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Abstract GLUE system (Doamt al. 2002) uses the instances to com-

pute a similarity measure (Jaccard coefficient) between the

address similar domains. The problem of ontology mapping Conceplts, ?jng fee(_js It to .? ff]'axat".’” labeler tL\aLeprOItls
is crucial since we are witnessing a decentralized develop- general and domain-specific heuristics to matcn the ontol-

ment and publication of ontological data. We formulate the ogy schemas. The performance of systems utilizing instance

problem of inferring a match between two ontologies as a  Spaces is closely linked to the volume of the training data —

maximum likelihood problem, and solve it using the tech- instances — available.

nique of expectation-maximization (EM). Specifically, we Contemporary languages for describing ontologies such

2 Generalized veraion of EM (o arrve at a mapping between. 25 RDF(S) and OWL allow ontologies to be modeled as

the nodes of the graphs. We exploit the structural and lexical dlrecteq |abeled .graphs. Therefore, analog_ous to graph
matching techniques, the ontology matching approaches

similarity between the graphs, and improve on previous ap- . . L -
proaches by generating a many-one correspondence between also differ in the cardinality of the correspondence that is

the concept nodes. We provide preliminary experimental re- ~ generated between the ontological concepts. For exam-
sults in support of our method and outline its limitations. ple, several of the existing approaches (Datgal. 2005;
Hu et al. 2005; Doanet al. 2002; Mitra, Noy, & Jaiswal
Introduction 2004) focus on identifying a one-one (exact) mapping be-
) ) ) ) _ tween the concepts. More general are the many-one and
The growing popularity of the semantic Web is fueled in  many-many (inexact) correspondences between the con-
part by the development and publication of an increasing cepts. These are of particular interest, since they allop-ma
number. of .Ont0|og|.es. . Because the development of these pings between Concepts of diﬁering semantic granu|a|"ity_
ontologies is occurring in a decentralized manner, the-prob  other words, a cluster of concepts may be mapped to a single
lems of matching similar ontologies (alignment) and merg- target concept. The methods that generate such correspon-
ing them into a single comprehensive ontology gain impor-  dences have wider applicability as independently develope
tance. Previous approaches for matching ontologies have gntologies seldom have the same number of concepts.

utilized either the instance space associated with thd@nto \We present a graph-theoretic method that generates many-

gies, the ontology schema, or both. For example, FCA- one maopi L :
ppings between the participating ontologies to be
Merge (Stumme & Maedche 2001) and IF-MAP (Kalfoglou 41cheq.” we focus our analysis on the ontology schemas

& Schorlemmer 2003) rely on the Instances of the concepts and use directed graphs as the underlying models for the on-
and dpcuments annotated by the c_)nto[oglta_s to generate thetologies. We formulate the problem as one of finding the
mappings. While FCA-Merge applies linguistic techniques ., jiely map between two ontologies, and compute the
o the instances, IF-MAP utilizes information flow concepts likelihood using the expectation-maximiz,ation (EM) tech-
for |Qent|fy|ng t.he mappings. _Other approaches tha't rely nigue (Dempster, Laird, & Rubin 1977). The EM technique
glea\zlg%gn th? Instance space include BayesOWL (Ding is typically used to find the maximum likelihood estimate of

: ) which uses the instances to learn the parameters "\ derlying model from observed data containing miss-
of the Bayesian networ!<. .Th_e joint probability of a pair of ing values. In our formulation, we treat the set of correspon
concepts is used as a similarity measure. The FALCON'.AO dences between the pair of ontologies to be matched as hid-
system (Huet al. 2005) on the other hand proposes metrics  jo, ariables, and define a mixture model over these corre-
for evaluating the structural S|_m|Iar|ty between the oogy spondences. The EM algorithm revises the mixture models
schemas to arrive at a mapping between the ontologies. In jio atively by maximizing a weighted sum of the log likeli-
the same vein, OMEN (Mitra, Noy, & Jaiswal 2004) proba- 1,44 of the models. The weights, similar to the general EM
bilistically infers a matg:h be‘Wee.” cIasses_glven amateh be algorithm, are the posterior probabilities of the hidderreo
tween parents and children, using Bayesian networks. The spondenc'es. Within the EM approach, we exploit the struc-
Copyright © 2006, American Association for Artificial Intelli-  tural as well as the lexical similarity between the schemas
gence (www.aaai.org). All rights reserved. to compute the likelihood of a map. While analogous ap-

We present a new method for mapping ontology schemas that



proaches for graph matching appear in computer vision (Luo Ontology Model

& Hancock 2001), these are restricted to unlabeled graphs. contemporary languages for describing ontologies — cate-
The particular form of the mixture models in our formu-  gorized as description logics — include RDF and OWL. Both
lation precludes a closed form expression for the log lkeli  these languages allow the ontologies to be modeled as di-
hood. Subsequently, standard maximization techniqués suc rected labeled graphs (Hayes & Gutierrez 2004) where the
as (partial) differentiation are intractable. Instead,atiept  nodes of the graphs are the concepts (classes in RDF) and

the generalized version of the EM (Dempster, Laird, & Ru-  the |abeled edges are the relationships (properties) leetwe
bin 1977) which relaxes the maximization requirement and the classes. Following graph matching terminology, we as-
simply requires the selection of a mixture model that im- syme the graph with the larger number of nodes to be the
proves on the previous one. Since the complete space of gata while the other as thenodel graph. Formally, let the
candidate mixture models tends to be large and to avoid local gata graph be, = (Va, Eq, Lg), whereV, is the set of
maximas, we randomly sample a representative set of mix- |apeled vertices representing the concepls,is the set of
ture models and select the candidate from among them. To edges representing the relations which is a set of ordered 2-
speed up convergence, we supplement the sampled set withsypsets of/;, andL, : E; — A whereA is a set of labels,
locally improved estimates of the mixture models that ex- gives the edge labels. Analogousty,, = (Vi Epn, L)

ploit simple mapping heuristics. We evaluate our approach s the model graph against which the data graph is matched.
on example benchmark ontology pairs that were obtained

from the PCON repository (Hughes & Ashpole 2004). D D
Background: Expectation-M aximization >@ QO O

The expectation-maximization (EM) technique was origi- (3) -

nally developed by Dempster et al. (1977) to find the maxi- & © ®W

mum likelihood estimate of the underlying model from ob- (a) (b)

served data instances in the presence of missing values. The

main idea behind the EM technique is to compute the ex- Figure 1: The process of reification. (a) An edge labeled graph.
pected values of the hidden or missing variable(s) using the (b) The reified bipartite graph in which each distinct edge label is a
observed instances and a previous estimate of the model, andnode, and additional dummy nodes are introduced to preserve the
then recompute the parameters of the model using the ob- relations. These nodes may have identical labels.

served and the eXpeCted values as if they were observations. To facilitate graph matching, we transform the edge_

Let X be the set of observed instances,the underlying labeled graphs into unlabeled ones by elevating the edge la-
model, and Y be the set of missing or hidden values. The pels to first class citizens. This process, called reificaiio
expectation step is a weighted summation of the log likeli- yolves treating the relationships as resources, theretipgd
hood, where the weights are the conditional probabilittes 0 them as nodes to the graph. We observe that reification be-
the missing variables: comes unnecessary, from the perspective of graph matching,
E Step: Q(M™!|M™) = Z Pr(y| X, M™) L(M" | X, y) when all edges have the same labels. We illustrate reifica-

tion using a simple example in Fig. 1 and point out that the
reified graph is a bipartite graph (Hayes & Gutierrez 2004).
where L(M"*!|X,y) is the log likelihood of the model, Conseguerr)]tly, the Ff)unctiogsdpin (Od );nd L,, in O,, be- :
computed as if the value of the hidden variable is known.  come redundant. However, reification comes at a price: The
The logarithm is used for simplifying the likelihood compu-  (ifieq graph contains as many additional nodes as the num-

yey

tation. o _ _ ber of edges and distinct edge labels.
The maximization step consists of selecting the model
that maximizes the expectation: Graph Matching Using GEM

M Step: M = argmaxz Q(M™ T M™)
Mnt+leM
The above two steps are repeated until the model para-
meters converge. Each iteration of the algorithm is guar-
anteed to increase the log likelihood of the model estimate,
and therefore the algorithm is guaranteed to converge to ei-

As we mentioned previously, we model the ontologies as
graphs,O, and O,,,, and consequently focus on the graph
matching problem. Led/ be a|Vy| x |V,,| matrix that rep-

resents the match between the two graphs. In other words,

ther the local or global maxima (depending on the vicinity mi1 mi2 s MUV,
of the start point to the corresponding maxima). ma1 m22 cee Moy,
Often, in practice, it is difficult to obtain a closed form M = : S

expression in the E step, and consequently a maximizing

M™*1 in the M step. In this case, we may replace the . . cee

original M step with the following: Select/™*! such that My, Myvge - MYVy||Vi
Q(M"THM™) > Q(M™|M™). The resulting generalized  Here each assignment variable,

EM (GEM) method (Dempster, Laird, & Rubin 1977) re-

tains the convergence property of the original algorithm, 1 f(2h) = Ya i Ta € Vg, Yo € Vin,
while improving its applicability. Maa =0 otherwise



If the correspondencs, : V; — V,,, is a one-one map-
ping and{z,,zs} € Eq < {f(za), f(xp)} € Enp, thenf
is an isomorphism. We call the property of preserving edges
across transformations adge consistency. The correspon-
dencef is a homomorphism if it is a many-one or many-
many mapping, and is edge consistent. In this paper, we fo-
cus on tractably generating homomorphisms with many-one
mappings.

We formulate the graph matching as a maximum likeli-
hood (ML) problem. Specifically, we are interested in the
match matrix,M, that gives us the maximum conditional
probability of the data graph},, given the model graph,
O,, and the match assignments. Formally,

M, = argmazx Pr(Og4|Op,, M)
MeM

)

where M is the set of all match assignments. In general,
there may be!V«!lV=! different matrices, but by restricting

our analysis to many-one correspondences — these may bel’r(TalYa, M™)

partial — we reduce the search spacé/1o,| +1)!V<l. Asis

common, we may assume the data graph nodes to be condi-
tionally independent, and sum over the model graph nodes

using the law of total probability.

PT(Od|Om7M) " 1;[\/4 ZV Pr(xa|yaaM)Pr(ya‘M)
@ Ya EVm
I > Pr(ze|ye, M)m,

Ta€Vay, eV,

wherer, = Pr(y.|M) is the prior probability of the model
graph vertexy,, given the mixture model//.

In order to solve the ML problem, we note that the cor-
respondencef, is hidden from us. Additionally, if we view
each assignment variable,, ., as a model, then the matrix
M may be treated as a mixture model. Consequently, the
mixture model,M, is parameterized by the set of the con-
stituent assignment variables. Both these observations mo
tivate the formulation of an EM technique to compute the
model with the maximum likelihood.

E Step

We start our analysis by formulating a conditional expecta-
tion of thelog likelihood with respect to the hidden variables
given the data graph and a guess of the mixture maddél,

QM™H|M™) =

Ellog Pr(xa|Ya, M"H)WZH |Za, M"}
2

The expectation may be rewritten as a weighted summation
of the log likelihood with the weights being the posterior
probabilities of the hidden correspondences under thexnatr
of assignment variables at iteration Equation 2 becomes:
QUM™Y M™) = YU S Pr(yalwa, M™)logPr(
Zalya, M) + L S0 Pr(yalea, M™)log 5!
(3)
Next, we address the computation of each of the terms
in Eq. 3. We first focus on the posterid?r (yq |za, M™).
Once we establish a method of computation for this term, the
generation ofog Pr(z,|y., M™*1) follows analogously.

Using Bayes theorerr(y,|z,, M™) may be rewritten,

n PT(Ia|ya’Mn)’/TZ
Pr(ya|xaaM ) = Vi
Za:i Pr(xg|ya, M™)mh

(4)

We turn our attention to the terfr (z, |y, M™) in Eq. 4.
This term represents the probability that the data graple nod
T4, 1S in correspondence with the model graph noge,
under the match matrix of iteratiom, M™. Using Bayes
theorem again,

Pr(M™ya, o) Pr(Yo, Ta)
Pr(ya, M™)
As we mentioned beforé/™ is a mixture of the models,

mae. We treat the models to be independent of each other.
This allows us to write the above equation as,

Pr(zqlye, M™) =

V. Vin
Pr(ya, o) I 4TI Pr(mis|ya, «.)
V. Vin n
Pr(ya) LT Pr(mis|ya)

We note that,
Pr(za|ya, myz) Pr(myg|ya)
Pr(xz, |ya)

Substituting this into the numerator of the previous eaqumti
results in,
Pr(zalye, M") =[5t
V V’HL
XTG4 TTS" Pr(zalya, mis)

Pr(mgﬂ‘yav xa) =

]IVdHVm\*l

(®)

We first focus on the term®r(z,|ya, ml’fﬁ), which repre-
sents the probability that, is in correspondence witl,
given the assignment modeh;s. As we mentioned pre-
viously, myg is 1 if o3, is matched withys under the corre-
spondencef, otherwise it is 0. Let us call the set of nodes
that are adjacent to,, as itsneighborhood, A/ (z,). Since
we seekf to be a homomorphism that must be edge consis-
tent, for each vertex; € N (z,), the corresponding vertex,
f(z) € N(ya). Therefore, the probability of, being in
correspondence with,, is dependent, in part, on whether
the neighborhood ot is mapped to the neighborhood of
yo under f. Several approaches for schema matching and
graph matching (Luo & Hancock 2001) are based on this
observation. To formalize this, we introdug&”":

EC — 1 (g, 2p) € Eg N (Yo Ys) € By Apg =1
~ 1 0 otherwise
(6)

In addition to the structural similarity?r(x,|ya, m{}ﬁ) is
also influenced by the lexical similarity between the comcep
labels of the nodes, andy,.

Pe(xaa ya)liEC

- Pe(xaaya))EC
(7)

HereP. : V; x V,,, — [0,1] is the correspondence error
based on the lexical similarity of the node labels. We addres
the computation of’. later in this paper.

In the termPr(z, |y, ) in EQ. 5,2, is independent of,, in
the absence of the mixture model. TherefdPe(z,|y.) =

Pr(xa\ya,mgﬁ) =(1



Pr(z,) whose value depends only on the identity of the Waterman 1981) for calculating the lexical similarity be-

node,z,. In this paper, we assume this distribution to be tween the node labels. The SW algorithm may be imple-
uniform. Substituting Egs. 5 and 7 into Eq. 4, we get, mented as a fast dynamic program and requires a score for
o 1 Vil [Vin | —1 the similarity between two characters as the input. We as-

Pr(yol|za, M™) = Ca[m] ®) sign a 1 if the two characters in consideration are identical
xH‘l)fl‘H‘ﬁV:"‘l‘ (1 = Pi(a,Ya))PC P20, yo )~ FC and 0 otherwise. The algorithm generates the optimal local

_ L _ ) alignment by storing the maximum similarity between each
where(, is the normalizing constantand EC is as in EQ. 6. pajr of segments of the labels, and using it to compute the
We now look at the log likelihood term,  gimjlarity between longer segments. We normalize the out-

log Pr(xelys, M" ), in Eq. 3. The computation of 4t of the SW algorithm by dividing it with the length of the
this term follows a similar path as before, with the differ- longer of the two labels.

ence being that we use the new mixture model?*!.

Analogous to Eq. 5, we get, Random Sampling with Local |mprovements

log Pr(zq|ye, M™t) = log W}Ivdllvmlfl In this section, we ad_dress the_ compu_tati_on of the mixture
@l model, M+, that satisfies the inequality in Eq. 9. We ob-
XH\Vd\H\Vm\PT(x Iy mn+1)] serve that an exhaustive search of the complete model space
b=17p=1 Al TTh0 is infeasible due to its large size — there &, | + 1)!V4!

many distinct mixture models. On the other hand, both the
EM and its generalization, GEM, are known to often con-
log Pr(xa|ye, M™) = (|Va||Vin| — 1)log W‘F verge to the local maxima (Dempster, Laird, & Rubin 1977)
Z|vd| Z\vm\ 10g Pr(zalye, m"+1) o (instea_d of th_e gIo_baI) Wh_en the search space for s_electing
b=1p=1 alzer b8 M+ is parsimonious. This suggests that any technique for
Pr(z4lya,my; ") may be computed analogously to Eq. 7. generating)/]'*" should attempt to cover as much of the
model space as possible, while maintaining tractability.
M Step A straightforward approach for generating/?+!

The maximization step involves choosing the mixture is to randomly sampleK mixture models, M =
model, M7, that maximizesQ(M™t|M™), shown in (MO M3 ... MF)} and select the one d¢7*! that

Eg. 3. This mixture model then becomes the input for the satisfies the constraint in Eq. 9. We sample the models by
next iteration of the E-step. However, the particular formu  assuming a flat distribution over the model space. The set
lation of the E step and the structure of the mixture model of samples,M, may be seen as a representative of the com-
make it difficult to carry out the maximization. Therefore, plete model space. However, since there is no guarantee that
we relax the maximization requirement and settle for a mix- a sample within the sample set will satisfy the constraint in

The presence of the log considerably simplifies the above.

ture model M, that simply improves the value. As we Eq. 9, we may have to sample sevetdl before a suitable
mentioned before, this variant of the EM technique is called mjxture model is found. This problem becomes especially
the generalized EM. severe when the model space is large and a relatively small
M= M e M QMM M™) > Q(MT|M™) number of sampledy, is used. )
9) In order to reduce the number @#s that are discarded,
The priors, 72+1, for each a are those that maxi- we exploit intuitive heuristics that guide the generatidn o
mize Eq. 3. We focus on maximizing the second term, M"*'. For example, ifM™ exhibits mappings between
LV:"HI Z\a‘g Pr(ya|re, M™)log =71, of the equation. some subclasses in the two graphs, then match their respec-

tive parents, to generate a candidat&@*!. For the case
where a subclass has more than one parent, lexical similar-
ity is used to resolve the conflict. This and other general

Differentiating it partially with respect ta”*!, and setting
the resulting expression to zero results in,

1 [Val and domain-specific heuristics have been used previously
ot = ZPr(ya|xa,]W") in (Doanet al. 2002; Mitra, Noy, & Jaiswal 2004) where
|Val a=1 they were shown to be effective. However, a simple exam-

ple, Fig. 2, demonstrates that solely utilizing such a tseuri
tic is insufficient to generate all the mappings. To minimize
the convergence to local maximas, we augment the set of
Lexical Similarity heuristically generated m_ixture models with those that are
randomly sampled. In this manner, not only do we select

The term Pr(yq|zq, M™) was computed previously in
Eqg. 4. We user” ! in the next iteration of the E step.

We compute the correspondence ertér, between a pair  candidate mixture models that have a better chance of satis-
of data graph and model graph nodes (Eqg. 7) as one minus fying Eq. 9, but also cover the model space.

the normalized lexical similarity between their respesta-
bels. Under the umbrella of edit distance, several metaics f . .
computing the similarity between strings, such as n-grams, Computational Complexity

Jaccard, and sequence alignment exist. We use the Smith-We first analyze the complexity of computing
Waterman (SW) sequence alignment algorithm (Smith & Q(M™*!|M™) which forms the E step. From Eq. 8, the



a)

Figure 2:An illustration of the mappings generated by the heuris-
tic — if at least one pair of subclasses is matched, then match the
respective parents. (d)/" (b) Mappings after multiple applica-
tions of the heuristic. Unless we combine the heuristic with others,
no more mappings can be generated and a local maxima is reached.

complexity of the posteriotPr(yq|z., M™), is a combina-
tion of the complexity of computing EC, the correspondence
error (P.), and the tern‘[W]lVdHV’n\—l, We observe

that EC may be computed through a series of look-up op-
erations, and is therefore of constant time complexity. The
complexity of calculating®., dependent on the algorithm for
arriving at the lexical similarity, i$)(i?) for the SW tech-
nique, wherd is the length of the largest concept label. The
complexity of the exponential term &(1og, |V||Vin| — 1).
Hence the computational complexity of the posterior is
010G, | Vil [Vin| — 1) +-O([Val [V ) + O(12) = O(|Vi Vi ).
The computational complexity of the log likelihood term
is also O(|Vq4||Vin|), because its computation proceeds
analogously. Since the product of these terms is summed
over |V4]|Vin|, the final complexity of the E step is
O([|Val|Vim[]?). In the M step, if we generat&” sam-
ples within a sample set, the worst case complexity is
O(K[|VallViu1?). 2

Experiments

We analyze the performance of our methods on example on-
tology pairs obtained from thé CON Repository (Hughes

& Ashpole 2004). These ontologies are expressed in the
N3 language — an experimental non-XML variant of RDF.
While, a good match accuracy is of utmost importance, we
also focus on the computational resources consumed in ar-
riving at the match. We utilize a partial and modified sub-
set of the Weapons ontologies for a detailed analysis of our
methods. In Fig. 3(a) we show the match produced by the
GEM algorithm. We utilized the random sampling com-
bined with heuristic improvement to generat&**! at each
step of the iteration. To illustrate the need for considgrin
graph structure while matching, we also show the match ob-
tained by using just the lexical similarity between concept
labels (Fig. 3(b)). We point out that the many-one homo-
morphism in Fig. 3(a) mapped botAT Boat and Missile
Boat nodes of the data graph to tRast Attack Craft node

For edge-labeled graphs, the complexity of the reification step
is O(|E|log2| E|) where| E| is the number of edges in the graph.
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Figure 3:Utility of considering structure while matching. (a) The
mappings generated by our GEM method (recall: 100%; precision:
90% — 1 false-positive). (b) Mappings generated using only the
lexical similarity between concept labels (recall = 77.8%; precision
=63.6%). The dashed lines in bold are the incorrect matches.

a
is-a

model

(b)

of the model graph. This illustrates a subsumption match
because the former concepts are encompassed by the latter.
In Fig. 4(a) we show the performance (recall) profile of
the GEM with random sampling. Each data point in the plots
is an average of 10 independent runs, and our seed mixture
model (M °) contained a single match between Taek Ve-
hiclenodes of both ontologies. As we increase the size of the
sample sets (from 100 to 1,000 samples), we obtain a greater
recall at each iteration. This is because a larger percemtag
the complete search space (0° models) is covered. How-
ever, from Fig. 4(c), we observe that the running time over
all the iterations also increases as the sample size ireseas
To measure the effectiveness of random sampling, we also
provide the total number of sample setd, that were gen-
erated over all the iterations. For 100 samples, an average
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Sampling with Time 10.3s+ 1.7s 48.12+ 11.2s 1m 50.6st 24.11s 8m 41.3s+ 1m 22.46s
local improvements| Sample sets 26+5 25+ 6 27+ 6 27+ 4
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Figure 4:Performance profiles of the GEM method on Weapons ontologigsRandom sampling was used for generating the R&Xt.

(b) A combination of heuristic and random sampling is used for generatifig'. (c) The total running times (JDK 1.5 program on a dual
processor Xeon 2.1GHz, 4GB RAM, and Linux) and sample sets gtatkover all the iterations.

of 57 sample sets per iteration were generated before a satis bility. Our results illustrate the good performance of our
ficing M ™! was found, while an average of 38 sample sets methods, but also highlight some limitations. In particula
were used per iteration for 1,000 samples. On including the for large ontologies, more efficient methods are required fo

heuristic (Fig. 2) in addition to random sampling during the performing the optimization step.

optimization step, we obtain the performance profiles shown
in Fig. 4(b). The heuristic not only improves the recall but
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also significantly reduces the number of sample sets gen- Thjs research is supported by a grant from UGARF.

erated and therefore the time consumed in performing the
iterations (Fig. 4(c)). While smaller size sample sets lead t
local maximas, sets of 5,000 samples produced 90%-100%
recall for all the runs. We observe that the heuristic bylfitse

is not sufficient: starting from our seed model, employing
just the heuristic for the optimization step leads to only a
40% recall.

In order to judge the performance of our method on more
complex ontologies, we tested it on larger subsets of the
Weapons ontologies, rooted @onventional Weapons, and
subsets of the Network ontologies. The data and model

graphs for Weapons contained 22 and 19 nodes, respec-

tively. The GEM method combined with heuristically and
randomly generated samples converged to a match with a
recall of 100% and a precision of 86.4% in 17m 47.2s with a
seed model of 10% accurate matches. The Network ontolo-
gies, in addition to containing more nodes, exhibit labeled
relationships. After performing reification using the peec
dure illustrated in Fig. 1, both the data and model graphs

contained 19 nodes and 24 edges each. The GEM method

converged to a match with a recall and precision of 100% in
10m 53.1s with a seed model of 10% accuracy.

Conclusion and Limitations

We presented a new method for identifying mappings be-
tween ontologies that model similar domains. We formu-
lated the problem as one of finding the most likely map and
solved it iteratively using the GEM technique. We improved

on previous approaches by generating inexact matches be-

tween the ontologies; such methods have a wider applica-
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