent is now (0.5+0.1)/
2 = 0.3. This matrix can be “unfolded” into a set of match
predictions as shown in Fig. 4d. The first prediction (in
the first row of the figure) for example states that area
matches address with score 0.7, and description with
score 0.3.

Notice that both area and comments are predicted
to best match address, a wrong outcome. The constraint
enforcer can address such situation. Given a
domain integrity constraint, such as “only one attribute
can match address” (see Fig. 4e), the enforcer will adjust
the similarity scores to best reflect this constraint (see
[25] for more detail). Finally, the match selector returns
the matches with the highest score, as shown in Fig. 4f.

COMA and SimFlood Figure 1a shows the execution
graph of the COMA system [23], which was the first
to clearly articulate and embody the multi-component
architecture (recently a more advanced version of

COMA has become publicly available as COMA++ at
http://dbs.uni-leipzig.de/Research/coma.html). Figure
3a shows the execution graph of the SimFlood match-
ing system [46]. SimFlood employs a single matcher (a
name matcher [46]), then iteratively applies a constraint
enforcer. The enforcer exploits the heuristic “two attri-
butes are likely to match if their neighbors (as defined
by the schema structure) match” in a sophisticated man-
ner to improve the similarity scores. Finally, SimFlood
applies a match selector (called filter in [46]).

LSD–SF We can combine LSD and SimFlood to build
a system called LSD–SF, whose execution graph is shown
in Fig. 3b. Here, the LSD system (without the constraint
enforcer and the match selector) is treated as another
matcher, and is combined with the name matcher of
SimFlood, before the constraint enforcer of SimFlood.

User interaction Current matching systems usually of-
fer two execution modes: automatic and interactive [23,
25,62]. The first mode is as described above: the sys-
tem takes two schemas, runs without any user interven-
tion, and produces matches. In the second mode users
can provide feedback during execution, and the system
can selectively rerun certain components, based on the
feedback (e.g., see [23,25]). Since our current focus is on
automating the entire tuning process (allowing optional
user feedback only in creating the synthetic workload,
but not during the staged tuning, see Sect. 3.2), we leave
the problem of tuning for the interactive mode as fu-
ture work. Put another way, we tune to optimize the
matching provided when user interaction begins.

2.1.3 Tuning knobs

Knobs of the components We treat matching compo-
nents as black boxes, but assume that each of them has
a set of knobs that are “exposed” and can be adjusted.

102 Y. Lee et al.

realtor.com

Urbana, IL James Smith
Seattle, WA Mike Doan

address agent-name

area contact-agent

Peoria, IL (206) 634 9435
Kent, WA (617) 335 4243

homes.com

Name
Matcher

Naive Bayes
Matcher

Combiner 0.3

agent

name

contact

agent
0.5

0.1

area => (address, 0.7), (description, 0.3)
contact-agent => (agent-phone, 0.7), (agent-name, 0.3)

comments => (address, 0.6), (desc, 0.4)

Match
Selector

Constraint
Enforcer

Only one attribute of source
schema matches address

area = address

contact-agent = agent-phone

...

comments = desc

(a) (b) (c)

(f)(e)(d)

Fig. 4 An illustration of the working of the LSD system

Each knob is either (I) unordered discrete, (II) ordered
discrete or continuous, or (III) set valued.

For example, Fig. 2c shows a decision tree matcher
that has four knobs. The first knob, characteristics-of-
attr, is set-valued. The matcher has defined a broad set
of salient characteristics of schema attributes, such as the
type of the attribute (integer, string, etc.), the min, max,
average value of the attribute , and so on (see [30,40]
for more examples). The user (or eTuner) must assign
to this knob a subset of these characteristics, so that the
matcher can use the selected characteristics to compare
attributes. If no subset is assigned, then a default one
is used. In learning terminology, this is known as fea-
ture selection, a well-known and difficult problem [20].
Figure 8 lists a sample of features that matching systems
commonly use (and hence are encoded in eTuner for
tuning purposes).

The second knob, split-measure, is unordered dis-
crete (with values “information gain” or “gini index”),
and so is the third knob, post-prune? (with values “yes”
or “no”). The last knob, size-of-validation-set, is ordered
discrete (e.g., 40 or 100). These knobs allow the user
to control several decisions made by the decision tree
matcher during the training process.

As another example, consider a combiner over n
matchers m1, . . . , mn, which merges the matchers’ simi-
larity matrices by computing weighted sums of the scores
(e.g., [25]). Specifically, the combiner assigns to each
matcher mk a weight wk, then compute the combined
score:

score(ai, aj) =
n∑

k=1

wk ∗ score(mk, ai, aj),

where score(mk, ai, aj) is the similarity score between
attributes ai and aj as produced by matcher mk. In this
case, the combiner has n knobs, each of which must
be set to reflect the weight w of the corresponding
matcher.

Knobs of the execution graph For each node of the
execution graph, we assume that the user (or eTuner)
can plug in one of the several components from the
library. Consider for example the node Matcher 1 of
the execution graph in Fig. 2b. The system M may
specify that this node can be assigned either the
q-gram name matcher or TF/IDF name matcher from
the library (Fig. 2a).

Consequently, each node of an execution graph can
be viewed as an unordered discrete knob. Note that it is
conceptually possible to define “data flow” knobs, e.g.,
to change the topology of the execution graph. How-
ever, most current matching systems (with the possible
exception of [10]) do not provide such flexibility, and it
is not examined here.

Finally, we note that the model described above
covers a broad range of current matching systems,
including LSD, COMA, and SimFlood, as discussed ear-
lier, but also AutoMatch, Autoplex, GLUE, PromptDiff
[9,28,53], those in [30,41,52], and COMA++ and Proto-
plasm, industrial-strength matching systems under

eTuner: tuning schema matching software using synthetic scenarios 103

development at the University of Leipzig1 and Micro-
soft Research [10], respectively.

2.2 Tuning of matching systems

We are now in a position to define the general tuning
problem.

Definition 1 (Match Tuning Problem) Given

• matching system M = (L, G, K), as defined above;
• workload W consisting of schema pairs (S1,T1),

(S2, T2), . . ., (Sn,Tn) (often the range of schemas will
be described qualitatively, e.g., “future schemas to be
integrated with our warehouse”); and

• utility function U defined over the process of match-
ing a schema pair using a matching system; U can
take into account performance factors such as match-
ing accuracy, execution time, etc;

the match tuning problem is to find a combination of
knob values (called a knob configuration) C∗ that max-
imizes the average utility over all schema pairs in the
workload. Formally, let M(C) be the matching system
M using the knob configuration C, and let C be the space
of all knob configurations, as defined by M, then

C∗ = argmaxC∈C

[
n∑

i=1

U(M(C), (Si, Ti))

]/
n, (1)

where U(M(C), (Si, Ti)) is the utility of applying M(C)

to the schema pair (Si, Ti), and function argmaxa E(a)

returns the argument a that maximizes E(a).

In this paper, we restrict the above general problem.
First, we use just one utility function U accuracy. Specifi-
cally we use F-1, a combination of precision and recall
formalized in Sect. 5. F-1 is an accuracy measure com-
monly used in the field of Information Retrieval (IR).
Since the problem of schema matching can be viewed as
a variant of the IR problem (e.g., retrieve all and only
matching attribute pairs vs. retrieve all and only relevant
documents), the measure F-1 has also been often used
in recent schema matching work [22,23,41,46,62].

As a second restriction, we tune M for the workload
of matching a single schema S with all future schemas
Ti (e.g., “future schemas” to be integrated with our
warehouse, as mentioned earlier). This scenario arises in
numerous contexts, including data integration and ware-
housing [25,62]. In the next two sections, we describe the
eTuner solution to this problem.

1 http://dbs.uni-leipzig.de/en/Research/coma.html.

3 The eTuner Approach

The eTuner architecture (see Fig. 5) consists of two main
modules: workload generator and staged tuner. Given
a schema S, the workload generator applies a set of
transformation rules to generate a synthetic workload.
The staged tuner then tunes a matching system M using
the synthetic workload and tuning procedures stored in
an eTuner repository. The tuned system M can now be
applied to match schema S with any subsequent schema.
It is important to note that the transformation rules and
the tuning procedures are created only once, indepen-
dently of any application domain, when implementing
eTuner.

While the tuning process is completely automatic,
eTuner can also exploit user assistance to generate an
even higher quality synthetic workload. Specifically, the
user can “augment” schema S with information on the
relationships among attributes (see the dotted arrows in
Fig. 5).

The rest of this section describes the workload gener-
ator, in both automatic and user-assisted modes, while
the next section describes the staged tuner.

3.1 Automatic workload creation

Given a schema S and a parameter n, the workload gen-
erator proceeds in three steps. (1) It uses S to create
two schemas U and V, which are identical to S but are
associated with different data tuples. (2) It perturbs V to
generate n schemas V1, V2, . . . , Vn. (3) For each schema
Vi, i ∈ [1, n], it traces the perturbation process to create
the set of correct semantic matches �i between U and
Vi, then outputs the set of triples {(U, Vi, �i)}n

i=1 as the
synthetic workload. We now describe the three steps in
detail.

3.1.1 Create schemas U and V from schema S

The workload generator begins by creating two schemas
U and V which are identical to S. Next, it partitions data
tuples D associated with S (if any) into two equal in

Schema S
Workload
Generator

Staged
Tuner

Transformation
Rules

Tuning
Procedures

User Augmented
Schema S

Synthetic
Workload

Tuned
Matching
System M

Matching System
M = (L, G, K)

Fig. 5 The eTuner architecture

104 Y. Lee et al.

size, but disjoint sets Du and Dv, then assign them to U
and V, respectively. This is to ensure that once V has
been perturbed into Vi, we can pair U and Vi to form a
matching scenario where the schemas do not share any
data tuple. Using schemas that share data tuples would
make matching easier [11,19] and thus may significantly
bias the tuning process.

The above step is illustrated in Fig. 6a, which shows
a schema S with three tables. The schemas V and U
generated from S also have three tables with identical
structures. However, table 3 of S, which we show in detail
as table EMPLOYEES in Fig. 6a, has in effect being par-
titioned into two halves. Its first two tuples go to the
corresponding table 3 of schema V, while the remaining
two tuples go to table 3 of schema U.

More complex partitioning strategies are possible.
For instance, we can try to partition table 3 of schema
S in a way that preserves “joinability”. Specifically, we
try to partition so that the number of tuples in the equi-
join between tables 2 and 3 of schema V will be roughly
equal to the number of tuples in the equijoin between
tables 2 and 3 of schema U, and so on. However, we
experimented, and found that the above simple strategy
of randomizing, then halving tuples in each table worked
as well as these more complex strategies.

3.1.2 Create Schemas V1, . . . , Vn by Perturbing V

To create a schema, say, V1, the workload generator
perturbs schema V in several steps, using a set of pre-
specified, domain-independent rules stored in eTuner.

• Perturbing number of tables: The generator ran-
domly selects a perturb-number-of-tables rule to
apply to the tables of schema V. This is repeated
αt times (currently set to two in our experiments).
eTuner currently has three such rules. The first one
randomly selects two tables that are joinable via a
key-foreign key constraint, and merges them based
on that join path to create a new table. The sec-
ond rule randomly selects and splits a table into
two. When splitting the table, it adds to each half a
column id and populates these columns with values
such that the two halves can be joined via these id
columns to recover the original table. The third rule
does nothing (i.e., leaves the tables “as is”).
As an example, after applying the rules, schema V at
the top of Fig. 6a, which has three tables 1, 2, 3, has
been transformed into schema V1, which has only
two tables 12 and 3. The tables 1 and 2 of V have
been merged into table 12 of V1.

• Perturbing the structure of each table: For each
table of schema V1, the generator now perturbs
its structure. It randomly selects column-transfor-
mation rules to apply to the columns of the table,
exactly αc times (currently set to four). eTuner has
four such rules. The first one merges two columns.
Currently, two columns can be merged if (a) they are
neighboring columns, and (b) they share a prefix or
suffix (e.g., first-name and last-name). The second
rule randomly removes a column from the table. The
third rule swaps two columns. The fourth rule does
nothing.
Continuing with our example, in Fig. 6b, for table
EMPLOYEES, column first is dropped and two col-
umns last and id are swapped.

• Perturbing table and column names: In the next
step, the name of each table and its columns in
schema V1 are perturbed. eTuner has implemented a
set of rules that capture common name transforma-
tions [19,42,62]. Examples include doing nothing,
abbreviating to the first three or four characters,
dropping all vowels, replacing a name with a syn-
onym (currently obtained from Merriam-Webster’s
online thesaurus), and dropping prefixes (e.g.,
changing ACTIVE-EMPS to EMPS). Rules that
perturb a column name also consider adding a per-
turbed version of the table name as prefix, or bor-
rowing prefixes from neighboring columns. We also
add a rule that changes a column name into a ran-
dom sequence of characters, to model cases where
column names are not intelligible to anyone other
than the data creator. For each name, the rules are
called αn times (currently set to two).
In Fig. 6b, the name of table EMPLOYEES has been
abbreviated to EMPS (the first three letters plus “S”
for plurality). The name of column last has been
added the new table name as a prefix, to become
emp-last. Finally, the name of column salary($) has
been replaced with the synonym wage.

• Perturbing data: In the final step, the generator
perturbs the data of each table column in V1, by per-
turbing the format, then values of the data. eTuner
has a set of rules that capture common transfor-
mation of data formats (and is extensible to add-
ing more rules). Examples include “dropping or
adding $ sign”, “adding two more fractional digits
to make numbers precise”, “converting the unit of
numbers”(e.g., from meters to feet), “changing the
format of area codes of phone numbers”, “inserting
hyphens into phone numbers”, and “changing the
format of dates”(e.g., from 12/4 to Dec 4). For each
column, the generator applies such rules αf times
(currently set to two).

eTuner: tuning schema matching software using synthetic scenarios 105

Perturb # of tables

60,000 $BrownMike2
40,000 $LaupBill1

salary ($)lastfirstid

Schema S

EMPLOYEES

U

EMPS

2
1
id

59328 Brown
45200 Laup
wageemp-last

V V1

1
2 3

1
2

3

70,000 $BondRoy4
30,000 $AnnJean3
60,000 $BrownMike2
40,000 $LaupBill1

salary ($)lastfirstid
EMPLOYEES

70,000$BondRoy4
30,000$AnnJean3

salary ($)lastfirstid
EMPLOYEES

1
2

3

312

312

Perturb the structure of
each table

312

2
1
id

60,000$Brown
40,000$Laup
salary($)last

EMPLOYEES

312
Perturb column
and table names

Perturb data tuples
in each table

EMPS

2
1
id

60,000$ Brown
40,000$ Laup

wageemp-last

(c) Sample matches created between V1 and U

(b) Perturbing the schema V to generate a new schema V1

EMPS.emp-last = EMPLOYEES.last
EMPS.id = EMPLOYEES.id
EMPS.wage = EMPLOYEES.salary($)

(a) Splitting S to create two identical schemas V and U,
with disjoint data tuples

Fig. 6 Perturbing schema S to generate two schemas U and V1 and the correct matches between them

Once the format of a column c has been perturbed,
the generator perturbs the data values. If the val-
ues are numeric (e.g., price, age, etc.), then they
are assumed to have been generated from a normal
distribution with mean μc and variance σc

2. Thus,
the generator estimates μc and σc

2 from current
data values in column c. It then randomly decides
whether to perturb the mean and variance by a ran-
dom amount in the range ±[10,100]%. Let the new
mean and variance be μ′

c and σ ′
c

2, respectively. Then
each value x is now generated according to the nor-
mal distribution:

probc(x) = 1

σ ′
c
√

2π
exp

(−(x − μ′
c)

2

2σ ′2
c

)
(2)

If the data instances of column c are textual (e.g.,
house description), they are perturbed in the same
way, with some minor differences. Specifically, first
the generator tokenizes all instances of column c,
then compiles the vocabulary Q of all tokens. Sec-
ond, it computes the length (i.e., the number of
tokens) of each data instance. Assuming that the
length is generated according to a normal distribu-
tion with mean μc and variance σc

2, the generator
perturbs μc and σc

2 by random amounts in the range
±[10,100]% to generate new mean μ′

c and variance
σ ′

c
2. The each new textual data instance x is now

generated as follows: first, the length of x is gener-
ated according to the normal distribution with mean
μ′

c and variance σ ′
c

2; second, tokens for x are taken
randomly from the vocabulary Q.
We note that while the above data perturbation
methods appear to work well in our experiments,
more sophisticated perturbation methods are possi-
ble, and finding a (near) optimal one is an interesting
research problem.

Continuing with our example, consider column wage
of Table EMPS in Fig. 6b (the rightmost table). Its
format has been perturbed so that the signs “$” and
“,” are dropped, and its values have been changed,
so that “40,000$” is now “45200”.

3.1.3 Create semantic matches between Vi and U

In the final step, the generator retraces the perturba-
tion history to create correct semantic matches between
V1 and U. Briefly, if attribute a of V1 is derived from
attributes b1, . . . , bk of schema V, then (since schemas
U and V are identical) we create a = b1, . . . , a = bn

as correct matches between V1 and U. Figure 6c lists
the correct matches between table EMPS of V1 and
table EMPLOYEES of U. As another example, suppose
attributes first-name and last-name of V are merged to
create attribute name of V1, then the generator derives
the matches name = first-name and name = last-name.

Let �i be the set of derived semantic matches be-
tween Vi and U. The workload generator then returns
the set of triples {(U, Vi, �i)}n

i=1 as the synthetic work-
load on which to tune matching system M.

Figure 7 gives the pseudo code of the workload
generator.

3.2 User-assisted workload creation

The generator can exploit user assistance whenever
available, to build a better workload, which in turn
improves tuning performance.

To illustrate the benefits of user assistance, suppose
each employee can be contacted via two phone numbers,
phone-1 and phone-2 (as attributes of schema U). Sup-
pose while generating schema V1 attribute phone-1 is
renamed emp-phone and phone-2 is dropped. Then the
generator will declare the match emp-phone = phone-
1 correct (between V1 and U), but will not recognize

106 Y. Lee et al.

Fig. 7 High-level description of the workload generator

emp-phone = phone-2 as also correct (since emp-phone
is not derived from phone-2, see Sect. 3.1.3). This is
counter-intuitive, since both numbers are the employee’s
phone numbers. Furthermore, it will force the tuning
algorithm to look for “artificial” ways to distinguish
the two phone numbers, thereby overfitting the tuning
process.

To address this issue, we say a group of attributes
G = {ai1, . . . , ain} of schema S are match-equivalent if
and only if whenever a match b = aij, 1 ≤ j ≤ n is judged
correct, then all other matches b = aik, 1 ≤ k ≤ n, k �= j,
are also judged correct. In the above example, phone-1
and phone-2 are match equivalent. As another exam-
ple, (depending on application) a user may also judge
first-name and last-name match equivalent. We ask the
user to identify match equivalent attributes of schema
S. The generator then refines the set of correct semantic
matches, so that if G = {ai1, . . . , ain} is match equivalent,
and match b = aij is correct for some j in the range [1, n],
then for all k in the range [1, n] such that k �= j, match
b = aik is also correct.

The user does not have to specify all match-equiva-
lent attribute groups, only as much as he/she can afford.
Further, such grouping is a relatively low-level effort,
since it involves examining only schema S, and judging
if attributes are semantically close enough to be deemed
match equivalent. Such attributes are often neighbors
of one another, facilitating the examination. Section 5
shows that such user assistance can significantly improve

the tuning performance. The user can also assist in many
other ways, e.g., by suggesting domain-specific perturba-
tion rules; but such possibilities are outside the scope of
this paper.

4 Tuning with the synthetic workload

We now describe how to tune a matching system M
with a synthetic workload W as created in the previous
section.

4.1 Staged tuning

Our objective is to find a knob configuration of M that
maximizes the average accuracy over W (see Defini-
tion 1). We can view this problem as a search in the
space of possible knob configurations. However, exhaus-
tive search is impractical, since the configuration space
is usually huge. For example, the LSD system described
in Sect. 5 has 21 knobs, with at least two possible values
per knob, resulting in at least 221 configurations.

To address this problem, we propose a staged, greedy
tuning approach. Assume that the execution graph of
M has k levels. We first tune each node at the bottom,
i.e., at the kth level, in isolation. Next, we tune subsys-
tems that consist of nodes at the (k−1)th and kth levels.
While tuning such subsystems (described in detail in the
following subsection), we assume that the nodes at the

eTuner: tuning schema matching software using synthetic scenarios 107

kth level have been tuned, so their knob values are fixed,
and we only need to tune knobs at level (k − 1). If there
is a loop of m components, then the loop is treated as
a single component when being considered for addition
to a subsystem. This staged tuning repeats until we have
reached the first level and hence have tuned the entire
system.

Consider for example tuning the LSD system in
Fig. 2b. We first tune each of the matchers 1, . . . , n. Next,
we tune the subsystem consisting of the combiner and
the matchers, but assuming that the matchers have been
tuned. Then we tune the subsystem consisting of the
constraint enforcer, combiner, and matchers, assuming
that the combiner and matchers have been tuned, and
so on.

Suppose that the execution graph has k levels, m
nodes per level, and each node can be assigned one of
the n components in the library. Assume that each com-
ponent has p knobs, and each knob has q values. Then
staged tuning examines only a total of k×(m×(n×p×q))

out of (n×p×q)k×m knob configurations, a drastic reduc-
tion. Section 5 shows that while not guaranteeing to find
the optimal knob configuration, staged tuning still out-
performs currently possible tuning methods.

4.2 Tuning subsystems of M

We now describe in detail how to tune a subsystem S
of the original matching system M. First, if S does not
produce matches as output (e.g., producing similarity
matrix instead), we add the match selector of M as the
top component of S. This is to enable the evaluation of
S’s accuracy on the synthetic workload.

We then tune the knobs of S as follows. Recall from
Sect. 2.1.3 that there are three types of knobs: (I) unor-
dered discrete, (II) ordered discrete or continuous, and
(III) set valued. Type-I knobs usually have few values
(e.g., “yes”/“no”), while Type-II knobs usually have a
large number of values. Hence, we first convert each
type-II knob into a type-I knob, by selecting q equally-
spaced values (currently set to six). For example, for
value range [0,1], we select 0, 0.2, etc.; for value range
[0,500], we select 0, 100, 200, etc.

We now only have type-I and type-III knobs. In fact,
in practice we often have just one type-III (set-valued)
knob: selecting features for a matcher (e.g., [25,30]).
Hence, we assume that there is just one type-III knob for
subsystem S, which handles feature selection. In the next
step, we form the Cartesian space of all type-I knobs.
This space is usually small, since each type-I knob has
few values, and S does not have many knobs (due to the
staged tuning assumption). For each knob setting in this
Cartesian space, we can then tune for the lone type-III

knob, as described in detail in Sect. 4.3 below, then select
the setting with the highest accuracy.

At this moment, we have selected a value for all
type-I and type-III knobs of S. Recall that some type-I
knobs are actually converted from type-II ones, which
are ordered discrete or continuous. We can now focus on
these type-II knobs, and perform hill climbing to obtain
a potentially better knob configuration.

Tuning interrelated knobs We may know of fast pro-
cedures to tune a set of interrelated knobs. For exam-
ple, a weighted sum combiner has n knobs that specify
matcher weights [25]. They can be tuned using linear
or logistic regression (over the synthetic workload) [25].
However, such tuning often requires that all other knobs
of S have been set (otherwise S cannot be run). For this
reason, in Step 1 we run the tuning process as described
earlier, to obtain reasonable values for the knobs of S.
Then in Step 2 we run procedures to tune interrelated
knobs (if any, these procedures are stored in eTuner). If
this tuning results in a better knob configuration, then we
take it; otherwise we use the knob configuration found
in Step 1.

4.3 Tuning to select features

The only thing that remains is to describe how to tune
the type-III knob that selects features for subsystem S.
Without loss of generality, assume S is a matcher.

Recall from Sect. 2.1.3 that a matcher often trans-
forms each schema attribute into a feature vector, then
uses these vectors to compare attributes. In eTuner we
have enumerated a set of features judged to be salient
characteristics of schema attributes, based on our match-
ing experience and the literature (e.g., [9,23,25,28,30,
40,42,46]). Figure 8 shows 16 sample features. The objec-
tive of tuning is then to select from the set F of all
enumerated features a subset F∗ that best assists the
matching process.

The simplest solution to find F∗ is to enumerate all
subsets of F, run S with each of the subsets over the
synthetic workload, then select the subset with the high-
est matching accuracy. This solution is clearly impracti-
cal. Hence, we consider a well-known greedy selection
method called wrapper [20], which starts with a set of
features (e.g., the empty set), then considers adding or
deleting a single feature. The possible changes to the
feature set are evaluated by running S over the syn-
thetic workload, and the best change is made. Then a
new set of changes is considered. Figure 9 describes the
wrapper method [20], as adapted to our context.

However, the wrapper method can still be very expen-
sive. For example, even just for 20 features, it would run

108 Y. Lee et al.

S over the synthetic workload 210 times. To reduce the
runtime complexity, given the feature set F, we first ap-
ply another selection method called Relief-F (described
in detail in [20] and shown in Fig. 12) to select a small
subset F ′. Relief-F detects relevant features well, and
runs very fast, as it examines only the synthetic work-
load, not running any matching algorithms [20]. We then
apply the above greedy wrapper algorithm to the much
smaller set F ′ to select the final set of features F∗.

Selecting features for text-based matchers Features as
described above are commonly used by learning meth-
ods such as decision tree, neural network [25,28,30,40]
and also by many rule-based methods (e.g.,
[23,42,46]). However, many learning-based (e.g., Naive
Bayes, SVM) as well as IR-based matching methods
(e.g., [18,25]) view data instances as text fragments, and
as such operate on a different space of features. We now
consider generating such feature spaces and the associ-
ated feature selection problem.

We can treat each distinct word, number, or special
characters in the data instances as a feature. Thus, the

Min/nbMin
Minimum length/non-blanks of character attributes
Minimum value of numeric attributes

IsNumeric If numeric, YES; else NO

Feature Descriptions

of Number of the “ ” symbol
of $ Number of the “$” symbol
of token Number of tokens

of digit Number of digits
Type Type of attributes

Max/nbMax
Maximum length/non-blanks of character attributes
Maximum value of numeric attributes

Avg/nbAvg Average length/non-blanks of character attributes
Average value of numeric attributes

CV/nbCV
CV of length/non-blanks of character attributes
CV of numeric attributes

SD/nbSD SD of length/non-blanks of character attributes
SD of numeric attributes

@ @

Fig. 8 Sixteen sample features that eTuner uses in selecting a best
set of features for the schema attributes. CV stands for “coefficient
of variation” and SD for “standard deviation”

Fig. 9 High-level description of the wrapper feature selection
method (called step-wise selection in [20])

201 61801

length-3

ave Goodwin , $

others

ALL

Words

length-73-digits … 5-digits… … …… …

…… … … … …… … … … … …

delimiters

Special CharactersNumbers

Fig. 10 An example taxonomy for the Naive Bayes matcher

address 201 Goodwin ave. Urbana, IL 61801 is repre-
sented with eight features: four words, two numbers,
and two special characters “,” and “.”. However, for zip
codes, specific values such as “61801” are not important;
what we really need (to match attributes accurately) is
knowing that they are 5-digit numbers. Hence, we should
consider abstracted features, such as 5-digits, in addition
to word-level features.

Figure 10 shows a sample taxonomy of features over
text for eTuner (adapted from [12]). A line cutting across
this taxonomy represents a selected feature set. Con-
sider for example the thick line in the figure. It states
that (a) all numbers are abstracted into 1-digit, 2-digits,
etc, (b) all words can be treated as features, and (c) all
special characters are abstracted to delimiters and oth-
ers. Given this, the above address is now represented as
the set

{3-digits, Goodwin, ave, delimiters,
Urbana, delimiters, IL, 5-digits}

To find the best feature set, we employ a method sim-
ilar to the wrapper method (see Fig. 11), starting from
the feature set at the bottom of the taxonomy (the one
with no abstracted features). In each iteration we add a
new abstraction (at a higher level of the taxonomy) if it
leads to increased accuracy, as measured by applying the
matcher to the synthetic workload. Since the number of
abstraction is relatively small, the feature selection step
is fast.

Fig. 11 High-level description of the wrapper method, as adapted
to feature selection for text-based matchers

eTuner: tuning schema matching software using synthetic scenarios 109

Fig. 12 High-level description of the Relief-F algorithm [20], as adapted to feature selection in eTuner

5 Empirical evaluation

We have evaluated eTuner over four matching systems
applied to four real-world domains. In this section, we
first describe the domains, each of which consists of a set
of data sources, the matching systems, and our experi-
mental settings.

Next, we examine five manual and semi-automatic
tuning methods that can be used instead of eTuner.
Specifically, we consider the following methods
(described in detail in Sects. 5.2– 5.4): (1) Applying the
off-the-shelf matching systems “as is”, that is, no tuning.
(2) Tuning each system independently of any domain, in
effect imitating a vendor tuning a system before release.
(3) “Quick and dirty” tuning, by tweaking a few knobs,
examining the output of a matching system, then adjust-
ing the knobs again. (4) Tuning a matching system once
for each domain, taking into account the characteristics
of data sources in the domain. (5) Tuning a matching
system once for each data source, by leveraging known
matches from the schema of that data source to several
other schemas. Our results show that source-dependent
tuning [method (5)] is most labor consuming, but also
yields the highest average matching accuracy.

We then examine tuning with eTuner. Our results
show that when using matching systems tuned with
eTuner, we improve matching accuracy in 14 out of 16
matching scenarios (described in Sect. 5.2), by 1–15%,
compared to using matching systems tuned with the
source-dependent tuning method. eTuner yields lower
matching accuracy in only two cases, by 2%. In addi-
tion to higher accuracy in most cases, eTuner also incurs
relative little user effort, which consists mainly of “hook-
ing” eTuner up with the knobs of a matching system. In
contrast, source-dependent tuning is far more labor
intensive. Finally, we show that eTuner is robust to
changes in the synthetic workload, that it can exploit
prior match results whenever available, and that the
synthetic workload and the staged tuner perform well
compared to the “ideal workload” and to exhaustive
search. Overall, the experimental results demonstrate
the promise of the eTuner approach.

5.1 Experimental settings

Domains We obtained publicly available schemas in
four domains. The schemas have been used in recent

110 Y. Lee et al.

……………
596-9446
598-2553
693-3579

phone_number

…ProwellEmily3
…ThomasRenee2
…SimpsonJanet1
…last_namefirst_nameid

……………
3
2
1

agent_id

…$76,500TXWeatherford
…$194,500TXBay
…$54,500TXBay
…pricestatecity

…
3
3
1

#bedroom

Agent-Details

House-Details

…
Fiction

Category

…
…12345678Charles DickensGreat Expections
…ISBNAuthorTitle

Books

… … …

…
Rock

Genre

…
…19NirvanaNirvana
…PriceArtistAlubumName

Music

… … …

… …
…Jack Daniel321 Phony St. FakeVille, WA 982352
…ManagerLocationID

Warehouse

… …

…
475

Quantity
17589724Adore1

IDTitleWarehouseID
Availability

… … …

2

4

3

2

tables per
schema

50135Courses

201010Inventory

120502Product

30

attributes per
schema

schemas

10005Real Estate

tuples per tableDomain

LSD-SF: 7 Matchers, 7 Combiners, 1 Constraint enforcer, 2 Match selectors,

10 Knobs

iCOMA: 10 Matchers, 4 Combiners, 2 Match selectors, 20 Knobs

SimFlood: 3 Matchers, 1 Constraint enforcer, 2 Match selectors, 8 Knobs

LSD: 6 Matchers, 6 Combiners, 1 Constraint enforcer, 2 Match selectors,

21 Knobs

(a) (b)

(c) (d)

Matching systems

Domains

Fig. 13 a Real world domains, b matching systems for our experiments, c a sample schema from Real Estate, and d a sample schema
from Inventory

schema matching experiments [19,25,41]. The domains
have varying numbers of schemas (2–10) and diverse
schema sizes (10–50 attributes per schema, see Fig. 13a).
Real Estate lists houses for sale. Courses contains time
schedules for several universities. Inventory describes
business product inventories, and Product stores prod-
uct descriptions of groceries. Figure 13c,d shows sample
schemas in Real Estate and Inventory.

Matching systems Figure 13b summarizes the four
matching systems in our experiments. We began by
obtaining three multi-component systems that were
proposed recently. The LSD system was originally
developed by one of us [25] to match XML DTDs. We
adapted it to relational schemas. The SimFlood system
[46] was downloaded from the Web.2 The COMA system
was described in [23]. Since we did not have access to
COMA, we implemented a version of it called iCOMA.
The iCOMA library includes all components described
in [23], except the hybrid and reuse matchers. Virtu-
ally all matchers of COMA exploit only schema related
information. We added the decision tree matcher to the
library, to also exploit data instances. Finally, we com-
bined LSD and SimFlood (as described in Sect. 2), to
obtain LSD–SF, the fourth matching system. Figure 13b

2 http://www-db.stanford.edu/∼melnik/mm/sfa.

shows that the systems have 6–17 components, with 8–21
knobs. We now describe each matching system in detail.

• LSD: This system has six matchers, six combiners,
one constraint enforcer, and two match selectors
(Fig. 14). Both the decision tree matcher [30] and the
Naive Bayes matcher [25,50] exploit data
instances. All knobs for the decision tree matcher
have been discussed in Sect. 2.1.3 (and see [50] for
further detail). The Naive Bayes matcher has one
knob, abstraction-level, for choosing the abstraction
level of text tokens, as described in Sect. 4.3.
The name matcher, the edit distance matcher, and
the q-gram matcher exploit names of attributes and
tables. The name matcher is similar to the name-
based evaluator in [19]. It has one knob for choosing
a tokenizing rule. Currently, there are five rules: use
each word as a token (no-stemming), use Porter’s
stemmer (stemming), and generate q-gram tokens
after using Porter’s stemmer (stemming-2gram, stem-
ming-3gram, stemming-4gram). The edit distance
matcher computes the number of edit operations
necessary to transform one name into another. The
q-gram matcher compares names based on their asso-
ciated sets of q-grams, i.e., sequences of q characters.
The q-gram matcher has a knob, gram-size, to select
the value of q among 2, 3, and 4.

eTuner: tuning schema matching software using synthetic scenarios 111

Fig. 14 The library of
matching components of LSD

type IIsize-of-validation-set

type Iabstraction-levelNaïve Bayes matcher

type Istemming-algorithmName matcher

Edit distance matcher

type IIgram-sizeQ-gram matcher

Common instance matcher

Average combiner

Combiner

Min combiner

Max combiner

Linear regression combiner

type Isplit-measure

Decision tree combiner type Ipost-prune?

type IIsize-of-validation-set

type Isplit-measure
Column-based decision tree

combiner
type Ipost-prune?

type IIsize-of-validation-set

Integrity constraint enforcerConstraint Enforcer

type IIthresholdThreshold-based selector
Match Selector

type IIwindow-sizeWindow-based selector

type Ipost-prune?
Decision tree matcher

Component name

Matcher

Component type

split-measure

characteristics-of-attr

Knob name

type III

type I

Knob
Type

The last matcher, common instance matcher, com-
pares two attributes based on the number of
instances that they share.
The average, min, and max combiners take the
(respectively) average, min, and max of the simi-
larity scores. The linear regression combiner learns
a weight for each matcher and combines the similar-
ity matrices using the learned weights. The decision
tree combiner is similar to the decision tree matcher,
except that for each pair of attributes the feature
set is a set of similarity scores generated by match-
ers. Since the feature set is fixed, we only need to
tune three knobs: split-measure, post-prune?, and
size-of-validation-set. The column-based decision
tree combiner is just like the decision tree com-
biner, but it constructs a decision tree for each target
attribute.
The integrity constraint enforcer and the thresh-
old-based selector are described in Sect. 2.1.1. The
threshold-based selector has a knob for setting the
threshold value. LSD also has a window-based selec-
tor. For each target attribute, it selects a pair of attri-
butes having the highest similarity score and pairs of
attributes whose scores are within the boundary of

the window size with best score. Its knob is called
window-size. The total number of knobs for LSD is
21 (counting also knobs of the execution graph, such
as whether a certain matcher should be used).

• iCOMA: Fig. 15 lists components of iCOMA: ten
matchers, four combiners, and two match selectors.
Most components are the same as those of LSD, ex-
cept for five new matchers and one new combiner.
The affix, soundex, and synonym matcher
exploit attribute names. The data type matcher ex-
ploits data types and the user feedback matcher
exploits user-specified matches. These matchers are
fully described in [23].
The weighted sum combiner computes the weighted
sum of similarity matrices using the weight for each
matcher. Since iCOMA has five matcher nodes in
its execution graph, the weighted sum combiner has
five knobs, each of which must be set to reflect the
weight of the corresponding matcher. Thus, iCOMA
has a total of 20 knobs.

• SimFlood: Figure 16 lists the components of Sim-
Flood: three matchers, one constraint enforcer, and
two match selectors. The three new components are
the exact string matcher, the SF-join constraint

112 Y. Lee et al.

Fig. 15 The library of
matching components of
iCOMA

Data type matcher

Synonym matcher

Soundex matcher

Affix matcher

Common instance matcher

type IIsize-of-validation-set

type Istemming-algorithmName matcher

Edit distance matcher

type IIgram-sizeQ-gram matcher

User feedback matcher

Average combiner

Combiner
Min combiner

Max combiner

type II
A knob for each

matcher
Weighted sum combiner

type IIthresholdThreshold-based selector
Match Selector

type IIwindow-sizeWindow-based selector

type Ipost-prune?
Decision tree matcher

Component name

Matcher

Component type

split-measure

characteristics-of-attr

Knob name

type III

type I

Knob
Type

Fig. 16 The library of
matching components of
SimFlood

type IPropagationCoefficient
SF-join constraint enforcerConstraint Enforcer

type IFixpointFormula

Exact string matcher

Edit distance matcher

type IIgram-sizeQ-gram matcher

type IIthresholdThreshold-based selector
Match Selector

type IIthresholdType&threshold-based selector

Component name

Matcher

Component type Knob name
Knob
Type

enforcer, and the type and threshold-based selector.
The exact string matcher returns 1 if both attribute
names are same. Otherwise, it returns 0 as a similar-
ity score.
The SF-join constraint enforcer exploits the heuristic
“two attributes are likely to match if their neighbors
match”. As described in [46], it has two knobs – Prop-
agationCoefficient and FixpointFormula. The Propa-
gationCoefficient knob chooses a rule for computing
the propagation coefficients and the FixpointFormu-
la selects one variation of the fixpoint formula (and
see [46] for further detail).
The type and threshold-based selector is similar to
the threshold-based selector discussed earlier, but it
also considers the type of an attribute; if attributes in

a candidate match have different types, the selector
discards this candidate match. This selector has one
knob, and SimFlood has a total of eight knobs.

• LSD–SF: Figure 17 lists the components of
LSD–SF seven matchers, seven combiners, one con-
straint enforcer, and two match selectors. There is
only one new matching component: the LSD–SF
combiner. This combiner merges the similarity matri-
ces from the matcher that originally comes from SF
(the left matcher in Figure 3b), and LSD (the big box
at the lower-right corner in Fig. 3b). It has one knob
called which-matcher?, for selecting one of these two
matchers. Since we assume that the “LSD” matcher
is tuned already, LSD–SF has only 10 knobs.

eTuner: tuning schema matching software using synthetic scenarios 113

Fig. 17 The library of
matching components of
LSD–SF

type IPropagationCoefficient
SF-join constraint enforcerConstraint Enforcer

type IFixpointFormula

type IIthresholdThreshold-based selector
Match Selector

type IIthresholdType&threshold-based selector

Type Iwhich-matcher?LSD-SF combiner

Common instance matcher

type IIsize-of-validation-set

type Iabstraction-levelNaïve Bayes matcher

type Istemming-algorithmName matcher

Edit distance matcher

type IIgram-sizeQ-gram matcher

Exact string matcher

Average combiner

Combiner

Min combiner

Max combiner

Linear regression combiner

type Isplit-measure

Decision tree combiner type Ipost-prune?

type IIsize-of-validation-set

type Isplit-measure
Column-based decision tree

combiner
type Ipost-prune?

type IIsize-of-validation-set

type Ipost-prune?
Decision tree matcher

Component name

Matcher

Component type

split-measure

characteristics-of-attr

Knob name

type III

type I

Knob
Type

Experimental methodology For each of the four
domains described in Fig. 13, we randomly selected a
schema to be the source schema S. Next we applied the
above four matching systems (tuned in several ways, as
described below) to match S and the remaining schemas
in the domain (treated as future target schemas). This
was repeated four times except for Product, which con-
tains only two sources. We then report the average accu-
racy per domain. For eTuner, we set the size of the
synthetic workload at 30, and the number of tuples per
schema table at 50.

Performance measure Following recent schema
matching practice [22,23,41,46,62], we use the F1 score
to evaluate matching accuracy. Given a set of candidate
matches for S and T, we have F1 = (2PR)/(P+R), where
precision P is the percentage of candidate matches that
are correct, and recall R is the fraction of all correct
matches discovered. The objective of tuning is to find
the knob configuration that maximizes F1 score.

5.2 The need for tuning

We begin by demonstrating the need for tuning, us-
ing Fig. 18a–d. The figures show the results for LSD,
iCOMA, SimFlood, and LSD–SF, respectively. Each fig-
ure shows the results over four domains: Real Estate,
Product, Inventory, and Course. Thus we have a total
of 16 groups: one for each pair of system and domain,
separated by dotted vertical lines on the figures.

We first applied the matching systems “as is” to the
domains, and reported the accuracy as the first bar in
each group. For instance, for LSD and Real Estate (the
first group of Fig. 18a), the first bar is 33%. The “as is”
accuracy is 14–62% across all 16 cases, demonstrating
that “off-the-shelf” matching systems are quite brittle.

Next, we did our best to tune each system indepen-
dently of any domain, in effect imitating a vendor tuning
a system before release. (We found graduate student
volunteers not suitable for this task, suggesting that

114 Y. Lee et al.

Fig. 18 Matching accuracy
for a LSD, b iCOMA, c
SimFlood, and d LSD–SF

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Course

A
cc

ur
ac

y
(F

–1
)

InventoryProductReal Estate

Off-the-shelf
Domain-independent

Domain-dependent
Source-dependent
eTuner: Automatic
eTuner: Human-assisted

LSD-SF

CourseInventoryProductReal Estate
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y
(F

–1
)

Off-the-shelf
Domain-independent

Domain-dependent
Source-dependent
eTuner: Automatic
eTuner: Human-assisted

SimFlood

CourseInventoryProductReal Estate
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y
(F

–1
)

Off-the-shelf
Domain-independent

Domain-dependent
Source-dependent
eTuner: Automatic
eTuner: Human-assisted

iCOMA

CourseInventoryProductReal Estate
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y
(F

–1
)

Off-the-shelf
Domain-independent

Domain-dependent
Source-dependent
eTuner: Automatic
eTuner: Human-assisted

LSD

administrators will also have difficulty tuning. See be-
low for details). We examined literature about each
matching system, leveraged our knowledge of machine
learning and schema matching, and tweaked the systems
on pairs of schemas not otherwise used in the experi-
ments. The second bar in each group reports the accu-
racy of applying the tuned systems, scattered in the range
19–78% across all 16 cases. This accuracy suggests that

tuning matching systems once and for all does not work
well, implying the need for more context dependent set-
tings.

5.3 “Quick and dirty” tuning

Next, we examined the following. Whenever we need
to match two schemas S and T, does it seem possible to

eTuner: tuning schema matching software using synthetic scenarios 115

provide a simple interactive tuning wizard? Perhaps one
might carry out “quick and dirty” tuning, by just tweak-
ing a few knobs, examining the output of the
matching system, then adjusting the knobs again? If this
works, then there is no compelling need for automated
tuning.

We asked a few graduate students to perform such
tuning on six pairs of schemas, and found two major
problems. First, it turned out to be very difficult to
explain the matching systems in sufficient details so that
the volunteers feel that they can tune effectively. Con-
sider for example the decision tree matcher described
in Sect. 2.1.3. We found that the tuned version of this
matcher improves accuracy significantly, so tuning it is
necessary. However, it was very difficult to explain the
meaning of its knobs (see Sect. 2.1.3) to a volunteer who
lacked knowledge of machine learning. Second, even
after much explanation, we found that we could per-
form “quick and dirty” tuning better than volunteers.
Similar difficulties arose when we asked volunteers to
tune systems in a domain independent manner (as de-
scribed earlier).

Thus, we carried out tuning ourselves, allotting one
hour per matching task. The measured accuracy over
the six matching tasks is 21–65%. The key difficulty was
that despite our expertise, we still were unable to predict
the effects of tuning certain (combinations of) knobs.
Lacking the ground truth matches (during the tuning
process), we were also unable to estimate the quality of
each knob configuration with high accuracy.

5.4 Domain- and source-dependent tuning

Next, we examined if it is possible to tune just once per
domain, or once per a source S (before matching S with
future schemas).

We tuned each matching system for each domain,
in a manner similar to domain-independent tuning, but
taking into account the characteristics of the domain
sources. (For example, if a domain has many textual
attributes, then we assigned more weight to the Naive
Bayes text classifier [25].) The third bar in each group
(Fig. 18a–d) shows accuracy 19–78%.

We then explored source-dependent tuning. Given
a source S, we assume that we already know matches
between S and two other sources S1 − S2 in the same
domain. We used staged tuning of eTuner over these
known matches to obtain a tuned version of the match-
ing system. Next, we manually tweaked the system, try-
ing to further improve its accuracy over matching S with
S1 −S2. The fourth bar in each group (Fig. 18a–d) shows
accuracy 22–81%.

The results show that source-dependent (most labor
consuming) tuning beats domain-dependent tuning (less
labor consuming, as carried out only once per domain)
by 1–7%, which in turns beats domain-independent tun-
ing (least costly) by 0–6%.

5.5 Tuning with eTuner

The fifth bar (second bar from the right) of each group
(Fig. 18a–d) then shows the accuracy of matching sys-
tems tuned automatically with eTuner. The results show
accuracy 23–82% across all 16 groups. eTuner is better
than source-dependent tuning (the best tuning method
so far) in 14 out of 16 cases, by 1–15%, and is slightly
worse in two cases, by 2%. The cost of using eTuner
consists mainly of “hooking” it up with the knobs of
a matching system, and would presumably be born by
vendors and amortized over all uses. The above analysis
demonstrates the promise of eTuner over previous tun-
ing alternatives, which achieve lower accuracy and incur
a significantly higher labor cost.

Zooming into the experiments shows that tuning im-
proves all levels of matching systems. For example, the
accuracy of matchers improves by 6% and of combiner
by 13% for LSD.

User-assisted tuning The last bar of each group
(Figs. 18a–d) shows the accuracy of eTuner with user-
assisted workload creation (Sect. 3.2), with users
being volunteer graduate students. The average num-
ber of groupings specified by a user for product, real
estate, inventory and course domain is respectively 9,
3.5, 2, and 2. The results show accuracy 38–79% across
all 16 groups, improving 1–14% over automatic tuning
(except in three cases there is no improvement, and one
case of decreased accuracy by 1%). The results show the
potential benefits of user assistance in tuning.

5.6 Sensitivity analysis

Synthetic workload Figure 19a shows the accuracies
of automatic eTuner, as we vary the size (i.e., number
of schemas generated) of the synthetic workload. The
accuracies are for LSD over Real Estate and Inventory,
though we observed similar trends in other cases. As
the workload size increases, the number of schema/data
perturbation rules that it captures increases. This im-
proves accuracy. After size 25–30, however, accuracy
starts decreasing. This is because at this point, all per-
turbation rules have been captured in the workload. As
the workload’s size increases, its “distance” from real
workloads increases, and so tuning overfits the match-
ing system. Thus, for the current set of perturbation rules

116 Y. Lee et al.

(as detailed in Sect. 3.1), we set the optimal workload
size at 30. The results also show no abrupt degradation
of accuracy, thus demonstrating that the tuning perfor-
mance is robust for small changes in the workload size.

Adding perturbation rules to matching systems It is
interesting to note that even if a schema matching sys-
tem captures all perturbation templates of eTuner, it
still does not necessarily do well, due to the difficulty of
“reverse engineering”. For example, the iMAP complex
matching system [19] contains a far richer set of pertur-
bation rules than eTuner. Nevertheless, its accuracy on
1–1 matching (as reported in [19] on a different domain)
is only 62–71%.

Exploiting prior match results Figure 19b shows the
accuracy of LSD over Inventory, as we replaced 0, 22%,
etc. of the synthetic workload with real schema pairs
that have been matched in the same domain. The results
show that exploiting previously matched schema pairs
indeed improves the quality of the synthetic workload,
thereby matching accuracy. This is important because
such prior match results are sometimes available [23,
25]. However, while such match results can complement
the synthetic matching scenarios, exploiting them alone
does not work as well, as we demonstrated with source-
dependent tuning described in Sect. 5.4.

Runtime complexity Our unoptimized version of
eTuner took under 30 min to tune a schema S, spending
the vast majority of time in the staged tuning step. We
expect that tuning matching systems will often be car-
ried out offline, e.g., overnight, or as a background task.
In general, the scalability of tuning techniques such as
eTuner will benefit from scaling techniques developed
for matching very large schemas [63] as well as optimi-
zation within the tuning module, such as reusing results
across matching steps and more efficient, specialized
procedures for knob tuning.

5.7 Additional experiments

Finally, we examine the comparative accuracy of the syn-
thetic workload and the staged tuner. Clearly, the ideal
workload on which to tune a matching system would be
the actual workload, that is, the set of all future schemas,
together with the correct matches from these schemas
to the schema S. In practice, of course, this workload is
not available for tuning purposes. Still, we want to know
how “good” the current synthetic workload is, that is,
how the matching accuracy based on it would compare
to that based on the actual workload, which forms a kind
of “ceiling” on matching accuracy.

Figure 20a–d show the results for the four matching
systems, respectively. Each figure comprises four groups,
showing the results for the four domains, respectively.
The first two bars in each group are reproduced from
Fig. 18. They show the accuracies of the matching sys-
tem, as tuned with eTuner automatically and via human
assistance. The last bar in each group shows the accu-
racy of the matching system, as tuned automatically with
eTuner on the actual workload.

The results show that the accuracy with current syn-
thetic workloads is already within 10% of that with the
actual workload (except for two cases, LSD/Inventory
and LSD-SF/Inventory, where it is within 19%). These
results suggest that the current synthetic workloads al-
ready perform quite reasonably, though there is still
some room for improvement.

In the next experiment, we tuned LSD and iCOMA on
synthetic workloads but instead of doing a staged search
as discussed in Sect. 4, we conducted a search as exhaus-
tively as possible. Specifically, if the search space is finite,
then we did carry out an exhaustive search. If the search
space is infinite, due to continuous-value knobs, then
we discretized all such knobs, to obtain a finite search
space. Our objective is to examine how close is the knob
configuration found by staged tuning to the optimal one
(as found by exhaustive search).

Table 1 shows the results of this experiment, for LSD
and iCOMA on Inventory and Course. Each numeric
cell of this table lists the accuracy obtained in the cor-
responding context. The accuracies for the knob con-
figurations obtained via exhaustive search are listed in
bold font, under “Ceiling 2”. Interestingly, the accuracy
with the staged tuner is within 3% of that with exhaus-
tive search for all cases. The results thus suggest that for
these experimental settings staged tuning finds close-to-
optimal knob configurations.

6 Related work

In this section, we first discuss related work in schema
matching, then the implications of the current research
beyond the schema matching context.

6.1 Schema matching techniques

Schema matching has received increasing attention over
the past two decades (see [4,5,21,24,29,55,62] for re-
cent surveys). A wealth of matching techniques has been
developed. The techniques fall roughly into two groups:
rule-based and learning-based solutions (though several
techniques that leverage ideas from the fields of infor-

eTuner: tuning schema matching software using synthetic scenarios 117

Fig. 19 Changes in the
matching accuracy with
respect to a size of the
synthetic workload, and b the
number of prior matched
schema pairs in the workload

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10 20 25 40 50

Schemas in Synthetic Workload (#)

A
cc

ur
ac

y
(F

1)

Average

Inventory Domain
Real Estate Domain

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 22 44 66 88

Previous matches in collection (%)

A
cc

ur
ac

y
(F

1)

Tuned LSD

(a) (b)

SimFlood LSD-SF

iCOMA

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Course

A
cc

ur
ac

y
(F

–1
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y
(F

–1
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y
(F

–1
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y
(F

–1
)

InventoryProductReal Estate

CourseInventoryProductReal Estate CourseInventoryProductReal Estate

CourseInventoryProductReal Estate

eTuner: Automatic
eTuner: Human-assisted
Ceiling 1

eTuner: Automatic
eTuner: Human-assisted
Ceiling 1

eTuner: Automatic
eTuner: Human-assisted
Ceiling 1

eTuner: Automatic
eTuner: Human-assisted
Ceiling 1

LSD

Fig. 20 The performance of the workload generator

Table 1 The performance of
the staged tuner LSD iCOMA

eTuner: eTuner: Ceiling 2 eTuner: eTuner: Ceiling 2
automatic human-assisted automatic human-assisted

Inventory 0.66 0.664 0.669 0.688 0.685 0.699
Course 0.743 0.746 0.766 0.752 0.766 0.767

mation retrieval and information theory have also been
developed [18,36]).

Rule-based solutions Many of the early as well as cur-
rent matching solutions employ hand-crafted rules to
match schemas [14,42,46,49,51,57].

In general, hand-crafted rules exploit schema infor-
mation such as element names, data types, structures,
number of subelements, and integrity constraints.
A broad variety of rules have been considered. For
example, the TranScm system [49] employs rules such as
“two elements match if they have the same name (allow-
ing synonyms) and the same number of subelements”.
The DIKE system [56–58] computes the similarity be-
tween two schema elements based on the similarity of
the characteristics of the elements and the similarity of

related elements. The ARTEMIS and the related MOMIS
[7,14] system compute the similarity of schema elements
as a weighted sum of the similarities of names, data types,
and substructures. The CUPID system [42] employs rules
that categorize elements based on names, data types,
and domains. Rules therefore tend to be domain-inde-
pendent, but can be tailored to fit a certain domain.
Domain-specific rules can also be crafted.

Rule-based techniques provide several benefits. First,
they are relatively inexpensive and do not require train-
ing as in learning-based techniques. Second, they typi-
cally operate only on schemas (not on data instances),
and hence are fairly fast. Third, they can work very
well in certain types of applications and for domain
representations that are amenable to rules [53]. Finally,
rules can provide a quick and concise method to capture

118 Y. Lee et al.

valuable user knowledge about the domain. For exam-
ple, the user can write regular expressions that encode
times or phone numbers, or quickly compile a collection
of county names or zip codes that help recognize those
types of entities.

The main drawback of rule-based techniques is that
they cannot exploit data instances effectively, even
though the instances can encode a wealth of informa-
tion (e.g., value format, distribution, frequently occur-
ring words in the attribute values, and so on) that would
greatly aid the matching process. In many cases, effective
matching rules are simply too difficult to hand craft. For
example, it is not clear how to hand craft rules that distin-
guish between “movie description” and “user comments
on the movies”, both being long textual paragraphs. In
contrast, learning methods such as Naive Bayes can eas-
ily construct “probabilistic rules” that distinguish the
two with high accuracy, based on the frequency of words
in the paragraphs.

Another drawback is that rule-based methods can-
not exploit previous matching efforts to assist in the
current ones. Thus, in a sense, systems that rely solely
on rule-based techniques have difficulties learning from
the past, to improve over time. The above reasons have
motivated the development of learning based matching
solutions.

Learning-based solutions Many such solutions have
been proposed in the past decade, e.g., [8,9,11,18,19,
25,30,40,52]. The solutions have considered a variety
of learning techniques and exploited both schema and
data information. For example, the SemInt system [40]
uses a neural-network learning approach. It matches
schema elements based on attribute specifications (e.g,
data types, scales, the existence of constraints) and sta-
tistics of data content (e.g., maximum, minimum, aver-
age, and variance). The LSD system [25] employs Naive
Bayes over data instances, and develops a novel learning
solution to exploit the hierarchical nature of XML data.
The iMAP system [19] (and also the ILA and HICAL sys-
tems developed in the AI community [60,65]) matches
the schemas of two sources by analyzing the description
of objects that are found in both sources. The Autoplex
and Automatch systems [8,9] use a Naive Bayes learning
approach that exploits data instances to match elements.

In the past 5 years, there is also a growing realization
that schema- and data-related evidence in two schemas
being matched often is inadequate for the matching pro-
cess. Hence, several works have advocated learning from
the external evidence beyond the two current schemas.
Several types of external evidence have been consid-
ered. Some recent works advocate exploiting past
matches [9,10,23,25,30,62]. The key idea is that a match-

ing tool must be able to learn from the past matches,
to predict successfully matches for subsequent, unseen
matching scenarios.

The work [41] goes further and describes how to
exploit a corpus of schemas and matches in the domain.
This scenario arises, for example, when we try to ex-
ploit the schemas of numerous real-estate sources on the
Web, to help in matching two specific real-estate source
schemas. In a related direction, the works [34,71] de-
scribe settings where one must match multiple schemas
all at once. Here the knowledge gleaned from each
matching pair can help match other pairs, as a result
we can obtain better accuracy than just matching a pair
in isolation. The work [44,45] discusses how to learn
from a corpus of users to assist schema matching in data
integration contexts. The basic idea is to ask the users
of a data integration system to “pay” for using it by
answering relatively simple questions, then use those
answers to further build the system, including matching
the schemas of the data sources in the system. This way,
an enormous burden of schema matching is lifted from
the system builder and spreads “thinly” over a mass of
users.

6.2 Multi-component matching solutions

The synergistic nature of matching techniques (e.g.,
based on rules, learning, information retrieval, infor-
mation theory, graph algorithms, etc.) suggests that an
effective matching solution should employ many of the
techniques, each on the types of information that it can
effectively exploit. To this end, several recent works
[10,19,23,25,30,63] have described a system architec-
ture that employs multiple modules called matchers,
each of which exploits well a certain type of informa-
tion to predict matches. The system then combines the
predictions of the matchers to arrive at a final predic-
tion for matches. Each matcher can employ one or a
set of matching techniques as described earlier (e.g.,
hand-crafted rules, learning methods, IR-based ones).
Combining the predictions of matchers can be manu-
ally specified [10,23] or automated to some extent using
learning techniques [25].

Besides being able to exploit multiple types of infor-
mation, the multi-matcher architecture has the
advantage of being highly modular and can be easily
customized to a new application domain. It is also exten-
sible in that new, more efficient matchers could be easily
added when they become available. A recent work [19]
also shows that the above solution architecture can be
extended successfully to handle complex matches.

eTuner: tuning schema matching software using synthetic scenarios 119

Incorporating domain constraints It was recognized
early on that domain integrity constraints and heuris-
tics provide valuable information for matching purposes.
Hence, almost all matching solutions exploit some forms
of this type of knowledge.

Most works exploit integrity constraints in match-
ing schema elements locally. For example, many works
match two elements if they participate in similar con-
straints. The main problem with this scheme is that it
cannot exploit “global” constraints and heuristics that
relate the matching of multiple elements (e.g., “at most
one element matches house-address”). To address this
problem, several recent works [25,27,42,46] have advo-
cated moving the handling of constraints to after the
matchers. This way, the constraint handling framework
can exploit “global” constraints and is highly extensible
to new types of constraints.

While integrity constraints constitute domain-specific
information (e.g., house-id is a key for house listings),
heuristic knowledge makes general statements about
how the matching of elements relate to each other.
A well-known example of a heuristic is “two nodes
match if their neighbors also match”, variations of which
have been exploited in many systems (e.g., [42,46,49,
54]). The common scheme is to iteratively change the
matching of a node based on those of its neighbors. The
iteration is carried out one or twice, or until some con-
vergence criteria are reached.

Current developments An important current research
direction is to evaluate the above multi-component
architecture in real-world settings. The works [10,63]
take some initial steps in this direction. The work [10]
builds Protoplasm, an industrial-strength schema match-
ing system, while the work [63] examines the scalability
of matching systems to very large XML schemas.

A related direction focuses on creating robust and
widely useful matcher operators and developing tech-
niques to quickly and efficiently combine the operators
for a particular matching task. A next logical direction
is to make the frameworks easy to customize for a par-
ticular set of matching tasks. Our current eTuner work
aims at automating the customization.

Finally, our work can also be seen as a part of the
trend toward self-tuning databases, to reduce the high
total cost of ownership [2,15,16].

6.3 Leveraging synthetic workloads

As far as we know, our work is the first to employ syn-
thetic workloads in schema matching. Synthetic work-
loads and inputs have also recently been exploited
in several other contexts. The recovery-oriented

computing (ROC) project [59] focuses on building dis-
tributed systems (e.g., Internet services, computer net-
works) that are robust to failures. Toward this end, it
generates and injects artificial faults into the target sys-
tems, to evaluate their robustness [13]. The work [31]
constructs synthetic text documents that exhibit certain
properties. It then examines how various information
retrieval methods work with respect to these documents.
The objective is to examine formal properties of these
information retrieval methods. Finally, several learn-
ing approaches have also exploited artificial inputs. The
work [47] for example shows that artificial training exam-
ples can improve the accuracy of certain learning
methods.

Two common observations cut across the above sce-
narios. First, in certain settings knowledge about the
application domain can be distilled into a relatively con-
cise “generative model” that can then be used to gener-
ate synthetic data. For example, in schema matching one
schema can be modeled as being generated by pertur-
bation of another schema (in the same domain). The set
of common perturbations is relatively small, and can be
captured with a set of rules, as described in Sect. 3.1. Sec-
ond, synthetic data can help significantly in improving
the robustness or examining properties of application
systems.

We are applying this general idea of using synthetic
input/output pairs to make a system robust to additional
contexts. Recently, we have successfully adapted it to
the problem of maintaining semantic matches and the
closely related problem of maintaining wrappers (e.g.,
[17,38,39,43,48,69]), as the data at the sources evolves
(see [43] for more detail). We plan to adapt the same idea
to improving record linkage systems (e.g., [3,33,70]).

Exploiting previously matched schemas Several recent
works exploit previously matched schema pairs to im-
prove matching accuracy (e.g., [9,23,25,41]). Such prior
match results, whenever available, can play the role of
the “ground-truth” workload and thus can be used for
tuning as well. However, tuning data obtained this way
is often costly, ad hoc, and limited. In contrast, syn-
thetic matching scenarios can be obtained freely, is often
more comprehensive, and can be tailored to a particu-
lar matching situation. In Sect. 5.6 we show that tuning
on synthetic scenarios outperforms tuning on previous
matching results, but can exploit such results whenever
available to further improve tuning quality.

6.4 Compositional approaches

Arguably, the success of relational data management
derives partly from the following three factors. (1) It

120 Y. Lee et al.

is possible to define a small set of core operators (e.g.,
select, project, join) such that most common queries
can be expressed as a composition of these operators.
(2) Effective optimization techniques exist to select a
good composition (i.e., execution tree). (3) Everything
is made as “declarative” as possible, to enable effective
user interaction, customization, and rapid development
of applications.

It can be argued that the development of schema
matching solutions has been following a similar com-
positional approach. First, monolithic solutions were
developed. Next, they were “broken down”, and multi-
component solutions have been developed. Our current
eTuner work suggests that these solutions can be “dis-
tilled” to extract a core set of operators, and that solu-
tions that compose of these operators can be tuned, that
is, partially optimized. There are then two interesting
future directions: can we develop better tuning/optimi-
zation techniques, and can we make schema matching
solutions as “declarative” as possible?

Compositional solutions have also been considered,
or are currently under development, in several other
contexts, most recently in record linkage [6], data inte-
gration [64], and text data management [68]. Other con-
texts include information extraction (e.g., [32]), solving
crossword puzzles [37], and identifying phrase structure
in NLP [61].

7 Conclusion and future work

We have demonstrated that tuning is important for fully
realizing the potentials of multi-component matching
systems. Current tuning methods are ad hoc, labor inten-
sive, or brittle. Hence, we have developed eTuner, an
approach to automatically tune schema matching
systems.

Given a schema S and a matching system M, our key
idea is to synthesize a collection of matching scenarios
involving S, for which we already know the ground-
truth matches, and then use the collection to tune sys-
tem M. This way, tuning can be automated, and can
be tailored to the particular schema S. We evaluated
eTuner on four matching systems over four real-world
domains. The results show that matching systems tuned
with eTuner achieve higher accuracy than with current
tuning methods, at little cost to the user. For future
research, interesting directions include:

Finding optimal synthetic workload Given a schema
S and a matching system M, how to find an optimal or
good synthetic workload for tuning M? A crucial param-
eter that we must decide will be the size of the workload

(i.e., the number of synthetic schemas). Another issue
is the best strategy to partition the data during the syn-
thetic workload generation process (would the strategy
of dividing data into two equal in size but disjoint halves
always work best?).

Better search strategies The current staged search
strategy is adequate for offline tuning of schemas of
small to moderate size. Better search strategies will en-
able scaling up to schemas of large size, incorporating
user interaction into the tuning process (not just at the
start of the tuning process, as in the current work), and
finding potentially better knob configuration.

Considering other data representations We have con-
sidered only matching systems that handle relational
representations. An important future direction is to tune
systems that match other types of data representations,
such as XML schemas. A key issue is to develop the set
of “perturbations” that can be used to generate a syn-
thetic workload. To tune accurately, the “perturbations”
must reflect common logical and conceptual changes of
the data representation as accurately as possible. Hence,
given a data representation, it is important to discover
what types of logical and conceptual changes it often
undergoes.

Tuning additional kinds of matching scenarios So far
we have tuned a matching system M for maximizing
accuracy of matching a schema S with future schemas.
Since the scenario of matching two schemas S and T is
also common in practice, tuning M specifically for such
scenarios is also important. Other important kinds of
scenarios include tuning for complex matching [19] and
tuning also for other performance factors beyond accu-
racy (e.g., execution time).

Acknowledgements We thank the reviewers for invaluable com-
ments. This work was supported by NSF grants CAREER IIS-
0347903 and ITR 0428168.

References

1. Aberer, K.: Special issue on peer to peer data management.
SIGMOD Rec. 32(3), 138–140 (2003)

2. Agrawal, S., Chaudhuri, S., Kollr, L., Marathe, A.P.,
Narasayya, V.R., Syamala, M.: Database tuning advisor for
microsoft sql server 2005. In: VLDB, 2004

3. Andritsos, P., Miller, R.J., Tsaparas, P.: Information-theoretic
tools for mining database structure from large data sets. In:
Proceedings of SIGMOD, 2004

4. Aslan, G., McLeod, D.: Semantic heterogeneity resolution in
federated databases by metadata implantation and stepwise
evolution. VLDB J. 8(2), 120–132 (1999)

5. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative anal-
ysis of methodologies for database schema integration. ACM
Comput. Surv. 18(4), 323–364 (1986)

eTuner: tuning schema matching software using synthetic scenarios 121

6. Benjelloun, O., Garcia-Molina, H., Jonas, J., Su, Q., Widom,
J.: Swoosh: a generic approach to entity resolution. Technical
report, Stanford University (2005)

7. Bergamaschi, S., Castano, S., Vincini, M., Beneventano, D.:
Semantic integration of heterogeneous information sources.
Data Knowl. Eng. 36(3), 215–249 (2001)

8. Berlin, J., Motro, A.: Autoplex: automated discovery of con-
tent for virtual databases. In: Proceedings of the Conference
on Cooperative Information Systems (CoopIS), 2001

9. Berlin, J., Motro, A.: Database schema matching using ma-
chine learning with feature selection. In: Proceedings of the
Conference on Advanced Information Systems Engineering
(CAiSE), 2002

10. Bernstein, P.A., Melnik, S., Petropoulos, M., Quix, C.: Indus-
trial-strength schema matching. SIGMOD Record, Special
Issue in Semantic Integration, December 2004

11. Bilke, A., Naumann, F.: Schema matching using duplicates. In:
Proceedings of the International Conference on Data Engi-
neering (ICDE), 2005

12. Borkar, V., Deshmukh, K., Sarawagi, S.: Automatic text seg-
mentation for extracting structured records. In: Proceedings
of SIGMOD-01

13. Brown, A., Kar, G., Keller, A.: An active approach to char-
acterizing dynamic dependencies for problem determination
in a distributed environment. In: Proceedings of the Seventh
IFIP/IEEE International Symposium on Integrated Network
Management (IM), 2001

14. Castano, S., De Antonellis, V.: A schema analysis and rec-
onciliation tool environment. In: Proceedings of the Inter-
national Database Engineering and Applications Symposium
(IDEAS), 1999

15. Chaudhuri, S., Dageville, B., Lohman, G.: Self-managing
technology in database management systems (tutorial). In:
Proceedings of VLDB, 2004

16. Chaudhuri, S., Weikum, G.: Rethinking database system
architecture: towards a self-tuning risc-style database system.
In: VLDB, 2000

17. Chidlovskii, B.: Automatic repairing of web wrappers. In:
Third International Workshop on Web Information and Data
Management, 2001

18. Clifton, C., Housman, E., Rosenthal, A.: Experience with a
combined approach to attribute-matching across heteroge-
neous databases. In: Proceedings of the IFIP Working Con-
ference on Data Semantics (DS-7), 1997

19. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos
P.: iMAP: discovering complex matches between database
schemas. In: Proceedings of SIGMOD, 2004

20. Dietterich, T.G.: Machine learning research: four current
directions. AI Mag. 18(4), 97–136 (1997)

21. Do, H.: Schema matching and Mapping-based Data Integra-
tion. PhD Thesis, University of Leipzig, 2006

22. Do, H., Melnik, S., Rahm, E.: Comparison of schema matching
evaluations. In: Proceedings of the 2nd International Work-
shop on Web Databases (German Informatics Society), 2002

23. Do, H., Rahm, E.: Coma: a system for flexible combination
of schema matching approaches. In: Proceedings of the 28th
Conference on Very Large Databases (VLDB), 2002

24. Doan, A.: Learning to Map between Structured Representa-
tions of Data. PhD Thesis, University of Washington, 2003

25. Doan, A., Domingos, P., Halevy, A.: Reconciling schemas of
disparate data sources: A machine learning approach. In: Pro-
ceedings of the ACM SIGMOD Conference, 2001

26. Doan, A., Domingos, P., Halevy, A.: Learning to match the
database schemas: a multistrategy approach. Mach. Learn.
50(3), 279–301 (2003)

27. Doan, A., Madhavan, Dhamankar, R., Domingos, P.,
Halevy, A.: Learning to match ontologies on the Semantic
Web. VLDB J. 12, 303–319 (2003)

28. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning
to map ontologies on the semantic web. In: Proceedings of the
World-Wide Web Conference (WWW-02), 2002

29. Doan, A., Noy, N., Halevy, A.: Introduction to the special issue
on semantic integration. SIGMOD Rec. 33(4), 11–13 (2004)

30. Embley, D., Jackman, D., Xu, L.: Multifaceted exploitation of
metadata for attribute match discovery in information inte-
gration. In: Proceedings of the WIIW-01, 2001

31. Fang, H., Tao, T., Zhai, C.: A formal study of information
retrieval heuristics. In: Proceedings of the ACM SIGIR Con-
ference, 2004

32. Freitag, D.: Machine learning for information extraction in
informal domains. PhD. Thesis, Deptartment of Computer
Science, Carnegie Mellon University, 1998

33. Ganti, V., Chaudhuri, S., Motwani, R.: Robust identification
of fuzzy duplicates. In: ICDE, 2005

34. He, B., Chang, K.: Statistical schema matching across web
query interfaces. In: Proceedings of the ACM SIGMOD Con-
ference (SIGMOD), 2003

35. He, B., Chang, K.C.C., Han, J.: Discovering complex match-
ings across Web query interfaces: a correlation mining ap-
proach. In: Proceedings of the ACM SIGKDD Conference
(KDD), 2004

36. Kang, J., Naughton, J.: On schema matching with opaque col-
umn names and data values. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data
SIGMOD-03), 2003

37. Keim, G., Shazeer, N., Littman, M., Agarwal, S.: Cheves, C.,
Fitzgerald, J., Grosland, J., Jiang, F., Pollard, S., Weinmeister,
K.: PROVERB: the probabilistic cruciverbalist. In: Proceee-
dings of the 6th National Conference on Artificial Intelligence
(AAAI-99), pp. 710–717 (1999)

38. Kushmerick, N.: Wrapper verification. World Wide Web
J. 3(2), 79–94 (2000)

39. Lerman, K., Minton, S., Knoblock, C.: Wrapper maintenance:
a machine learning approach. J. Artif. Intell. Res. 18:149–187
(2003)

40. Li, W., Clifton, C., Liu, S.: Database integration using neural
network: implementation and experience. Knowl. Inf. Syst.
2(1), 73–96 (2000)

41. Madhavan, J., Bernstein, P., Doan, A., Halevy, A.: Corpus-
based schema matching. In: Proceedings of the 18th IEEE
International Conf. on Data Engineering (ICDE), 2005

42. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema
matching with cupid. In: Proceedings of VLDB, 2001

43. McCann, R., Alshebli, B., Le, Q., Nguyen, H., Vu, L., Doan,
A.: Mapping maintenance for data integration systems. In:
Proceedings of VLDB 2005

44. McCann, R., Doan, A., Kramnik, A.: Varadarajan, V.: Build-
ing data integration systems via mass collaboration. In:
Proceedings of the SIGMOD-03 Workshop on the Web and
Databases (WebDB-03), 2003

45. McCann, R., Kramnik, A., Shen, W., Varadarajan, V., Sobulo,
O., Doan, A.: Integrating data from disparate sources: a mass
collaboration approach. In: Proceedings of the International
Conference on Data Engineering (ICDE), 2005

46. Melnik, S., Molina-Garcia, H., Rahm, E.: Similarity flooding:
a versatile graph matching algorithm. In: Proceedings of the
International Conference on Data Engineering (ICDE), 2002

47. Melville, P., Mooney, R.: Creating diversity in ensembles using
artificial data. J. Inf. Fusion Spec. Issue Divers. Mult. Classifier
Syst. 6(1):99–111 (2004)

122 Y. Lee et al.

48. Meng, X., Hu, D., Li, C.: Schema-guided wrapper mainte-
nance for web-data extraction. In: Fifth International Work-
shop on Web Information and Data Management, 2003

49. Milo, T., Zohar, S.: Using schema matching to simplify het-
erogeneous data translation. In: Proceedings of the Inter-
national Conference on Very Large Databases (VLDB),
1998

50. Mitchell, T.: Machine Learning. McGraw-Hill, NY (1997)
51. Mitra, P., Wiederhold, G., Jannink, J.: Semi-automatic integra-

tion of knowledge sources. In: Proceedings of Fusion, 1999
52. Neumann, F., Ho, C.T., Tian, X., Haas, L., Meggido, N.: Attri-

bute classification using feature analysis. In: Proceedings of
the International Conference on Data Engineering (ICDE),
2002

53. Noy, N.F., Musen, M.A.: PROMPT: algorithm and tool for
automated ontology merging and alignment. In: Proceedings
of the National Conference on Artificial Intelligence (AAAI),
2000

54. Noy, N.F., Musen, M.A.: Anchor-PROMPT: using non-local
context for semantic Matching. In: Proceedings of the Work-
shop on Ontologies and Information Sharing at the Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
2001

55. Ouksel, A., Seth, A.P.: Special issue on semantic interopera-
bility in global information systems. SIGMOD Re. 28(1) 5–12
(1999)

56. Palopoli, L., Sacca, D., Terracina, G., Ursino, D.: A unifi-
fed graph-based framework for deriving nominal interscheme
properties, type conflicts, and object cluster similarities. In:
Proceedings of the Conf. on Cooperative Information Sys-
tems (CoopIS), 1999

57. Palopoli, L., Sacca, D., Ursino, D.: Semi-automatic, semantic
discovery of properties from database schemes. In: Proceed-
ings of the International Database Engineering and Applica-
tions Symposium (IDEAS-98), pp. 244–253 (1998)

58. Palopoli, L., Terracina, G., Ursino, D.: The system DIKE:
towards the semi-automatic synthesis of cooperative infor-
mation systems and data warehouses. In: Proceedings of the
ADBIS-DASFAA Conference, 2000

59. Patterson, D.A., Brown, A., Broadwell, P., Candea, G., Chen,
M., Cutler, J., Enriquez, P., Fox, A., Kiciman, E., Merzbach-
er, M., Oppenheimer, D., Sastry, N., Tetzlaff, W., Traupman,
J., Treuhaft, N.: Recovery-oriented computing (ROC): moti-
vation, definition, techniques, and case studies. Technical
Report UCB//CSD-02-1175, University of California, 2002

60. Perkowitz, M., Etzioni, O.: Category translation: Learning to
understand information on the Internet. In: Proceedigns of
Internatinal Joint Conference on AI (IJCAI), 1995

61. Punyakanok, V., Roth, D.: The use of classifiers in sequen-
tial inference. In: Proceedings of the Conference on Neural
Information Processing Systems (NIPS-00), 2000

62. Rahm, E., Bernstein, P.A.: On matching schemas automati-
cally. VLDB J. 10(4) 334–350 (2001)

63. Rahm, E. Do, H., Massmann, S.: Matching large XML
schemas. SIGMOD Record, Special Issue in Semantic Inte-
gration, December 2004

64. Rahm, E., Thor, A., Aumueller, D., Do, H., Golovin, N.,
Kirsten, T.: iFuice — Information fusion utilizing instance
correspondences and peer mappings. In: Proceedings of the
Eighth International Workshop on the Web and Databases
(WebDB), 2005

65. Ryutaro, I., Hideaki, T., Shinichi, H.: Rule induction for con-
cept hierarchy alignment. In: Proceedings of the 2nd Work-
shop on Ontology Learning at the 17th International Joint
Conference on AI (IJCAI), 2001

66. Sayyadian, M., LeKhac, H., Doan, A., Gravano, L.: Key-
word search across heterogeneous relational databases. Tech-
nical report, Department of Computer Science, Universtiy of
Illinois (2006)

67. Seligman, L., Rosenthal, A.: The impact of xml in databases
and data sharing. IEEE Computer, 2001

68. UIMA: Unstructured information management architecture.
http://www.research.ibm.com/UIMA/

69. Velegrakis, Y., Miller, R., Popa, L., Mylopoulos, J.: Tomas: a
system for adapting mappings while schemas evolve. In: Pro-
ceedings of the Twentieth International Conference on Data
Engineering, 2004

70. Weis, M., Naumann, F.: Dogmatix tracks down duplicates in
xml. In: Proceedings of the ACM Conference on Management
of Data (SIGMOD), 2005

71. Wu, W., Yu, C., Doan, A., Meng, W.: An interactive cluster-
ing-based approach to integrating source query interfaces on
the Deep Web. In: Proceedings of SIGMOD, 2004

72. Xu, L., Embley, D.: Using domain ontologies to discover di-
rect and indirect matches for schema elements. In: Procee-
digns of the Semantic Integration Workshop at ISWC-03.
http://smi.stanford.edu/si2003, 2003

73. Yan, L.L., Miller, R.J., Haas, L.M., Fagin, R.: Data driven
understanding and refinement of schema mappings. In: Pro-
ceedings of the ACM SIGMOD, 2001

	eTuner: tuning schema matching software using synthetic scenarios
	Abstract
	Introduction
	The match tuning problem
	Modeling 1--1 matching systems
	Library of matching components
	Execution graph
	Tuning knobs
	Tuning of matching systems
	The eTuner Approach
	Automatic workload creation
	Create schemas U and V from schema S
	Create Schemas V1, …, Vn by Perturbing V
	Create semantic matches between Vi and U
	User-assisted workload creation
	Tuning with the synthetic workload
	Staged tuning
	Tuning subsystems of M
	Tuning to select features
	Empirical evaluation
	Experimental settings
	The need for tuning
	``Quick and dirty'' tuning
	Domain- and source-dependent tuning
	Tuning with eTuner
	Sensitivity analysis
	Additional experiments
	Related work
	Schema matching techniques
	Multi-component matching solutions
	Leveraging synthetic workloads
	Compositional approaches
	Conclusion and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

