
AMC – A Framework for Modelling and Comparing
Matching Systems as Matching Processes

Eric Peukert#1, Julian Eberius#2, Erhard Rahm*3

SAP Research
01187 Dresden, Germany

1 eric.peukert@sap.com
2 julian.eberius@sap.com

* University of Leipzig
Leipzig, Germany

3 rahm@informatik.uni-leipzig.de

Abstract—We present the Auto Mapping Core (AMC), a new
framework that supports fast construction and tuning of schema
matching approaches for specific domains such as ontology
alignment, model matching or database-schema matching.
Distinctive features of our framework are new visualisation
techniques for modelling matching processes, stepwise tuning of
parameters, intermediate result analysis and performance-
oriented rewrites. Furthermore, existing matchers can be
plugged into the framework to comparatively evaluate them in a
common environment. This allows deeper analysis of behaviour
and shortcomings in existing complex matching systems.

I. INTRODUCTION

Schema matching is the task of finding mappings between
complex metadata structures as required in data integration,
ontology alignment or model management. In the last decade
numerous matching algorithms were proposed and combined
to partly automate that process (see surveys [1] and [4] for an
overview). In particular for ontology matching a number of
complex matching systems such as COMA++ [2], RIMOM
[9], Falcon [6] or ASMOV [7] were developed that try to
show their versatility in yearly OAEI evaluations [5]. They
use complex matching processes consisting of sequential and
iterative executions of several match algorithms, so-called
matchers.
Some systems like RIMOM and Falcon analyze the input
schemas and intermediate result mappings and include
conditions into their process to better adapt to individual
match problems of the OAEI evaluations. However, these
systems have in common that the underlying execution
process consisting of matchers and their combination is
largely fixed. Constructing or adapting matching processes for
a new problem domain often involves high implementation,
tuning and testing effort in current systems. In addition to that,
basic matchers are often reimplemented instead of being
reused.

Recently, so called meta matching systems were introduced.
They focus on tuning combinations of existing matchers by
using a given, or synthetically created perfect mapping. These
combinations of matchers can be complex workflows or
processes as proposed in eTuner [8] or decision trees as used
in MatchPlanner [3]. However these processes are not able to

automatically adapt to new mapping problems. Additionally
these systems do not provide visual support for integrating or
selecting matchers and modelling new matching workflows.
Moreover, comparing and analyzing basic matching
components from existing matching systems is cumbersome
and involves a lot of implementation effort.

In this demo paper, we introduce the Auto Mapping Core
(AMC), a meta matching system that allows to integrate and
compare arbitrary matching components within a so called
matching process. AMC offers the following key features:

The AMC framework can be used to define and execute
complex matching processes. It offers a design tool, the
Matching Process Designer, that visually supports the
construction of matching processes. Processes can be
executed and debugged by stepping forward and
backward in the process and setting breakpoints. A new
visualisation technique simplifies the analysis of
intermediate matching results.
Matching processes are adaptive and can easily be
changed to new domains. The execution time of
matching processes can be automatically optimized by
applying rewrite techniques [12].
Existing matching system components can be plugged
into the AMC framework for evaluation and reuse. The
AMC evaluation framework allows a uniform
comparison of the behaviour and match quality of
different matchers and also of combination and
selection methods.

II. AMC OVERVIEW

Fig. 1 illustrates the architecture of AMC consisting of
modules for modelling and execution of matching processes.
The system gets a source and target schema as input and
computes a mapping. The core of the AMC framework is an
extensible operator library consisting of matcher, combination,
selection, analyser and blocking operators (see next section).
Extensions can be added to the library as loosely coupled
plug-ins. Plug-ins implement a thin adaptation layer that calls
operators of existing systems and converts inputs and outputs
of these operators into internal AMC formats.

mailto:eric.peukert@sap.com
mailto:julian.eberius@sap.com
mailto:rahm@informatik.uni-leipzig.de

Fig. 1 System Architecture of our Meta Matching System

Currently, we integrate only operators for which the
sources are available and licensing does permit their use.
However, binaries can also be integrated as plug-ins if their
use is permitted. Using the operator library, matching
processes can be defined using a GUI-based process editor,
the Matching Process Designer (see Fig. 2). The created
matching processes are executed by an execution engine that
calls the respective operators from the library.

The Matching Process Designer is used to define an order
of operators that used to be fixed for existing matching
systems. Parameters of individual components can be set
directly within the graphical representation of the process (Fig.
2a). It can also be used to iteratively step through the process
(Fig. 2b) and to investigate intermediate results of individual
operators (Fig. 2c). For that purpose a new visualisation
technique for analysing intermediate results (introduced in
Section IV) is used (Fig. 2d).

III. MATCHING PROCESSES

A matching process is a directed acyclic graph that
describes the execution order of selected operators. Operators
in the graph take either a source schema and a target schema
or mappings as input and return a mapping as output. The
output of one operator is used as input for the next one.

The AMC uses a uniform mapping data structure as basis
for integration of external operators. A mapping between a
source schema and a target is represented by a similarity
matrix A = a that has |S| × |T| cells to store a match result.
Each cell contains a similarity value between 0 and 1
representing the strengths of similarity between the i-th
element of the source schema and the j-th element of the
target schema. Additionally a mapping contains a so-called
comparison matrix that is defined as = () with
| | × | | cells. Each cell defines whether the i-th and j-th
element should be compared in the following operations.
Please refer to [12] for further details on the comparison
matrix and how it can help reducing the search space for
improved performance.

Fig. 2 Matching Process Designer

The AMC operator library consists of different operator types,
namely matcher, combination, selection, analyser and
blocking operators.
Matcher operators form a crucial part of the library. They
take either a source schema and a target schema or a mapping
as input and compute a mapping as output. Matchers compute
a similarity for each element pair for which the comparison
matrix entry is set to true. This can be used for refining
already computed mappings. In addition to the mapping and
schema input, so called constituent mappings as already
supported in COMA++ [2] can be provided as input to a
matcher operator. This can be used in particular by structural
matchers that compute a similarity from a combination of pre-
computed constituent similarity values. For example a name-
path matcher computes the path similarity by combining the
pre-computed name similarities of elements in the path.
The combination operators take multiple mappings as input
and compute a single mapping as output. The input mappings
can result from other matcher executions but also from
previous selection or combination operations. For each pair of
schema elements a combined similarity value is computed.
The selection operators get a mapping as input and produce a
mapping as output. Selection operators filter the most
promising mapping pairs using some filter strategy. The result
is a sparse mapping where similarity values are often only set
for few element pairs per schema element.
Analyser operators get source and target schemas or
mappings as input and compute a characteristic feature value,
for example the linguistic or structural similarity of the input
schemas. These feature values are used within the matching
process to define conditions for executing or not executing
sub-processes. This lets the process automatically adapt to the
concrete matching problem.
The blocking operators are used to reduce the often
necessary cross-product computation to a number of smaller,
possibly intersecting, block mapping problems. This reduces
the search space since only similar blocks are matched. For
that purpose clustering, partitioning and also fragmentation
techniques can be used. A for-each operator is used to

a

d

c

b

execute a sub-process for each block mapping problem. It
finally aggregates the results to a single mapping.
Besides the mentioned operators there are auxiliary operators
for splitting or filtering schema elements and mappings. Also
a difference operation that subtracts a mapping from another
mapping is included.

Fig. 3 Sample Matching Process

Fig. 3 shows a sample matching process. It consists of three
matcher operators (Coma-Name, Name-Path and Falcon-
GMO), a combination operator that computes the average of
the matcher results, a condition and a selection. The condition
is based on a structural similarity feature of the input schemas
that is computed by an analyser. Only if the structural
similarity is bigger than 0.5 the Falcon-GMO matcher is
executed. The result of the executed matchers is combined in
an average combination and the most promising element pairs
are selected for the output mapping.

IV. PROCESS MODELLING AND TUNING

Matching processes are modelled in a graphical process
editor by dragging operators onto the surface and connecting
them. Individual parameters of operators can be set directly in
the graph. Source and target schema fragments can be selected
and a stepwise process execution can be started. The user can
step forward and backward in the process or set breakpoints.
The currently executed operator is highlighted and the
intermediate matching result is shown.

The user can investigate computed similarities of schema
element pairs. With higher numbers of elements, line based
and table based visualisations provide too much information
for the user. For that reason we propose a new visualisation of
intermediate results (see Fig. 4 for examples). It represents a
mapping as a cube. The x- and y-axis represent the source and
target elements and the z-axis represents the similarity values.
Such an aggregated representation turned out to be quite
intuitive for analysis of large intermediate results. The user
can analyse the overall distribution of similarities of mappings.
Also, conclusions about the selectivity of the mapping can be

drawn. A selective mapping consists of a number of steep
peaks whereas a non- selective mapping produces flat blocks.
In many cases the mapping representation produces steps that
give a good indication of possible thresholds for later
selection and filters.

At the bottom of the example cube of Fig. 4a many low-
valued similarities are found that we classify as noise. A
number of similarities are higher than 0.9 and only few more
are higher than 0.6. These values can be tested as selection
and filter parameters. Each matcher produces a characteristic
representation in our visualisation that tends to be similar for
different test cases. So some matcher results show a big
variance of similarity values (see Fig. 4a for the name matcher
result), whereas for other matchers like the name-path matcher
the variance is much smaller (see Fig. 4b).

Fig. 4 Comparing Intermediate Results

V. COMPARISON OF MATCHING COMPONENTS

Previous evaluations [5] of matching systems compared
whole systems with default configurations with each other.
The shortcomings and strength of individual systems could
not be identified. Some systems perform well due to their
combination and selection methods whereas others have very
strong matchers.

The AMC framework is able to integrate and compare
individual components of different matching systems. This
allows the user to better compare and evaluate the behaviour
of these systems at the level of individual matchers and other
components. We extended the AMC operator library by a
number of plug-ins from different matching systems such as
COMA++, FalconAO, and Rondo [11]. Additionally, AMC
provides its own operator implementations.

Our library now consists of a number of element-based and
also structural matchers. Different combination and selection
techniques and also two blocking operators are included, that
are the COMA++ Fragmentation [2] and the Falcon [6]
partitioning technique. Moreover the AMC framework
integrates schema and mapping property analysers from
Falcon that can be used to adapt the matching process to the
mapping problem.

One observation we made is that all systems implement
their own name-based and structural matchers. Thus almost no
reuse is done across matching systems. To demonstrate the
features of AMC we performed a brief comparative evaluation
of the element-based matchers. For that purpose, we chose a
set of small purchase order test cases T1 to T10 from the
COMA evaluations [1]. We then created a number of simple

(a) (b)

Y- Target Elements

Z - Simi-
larity

X -Source
 Elements

X -Source
 Elements

Y- Target Elements

Z – Simi-
larity

matching processes that consist of the individual element-
based matchers. For all processes, the same selection operator
is included. AMC applies the often used Precision, Recall and
F-Measure (FM) as evaluation metrics. Within the AMC
Matching Process Designer, the test cases can be selected and
the comparison process can be started. The evaluation result
from Fig. 5 can also be visualized directly in the tool.

As can be seen, the result quality of the individual matchers
on the given data set is different across the basic matcher
implementations. In comparison to the others, the AMC Name
matcher was the favourable matcher for the given test cases.
However, the other matchers are closely following. With the
help of the Matching Process Designer we could identify the
reasons for that.

Fig. 5 Comparing Element-based Matchers

It needs to be further evaluated in future work how these
matchers perform in other domains such as OAEI. We also
plan to use AMC for more advanced evaluations such as for
comparing blocking operators or propagation-based structure
matchers, e.g. Similarity Flooding [10] and the Falcon GMO
Matcher [6]. We also need to investigate in techniques to cope
with possible main memory problems when evaluating larger
mapping problems.

VI.DEMONSTRATION DESCRIPTION

In our demonstration we illustrate how AMC is used to
model and tune a matching process that integrates existing
operators from different matching systems.

For that purpose we introduce a small scenario: A
consultant needs to define mappings for a number of similar
purchase order schemas. He wants to make use of semi-
automatic matching to speed up the mapping process.

A matching expert is asked to create a tuned matching
process using AMC for the specific purchase order mapping
problems. For that purpose, the consultant defines a few
mappings manually. The matching expert takes the default
matching process from COMA consisting of name, namepath,
leaf, datatype and children matcher that showed good results
across different domains. By using the Process Designer and
with the help of the provided mappings he is able to tune the
given process to the given domain of purchase order schemas.
We show how the matching expert can incrementally execute
operators from the initial process and investigate the
intermediate result mapping in our new visualisation. With the
help of the intermediate visualisation we can show that the
name-path matcher produces some noise at the bottom of the

matrix that should be removed. Therefore it is recommended
to introduce a filter operator after the name-path matcher that
removes noise from the intermediate result and improves
result quality. The filter threshold can be easily derived from
our new visualisation by putting it just above the noise level.
After executing further matchers, we can show that for the
given example test cases the data type matcher does not return
any usable result, so that it can be dropped or replaced by a
new matcher. After having built and tested the matching
process we demonstrate how performance-oriented rewrites
can be applied. The final matching process can be saved and
handed over to the consultant as a tuned matching process for
the specific purchase order mapping scenario.

We further demonstrate how existing operators from
different matching systems can be compared. The comparison
diagrams are generated and analysed. By going back to the
matching process we investigate the result of individual
components and show what the differences are to the AMC
Name matcher mapping using a difference operator.

Within our demo, visitors can directly model their own
matching process, play around with parameterisations and
start comparison tasks.

ACKNOWLEDGMENT

This work was funded by means of the German Federal
Ministry of Economy and Technology under the promotional
reference “01MQ07012”. A special thanks goes to Veronika
Thost for fruitful discussions and some implementation work
on the Matching Process Designer.

REFERENCES

[1] H. H. Do & E. Rahm. COMA - A System for Flexible Combination of
Schema Matching Approaches. VLDB Proc., 2002

[2] H. H. Do and E. Rahm. Matching large schemas: Approaches and
evaluation. Inf. Syst., 32(6), 2007.

[3] F. Duchateau, Z. Bellahsene, R. Coletta: A Flexible Approach for
Planning Schema Matching Algorithms. OTM Conferences (1) 2008

[4] J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag, 2007.
[5] J. Euzenat et. al. First Results of the Ontology Alignment Evaluation

Initiative 2010, Workshop on Ontology Matching, 2010
[6] W. Hu and Y. Qu. Falcon-AO: A practical ontology matching system.

Web Semant., 6(3), 2008.
[7] Y. R Jean-Mary, E. P Shironoshita, and M. R Kabuka. Ontology

matching with semantic verification. Web Semant. 7, 3 Sep. 2009
[8] Y. Lee et. al. eTuner: Tuning Schema Matching Software using

Synthetic Scenarios. The VLDB Journal, 16(1), 2007.
[9] J. Li, J. Tang, Y. Li, and Q. Luo. RiMOM: A Dynamic Multistrategy

Ontology Alignment Framework. IEEE Transactions on Knowledge
and Data Engineering, 21(8), 2009.

[10] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: a
versatile graph matching algorithm and its application to schema
matching. Proc. ICDE, 2002.

[11] S. Melnik, E. Rahm, P.A. Bernstein. Rondo: A Programming Platform
for Generic Model Management, Proc. ACM SIGMOD 2003

[12] E. Peukert, H. Berthold and E. Rahm: Rewrite Techniques for
Performance Optimization of Schema Matching Processes. EDBT
2010

[13] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal,10, 2001.

[14] Hu, W. and Qu, Y., Block matching for ontologies. In: LNCS, vol.
4273. Springer. pp. 300-313.

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 AVG

FM

Test Problems

AMC Name
COMA Name
Falcon String
Falcon VDOC
Rondo String

