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Abstract

Ontology mapping is a complex and necessary task for many
Semantic Web (SW) applications. The perspective users are
faced with a number of challenges including the difficulties
of capturing semantics. In this paper we present a three-
dimensional ontology mapping model. This model reflects
the engineering steps needed to materialise a versatile map-
ping system in order to meet the demands on semantic in-
teroperability in the SW environment. We solidify the for-
malisation with specialised algorithms and we analyse their
effectiveness and performance by way of benchmark tests.

Introduction

Currently, research and development in the area of the Se-
mantic Web have reached a stage that a large number of
applications and services are powered by ontologies. A
good wish behind the enthusiasm towards ontologies is
that with shared terminologies/vocabularies comes along a
community-wise consensus on the underlying semantics.
Such an approach, however, has been too optimistic on two
issues: i) designing a “perfect” ontology that accommo-
dates all needs is not an easy task and ii) maintaining a
consistent interpretation of an overcommitted and compre-
hensive ontology, even if there is one, is impractical. As a
result, finding semantic equivalence among different ontolo-
gies becomes a useful alternative in coping with the seman-
tic heterogeneity that one may be exposed to when his/her
own ontology-based applications need to communicate with
those from others. Ontology mapping is by no means a new
research topic. It has been the focus of multidisciplinary
efforts across a diverse landscape including Database, In-
formation System, Information Retrieval (IR), etc. It has
drawn more attention recently due to the aforementioned
reasons and triggered enormous interest in both theoretical
research and system development (Rahm & Bernstein 2001;
Stumme & Maedche 2001) that gave birth to a series of con-
ferences and workshops.

While many sophisticate tools have been developed (Ben-
jamins et al. 2006), we witness a subtle shift of focus from
“how well one maps?” towards “how well the semantics is
captured?”. Evidences of such a trend can be found in (Cruz

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2006), as many papers devoted to defining new for-
malisation and methods (e.g. via argumentation) to discover
the “latent” semantics. In order to answer the “how-well”
question, we cannot ignore the thousands of years of studies
in philosophy w.r.t. “the meanings of words”. We, hence,
jigsaw similarity measures in a well-established semantic
model and propose different mapping algorithms at three di-
mensions, i.e. the representational, conceptualisational and
instance dimension. Our goal is to produce a framework that
offers a full-scale treatment of semantics.

Capturing semantics in three dimensions

A narrative interpretation of the ontology mapping problem
is: “given two ontologies of the same domain (or largely
overlapping domains), a set of corresponding pairs from re-
spective ontologies should be returned to indicate how these
two ontologies can be aligned”. We adopt the well-known
triangle model (Ogden & Richards 1923) for assigning and
operationalising the meaning of ontologies (see Fig. 1). In
the light of this model, an ontological entity E ∈ O (where
O is an ontology) is a 3-tuple, 〈s, f, i〉, where s denotes a
finite set of symbols as names, f a finite set of well formed
formulae as restrictions on s, and i the extension of s satis-
fying f . More specifically, given a set of instances Δ as the
domain for interpreting s and an interpretation function ι,
i = sι is a subset of Δ. Meanwhile, ontology O is a 3-tuple
〈S,F , I〉, where S = {sE | E ∈ O}, F = {fE | E ∈ O},
and I = {iE | E ∈ O}. Identifying semantic equivalence is,
therefore, formalised as:

Definition 1 Semantic equivalence between E ∈ O and
E ′ ∈ O′ is a mapping m : E � E ′, such that, 1) sE =
m(s′E′), and vice versa; 2) fE |= m(f ′

E′), and vice versa;
and 3) iE ⊆ i′E′ , and vice versa.

Based on Definition 1, mapping between ontological en-
tities E and E ′ is formalised as:

sim(E , E ′) = γ (simS(E , E ′),simF(E , E ′),

simI(E , E ′))
(1)

where sim() computes the similarity between two ontolog-
ical entities, E and E’. That is to say that similarity be-
tween E and E ′ is an aggregation (γ) (e.g. weighted average)
of simS(E , E ′), simF(E , E ′) and simI(E , E ′) focusing on
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Figure 1: Meaning triangle by Ogden and Richards

the representational, conceptualisational, and instance simi-
larity respectively.

The similarity functions, simS , simF , and simI , can be
instantiated by different approaches (Kalfoglou et al. 2005).
However, this does not suggest that capturing semantics
in ontology mapping is a solved problem. Many systems
claiming to offer semantic intensive mapping fail to respond
to the multidimensional nature of semantics. External lex-
ica (e.g. WordNet) and/or ontological structures have often
been misread as the full “spectrum” of the semantics. Cer-
tainly, we do not disparage the importance of such informa-
tion. Rather, we would like to emphasise that the external
lexica and ontological structures alone only provide a lim-
ited access to the full picture of semantics which should be
captured as a “trio”.

Ontology mapping as a “trio”

The three-dimensional mapping model is accommodated by
algorithms that are specialised in computing the similarity
w.r.t. symbolic representations, abstract conceptualisations
and concrete instance data.

Similarity w.r.t. the symbolic representations is normally
computed as String Distance or one of its variants (Cohen,
Ravikumar, & Fienberg 2003). The algorithms aiming at the
representational similarity assume that ontology engineers
always know how to choose the most appropriate names for
ontological entities. There are, however, no widely accepted
“golden” naming standards for ontologies. Hence, methods
in this family suffer from the lack of systematic measures to
ensure their performance.

Similarity of conceptualisation

A general practice of formalising conceptualisation is using
logics. In this paper, we focus on the description logic (DL)
based modelling languages (e.g. OWL-DL) and “dissolve”
conceptualisations into semantics-bearing units which are
referred to as signatures (Hu et al. 2006). We do not con-
sider our focusing on DL-based languages as a major limi-
tation of our approach, due to the fact that OWL, as a W3C
standard, is expected to be the main language for ontologies
targeting at the Semantic Web. Meanwhile, the proposed al-
gorithm works for other modelling languages that are less
expressive than OWL-DL.

Obtaining semantic signatures In DLs, the semantics of
concepts is embedded in the logic-based constructs which

need to be made explicit before computing the similarities.
Explicating the embedded semantics amounts to recursively
unfolding concepts till a fixed point is reached. If cyclic
definitions are not allowed, i.e. no concept (property) names
appear on both sides of a concept (property) introduction ax-
iom and all definitions are in their Negation-Normal Form,
i.e. the negations are applied only to concept names, it is
possible to fully unfold the righthand side of all concept in-
troduction axioms and guarantee the termination of such an
unfolding process.

Woman
.
= Person � Female

Mother
.
= Woman � ∃hasChild.Person

MWMD
.
= Mother� ≥2 hasChild.Woman

Female � � Person � �

Figure 2: MWMD example

We adopted the construct transformation rules used in
many DL systems to facilitate the concept unfolding and the
signature extraction process. In Fig. 3, we present a simple
example showing how MWMD (Mother with many daugh-
ters, defined in Fig. 2) is unfolded by repetitively applying
the transformation rules defined for each and every DL con-
struct (see (Baader et al. 2003) for further details). The
unfolding process for MWMD terminates when no transfor-
mation rules are applicable.

0ΥMWMD
1 = { x : Mother� ≥2 hasChild.Woman }

1ΥMWMD
1 =

{
x : (Woman � ∃hasChild.Person)�

≥2 hasChild.(Person � Female)

}

2ΥMWMD
1 =

{
x : Woman, x : ∃hasChild.Person,
x :≥2 hasChild.(Person � Female)

}

· · ·

nΥMWMD
1 =

⎧⎪⎨
⎪⎩

x : Woman,
〈x, y1〉 : hasChild, y1 : Female,
〈x, y2〉 : hasChild, y2 : Female,
y1 : Person, y2 : Person

⎫⎪⎬
⎪⎭

Figure 3: Unfolding concept MWMD

As illustrated in Fig. 3, MWMD is completely un-
folded and associated with its semantics-bearing signature,
nΥMWMD

1 , that captures the semantics of the concept. Sev-
eral points require further discussion. Firstly, there might be
cases where concepts are defined as the union of other con-
cepts, that are either explicitly defined elsewhere in the same
ontology or introduced as anonymous ones. The unfolding
rule for DL construct 	 is non-deterministic and results in
more than one signature. For instance, if we have “Human

.
=

Man � Woman” and define Man and Woman as “. . . �
∀hasGender.Male�. . .” and “. . .�∀hasGender.Female�. . .”
respectively. After unfolding, we have two signatures.

nΥHuman
1 = {. . . , x : ∀hasGender.Male, . . .} or

nΥHuman
2 = {. . . , x : ∀hasGender.Female, . . .}

Thirdly, universal property quantifications can only be fur-
ther expanded when in the same signature, there are ele-
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ments defined over the quantified property. For instance, in
the above example, “y : Male” is introduced if and only
if both “x : ∀hasGender.Male” and “〈x, y〉 : hasGender”
present. It is left unexpanded otherwise. This, however,
does not suggest that universal quantifications over compos-
ite concepts should be treated as atomic signature elements.
On the contrary, they are fully further expanded. For in-
stance, ∀R.(A � B) is transformed into ∀R.A � ∀R.B.

The unfolding process stops when a fixed point is reached,

i.e. nΥ = (n−1)Υ. As demonstrated in (Horrocks & Sattler
2005), by carefully selecting a set of admissible constructs
termination is guaranteed w.r.t. acyclic ontologies.

Computing similarity After signaturing all concepts in
O, a set of the most basic building blocks of O is acquired
as the elements of concept signatures. It is evident that a
formula that can be derived from C ∈ O w.r.t. O is a subset
of ΥC

i . The conceptual similarity, therefore, can be obtained
by counting the number of the subsets of the intersection of
the respective signatures. When concepts are unfolded into
more than one signature due to the presence of disjunctions,
the maximum similarity is computed among the alternatives.
Let Υi and Υ′

j be the signatures of E and E ′ respectively and

| · | give the set cardinality, we have

simF (E , E ′) = max
(Υi of E,Υ′

j
of E′)

2 · 2|Υi ∩Υ′

j |

2|Υi| + 2|Υ
′

j
|

If E and E ′ are from different ontologies, their signature
elements might not be comparable to startup the similarity
computation. It is necessary to align the respective signa-
ture elements first in order to compute Υ ∩ Υ′: if φ de-
notes the set of one-to-one alignments between Υ and Υ′,
|Υ ∩ Υ′| = | φ |. In practice, primitive concepts and prop-
erties normally do not provide many clues for obtaining φ
apart from their names and, in some cases, their instances.
When computing the conceptualisational similarity, we want
to avoid relying on syntax-based name similarities, even for
bootstrapping the whole process. We, therefore, either in-
troduce the alignments manually or allow them to gradually
emerge as follows.

Let ΥC
i be the ith signature of an arbitrary concept C ∈ O,

we define

F =
⋃

C∈O

⎛
⎝ ⋃

ΥC

i of C

ΥC
i

⎞
⎠

as the set of all elements that appear in any signatures of O.
If Φ : F × F′ gives all possible alignments between F of O
and F′ of O′, we repetitively examine φ ∈ Φ to maximise

arg max
φ∈Φ

∑
E∈O,E′∈O′

sim
φ
F(E , E ′) (2)

The φ maximising Equation 2 is the recommended align-
ment between signature elements, based on which similar-
ities of concepts are computed. For very large ontologies,
checking each pair of concepts to maximise Equation 2
might not be feasible. In practice, we reduce the search

space of Equation 2 with two relaxations: i) we examine
only leaf concepts, i.e. concepts without children, and ig-
nore interim ones to reduce the computational burden of
each iteration and ii) we align only compatible signature el-
ements. More specifically, we distinguish three types of sig-
nature elements: concept-type (e.g. “x:Woman”), property-
type (e.g. “〈x, y1〉:hasChild”), and elements featured by uni-
versal property quantifications (e.g. “x:∀hasChild.Person”).
Moreover, for each type, we only compare elements at the
same nesting property reference level. For instance, in
the previous example, we do not compare x : Woman ∈
nΥMWMD

1 against y1 : Female ∈ nΥHM
1 due to the fact that

the latter is introduced in ΥHM
1 through property hasChild

and thus is at a different nesting level from the former. In
many ontologies, compared to fully defined concepts, the
number of primitive concepts and properties is relatively
small. So is size of F. For instance, FMA Ontology1 has
roughly 70k concepts with only approximately 100 proper-
ties and 20 primitive concepts.

Similarity of instances

Many approaches, either acting as a stand alone
tool (Stumme & Maedche 2001) or being a building
block of a large framework (Doan et al. 2002), have been
proposed to discover the meanings of concepts from the
instance data and subsequently semantic equivalences
therein. When a relatively complete set of instances can
be identified w.r.t. a populated ontology, the semantics of
ontological entities can be reflected through the distribution
of such instances. A major assumption made by techniques
belonging to this family is that concepts with similar seman-
tics share instances (Doan et al. 2002) and an understanding
of their distribution contributes to the understanding of the
semantics. Data Mining and IR techniques are frequently
employed to winnow away apparent discrepancies as well
as discover the hidden correlations among instances. Some
recent efforts along this line of research are discussed
in (Kalfoglou et al. 2005).

However, the ideal situation assumed by the authors
of (Doan et al. 2002) is not always true. Many ontologies
published on the loosely regulated internet might only have a
skewed set of instances or not have any instances at all. We,
therefore, developed algorithms to tackle ontologies without
sufficient instance level information.

When instance data is partially available Although
many automated learning methods have been pro-
posed (Cruz et al. 2006), manually populating ontology is
still dominant. The lack of human labour and proper domain
knowledge, therefore, results in many under-populated on-
tologies in the Semantic Web. We differentiate two types of
under-populated ontologies: those with at least one instance
asserted for each leaf concept and those with un-instantiated
leaf concepts. Ontologies falling in the latter category are
treated in the same way as unpopulated ones while those
belonging to the first category is discussed in this section.

The fundamental idea is that the entire internet presents it-

1http://sig.biostr.washington.edu/projects/fm/index.html
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Generate web search query, Query

Require: 1) concept hierarchy H(≺) of ontology O
2) concept C, D, E and instance Ii in O
3) α ∈ {≥n,≤n, =n,∀,∃}

function Query(C)

Q = {names in C}

% extend Q with names from parent concepts %

if “conjunction of D and E” ≺ C ∈ H then

Q = {Query(D), “AND” + Query(E)} ∪ Q

else if “disjunction of D and E” ≺ C ∈ H then

Q = {Query(D), “OR” + Query(E)} ∪ Q

else if “complement of D” ≺ C ∈ H then

Q = {“NOT” + Query(D)} ∪ Q
else if “α R D ”≺ C ∈ H then
Q = {”AND” + Query(D)} ∪ {”AND” + R} ∪ Q

else if D ≺ C ∈ H then

Q = {Query(D)} ∪ Q
end if
return cleanup(Q)

end function

Figure 4: Query generation of C

self as a very large corpus from which we can extract, assess,
and assert instances for under-populated ontologies. This
is realised by generating internet search queries and pulling
out web pages as candidate virtual instances which are then
subject to further verification. The vast internet presents it-
self as both an opportunity and a challenge. It is an oppor-
tunity in the sense that in line with the vision of emergent
semantics (Staab et al. 2002), the Internet provides a cor-
pus with ordinary web users constantly and collaboratively
pooling in their knowledge and view of the world. The accu-
mulative effect is not trivia and can be exploited to discover
the latent semantics among terms. The challenge is equally
distinct. The sheer size of the virtual instance population
denies the possibility of developing time-efficient tools to
investigate individual web pages, assess them and treat them
in the same way as ordinary instances. When all the leaf
concepts are instantiated, these properly defined instances—
even though not complete—can be treated as clues to vali-
dating virtual instances. This process is summarised as fol-
lows: Let E ∈ O and E ′ ∈ O′ be two concepts, iE and i′E′

be the properly defined instances of E and E ′ respectively.

1. For every E ∈ O, we generate a search query accord-
ing to the algorithm in Fig. 4 where we assume that con-
cepts in O are arranged in a hierarchical structure H reg-
ulated by ≺, i.e. D ≺ C implies that D precedes C in
H. cleanup() performs stop-word removal, tokenisa-
tion, and other NLP techniques.

2. The generated queries are fed into an internet search en-
gine with the capacity of handling basic logic operators,
e.g. GoogleTM Search API2. We pool the top k retrieved
pages and denote pages retrieved with a particular query
as ωE = hit (Query(E)).

2http://www.google.com/apis/index.html

3. ωE is refined by: i) computing the distance between the
defined instance iE on the one hand and every candidate
virtual instance vi ∈ ωE on the other hand and ii) pruning
vis with distance greater than the threshold t1.

4. Repeat Step 1-3 on every E ′ ∈ O′ with the same k and t1.

5. For refined ωE and ωE′ , we compute the distance d be-
tween every vi′ ∈ ωE′ and iE : if d ≥ t2, we say vi′ can
be classified against E . The same procedure is performed
on ωE w.r.t. i′E′ of E ′. Non-leaf concepts acquire virtual
instances automatically from their sub-concepts.

6. Based on the classified virtual instances, we compute the
similarity simI(E , E ′) = |ωE ∩ ωE′ | / |ωE ∪ ωE′ | .

Many methods can be used to acquire the distance be-
tween virtual and “real” instances. A straightforward ap-
proach is to exploit the well-established bag of words model
converting both types of instances as vectors of words and
compute the cosine distance of vectors (van Rijsbergen
1979). A few factors may impinge on the performance of the
above method. Firstly, ideally the cut-off value k and thresh-
old t1 and t2 should be repetitively evaluated till an optimal
setting is researched. In our initial implementation, however,
we empirically assigned k=100 and t1=t2=3/4μ where μ is
the arithmetic mean distance between the virtual instances
and the defined one for a particular concept. Secondly, when
a leaf concept has more than one defined instance, we ran-
domly pick up one against which virtual instances are exam-
ined. Further work should conceive a “clever” mechanism
to prune unqualified virtual instances based on information
drawn from all “real” instances of a concept.

When instances are not available There are occasions
that one needs to map completely unpopulated ontologies.
By taking full advantage of the Internet search engines, one
could query to retrieve web pages indexed with a set of
words. Although such virtual instances cannot be verified,
instead of using them directly, we can discover the seman-
tic correlations among them by leveraging statistic methods,
e.g. normalised google distance (Cilibrasi & Vitanyi 2007).

One way to explore the semantic correlation is to compute
the conditional probability between concepts, P (C | D) =
P (C, D)/P (D). Given two arbitrary concepts C and D, their
joint probability is approximated as

P(C, D) ≈
| hit (Query(C) AND Query(D)) |

Ω
where Ω is the total number of web pages that the selected
search engine currently indexes and |hit()| gives the number
of web pages returned by the search engine. The applicabil-
ity of using internet search engines to discover meanings of
general terms/concepts has been demonstrated in (Cilibrasi
& Vitanyi 2007). Ostensibly, the Internet, as a repository of
general information, does not convey many useful messages
for specific domains, e.g. military domains and medical do-
mains. Our experience, however, confirmed otherwise. Al-
though much fewer hits are returned comparing to general
terms, the results are still statistically significant.

The similarity simI(E , E ′) is then computed as:

simI(E , E ′) =
1

2
·

(
P (E , E ′)

P (E ′)
+

P (E , E ′)

P (E)

)
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Evaluation

Mapping algorithms of the “trio” model discussed in the pre-
vious section are implemented and their performance is eval-
uated against benchmark tests from the Ontology Alignment
Evaluation Initiative (OAEI)3. OAEI tests contain 50 differ-
ent cases each focusing on one or a combination of several
factors that might differentiate ontologies. They are partic-
ularly useful in our case, because there are dedicated cases
for representational and conceptualisational variances.

Details of test case

The OAEI reference ontology (test case 101) contains 33
concepts and 30 properties from the bibliography domain.
The variances w.r.t. concepts, properties and the hierarchi-
cal structure are introduced in different test cases. Roughly,
the OAEI 2006 benchmark tests can be categorised into the
following groups:

103-104 ontologies codified in different modelling lan-
guages (e.g. OWL/XML/RDF) while both the represen-
tation and conceptualisation remain the same as the refer-
ence ontology 101;

201-210 ontologies with only linguistic variances, e.g. con-
cept names replaced with random strings, translated into
foreign languages, generalised using hypernyms, etc.;

221-247 ontologies with conceptualisational variances, e.g.
flattened hierarchies, suppressed properties, suppressed
instances, etc.;

248-266 ontologies with both representational and concep-
tualisational variances, i.e. the combinations of changes
from case group 201-210 and 221-247;

301-304 Real-life bibliographic ontologies.

Among them, the cases belonging to 300 family are of
particular interest because they present both representational
and conceptualisational differences that reflect the natural
variances among independent ontology engineers.

Comparing mapping results

The organisers of OAEI contest have crafted reference align-
ments for every test case. If taking such alignments as the
ground truth, it is possible to compute the precision, recall
and f-measure and quantitatively analyse the strength and
weakness of our algorithms (see Table 1 for the results).
When evaluating our similarity algorithms, we select only
the best candidates returned by such algorithms and ignore
all other less favourite ones. That is to say that we select the
candidate that has the highest similarity or highest rank and
produce exactly one mapping from the target ontology for
every concept of the source ontology.

Precision (p) is, therefore, computed as the fraction of
the reference compliant mappings in the list of all align-
ments returned by our algorithms. Recall (r) is the fraction
of the reference compliant mappings returned by our algo-
rithms in the entire set of reference alignments. F-measure
(f ) presents a combined criteria of precision and recall as
f = 2p · r/(p + r).

3http://oaei.ontologymatching.org/2006/benchmarks/

Discussions

As expected, representational similarity methods are suf-
ficient for cases that only have syntactical variances, e.g.
benchmark test 103 and 104. Simrep also performs well
when only conceptualisational variances present, e.g. test
group 221-247 as illustrated in Fig. 5, but it is still unclear
whether or not two concepts should be considered equivalent
if their conceptualisations are different. Conceptualisation-
based method Simcon outperforms Simrep when concept iden-
tifiers/names cannot provide enough information for align-
ing, e.g. benchmark test group 201-210. For instance, in test
201, both concept and property names are replaced with ran-
dom strings—in which case we encountered the worst case
scenario for Simcon as well: every possible combination of
the signature elements from the source and target ontologies
is evaluated resulting in a total number of 6000+ iterations
for a small ontologies with only 33 concepts and roughly
40 properties. Such an extreme scenario, however, seldom
occur in real-life mapping tasks, as concept and property
names always give clues for possible alignments between
signature elements. In benchmark test group 248-266, after
examining all potential alignments, our algorithm eventually
converged on one set of alignments between signature ele-
ments resulting in concept and property mappings with rel-
atively high precision and recall: 0.87 and 0.52 respectively.

Representation Conceptualisation

Instance (partial ins) Instance (no ins)

1

0.8

0.6

0.4

0.2

0

103-104 201-210 221-247 248-266 301 302 303 304

Figure 5: representation v.s. conceptualisation v.s. instance

In real-life tests, both representational and conceptualisa-
tional similarities are limited by the naming and modelling
conventions and thus algorithms focusing on one aspect do
not have distinguishable advantages over those based on an-
other (test 301 to 304 in Fig. 5). As an alternative, instance
data reveal the intended meaning of concepts and thus can
complement the algorithms based on representational and
conceptualisational characteristics. Due to the unavailability
of properly populated ontologies—many benchmark tests
are not properly populated, we evaluated only the two algo-
rithms for under-populated ontologies. In order to facilitate
the verification process against virtual instances, when run-
ning the algorithm targeting at partially populated ontologies
(Simpar-ins), we manually introduced one instance for every
un-instantiated leaf concept. Benefiting from the carefully
crafted exemplar instances, Simpar-ins achieved good results
in the majority of the test cases (see Fig. 5). We would argue
that the use of exemplar instances in not a disadvantage. In
many real-life scenarios, ontologies are used for acquiring
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103-104 201-210 221-247 248-266 301 302 303 304

� Syntax � Name � Structure � + � Real-life ontologies

Representation (Simrep) 1.00 0.57 1.0 0.22 0.70 0.73 0.78 0.62

Conceptualisation (Simcon) 1.00 0.94 0.47 0.65 0.74 0.70 0.75 0.71
Partial instance (Simpar-ins) 1.00 0.70 0.99 0.27 0.88 0.77 0.77 0.60
No instance (Simno-ins) 1.00 0.70 0.91 0.25 0.74 0.68 0.70 0.64

Table 1: F-Measure of each category of test cases with different types of variances

and storing knowledge. Hence, when a mapping task is re-
quested, we expect that the ontology owners might already
have a partially populated ontology and/or possess enough
domain knowledge to manually instantiate all leaf concepts.
This assumption, of course, need to be validated by further
studies. Moreover, although both algorithms have achieved
at least an average f-measure of those of the representational
and conceptualisational similarity measures, the benchmark
test is not large and diverse enough to conclude that the vir-
tual instance based methods perform equally well in other
real-life mapping cases.

Conclusion and future work

In this paper, we adopted the triangle metaphor by Ogden
and Richards (Ogden & Richards 1923) and presented a
“trio” model for exploring the full-scale semantics in on-
tology mapping. At each vertex (dimension) of the meaning
triangle, we proposed and implemented algorithms that can
best represent the alike and evaluated their performance by
means of ontology mapping benchmark test. Our experi-
ment demonstrated that algorithms focusing on the different
aspects of the semantics can be complementary.

Of course, revealing the true meanings is always one of
the most controversial issues when coping with semantic
heterogeneity. There is irreconcilable argument on what
the semantics is as well as how semantics can be revealed.
In practice, surprisingly, representation-only methods have
manifested their efficiency in special settings through many
industry-strength mapping/aligning systems (Noy, Doan, &
Halevy 2005). Such a fact, however, should not be inter-
preted as a counterexample of the advocation of comprehen-
sive similarity measures across different semantic dimen-
sions. We would argue that concept and property names
only provide evidences on one aspect of the semantics. They
need to be combined with and complemented by other infor-
mation. To this front, we have developed the most complete
framework so far. Although our framework achieved good
results w.r.t. the purposely designed benchmark test, its ap-
plicability and performance need to be further investigated
and demonstrated through large-scale, real-life ontologies
and optimised accordingly.
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