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Abstract. There is an increasing demand for discovering meaningful relation-
ships, i.e., mappings, between conceptual models for interoperability. Current
solutions have been focusing on the discovery of correspondences between el-
ements in different conceptual models. However, a complex mapping associating
a structure connecting a set of elements in one conceptual model with a structure
connecting a set of elements in another conceptual model is required in many
cases. In this paper, we propose a novel technique for discovering semantically
similar associations (SeSA) for constructing complex mappings. Given a pair of
conceptual models, we create a mapping graph by taking the cross product of
the two conceptual model graphs. Each edge in the mapping graph is assigned
a weight based on the semantic similarity of the two elements encoded by the
edge. We then turn the problem of discovering semantically similar associations
(SeSA) into the problem of finding shortest paths in the mapping graph. We ex-
periment different combinations of values for element similarities according to
the semantic types of the elements. By choosing the set of values that have the
best performance on controlled mapping cases, we apply the algorithm on test
conceptual models drawn from a variety of applications. The experimental re-
sults show that the proposed technique is effective in discovering semantically
similar associations (SeSA).

1 Introduction

A mapping between two conceptual models specifies a meaningful relationship between
the two conceptual models. Semantic mappings have been used increasingly in achiev-
ing interoperability [11], capturing data semantics [3], and enabling various operations
in the generic model management framework [4]. A mapping can be a simple cor-
respondence between two elements in different conceptual models. For example, if a
concept C1 in one ontology is “equivalent” to a concept C2 in another ontology, then we
could specify the mapping between C1 and C2 as C1!C2, where we use the symbol
“!” to indicate the correspondence. Moreover, a mapping can be a complex relation-
ship between a structure/association connecting multiple elements in one model and a
structure/association connecting multiple elements in another model. For example, the
born in association between the concept Person and the concept Country in one on-
tology somehow is “equivalent” to the composition of the association born in between
the concept Person and the concept City and the association located in between the
City and the concept Country in another ontology. A complex mapping relationship is
often expressed in a declarative formula with precise semantics.



Discovering mappings between models is a very difficult problem in both the database
community [17] and the artificial intelligence community [1]. Nevertheless, great effort
has been put into the problem of discovering correspondences between model elements,
e.g., solutions for schema matching [16] and ontology mapping [10]. A few attempts
take database schemas as their subjects and propose solutions for inferring complex
mappings between database schemas [14, 5]. There is little effort, however, for deriving
complex mappings between conceptual models in the literature.

A conceptual model (abbreviated as CM) uses modeling constructs such as con-
cepts, relationships, attributes, and constraints to describe a subject matter based on
well-defined abstraction mechanisms. Example CMs include Entity-Relationship di-
agrams, UML class diagrams, and OWL ontologies. Many data-centric applications
require solutions to the problem of discovering complex CM mappings to fulfill their
goals, for example, data translation over the semantic web [8], data management in peer-
to-peer systems [9], and deriving schema mappings using CMs [2]. Current solutions
rely on humans to specify the complex CM mapping formulas when they are required -
a time-consuming and error-prone task. With the increasing complexity of various CMs
in many applications, it is desirable to automate the process. In this paper, we deal with
the above discovery problem. We propose a solution to the problem of discovering se-
mantically similar associations (SeSA) between pairs of corresponding concepts. Our
method takes as input two CMs and a set of correspondences between concepts in the
CMs, and generates pairs of semantically similar associations (SeSA). Each association
is between a pair of concepts in a CM. The following example illustrates the need for a
complex mapping and describes the input and output of our solution.

Example 1. Figure 1 shows two different CMs, CM1 and CM2, describing Person, City,
and Country, where we use rectangles for concepts, circles for attributes, and lines for
relationships. The CM1 contains two relationships between two concepts Person and
Country: a many-to-one (functional) relationship born in and a many-to-many rela-
tionship worked in, both indicated by the cardinality constraints. The concept Person
has an attribute pName, and Country has an attribute countryName. On the other
hand, CM2 describes three relationships born in, located in, and hasBeenTo as well
as three concepts Person, City, and Country. Some concepts have attributes.

Country Person City
born_in

pName countryName pName countryName

1..1 1..* 1..1

CM1: CM2:

Person Country
1..*

born_in located_in

1..11..*

worked_in hasBeenTo0..*1..* 0..*1..*

Fig. 1: Two Different CMs

Suppose that mappings between CM1 and CM2 are sought for information exchange
(imagine that CM1 is an ontology used by an information system wanting to load data



from another system using ontology CM2 or vice versa). The creation of complex map-
pings between two CMs is inherently difficult to automate. To alleviate the problem, we
take a two-step approach: (1) specifying simple correspondences between elements in
the two CMs; (2) inferring complex mappings between semantically similar structures.

In this paper, we assume that a user can specify correspondences between elements
in different CMs manually or using existing schema matching and ontology mapping
tools [16, 10]. In particular, we consider the correspondences specified between con-
cepts (which can be inferred from the correspondences between attributes.) For in-
stance, we assume that the following correspondences have been specified: CM1:Person
!CM2:Person, CM1:Country !CM2:Country, where we use prefixes CM1 and
CM2 to distinguish terms in different CMs. Given two pairs of corresponding concepts,
our solution infers a list of pairs of associations. Each pair consists of an association be-
tween the pair of concepts in the first CM and an association between the corresponding
pair of concepts in the second CM. For example, given the above correspondences, our
solution is expected to produce the pair of associations
〈
CM1:Person -- born_In ->- CM1:Country ,

CM2:Person -- born_In ->- CM2:City -- located_in ->- CM2:Country
〉,
and the pair of associations
〈
CM1:Person -- worked_in -- CM1:Country ,

CM2:Person -- hasBeenTo -- CM2:City --located_in->- CM2:Country
〉,
where we use a notation “-- born_In ->- ” to indicate that born_in is a many-
to-one (functional) relationship, and a notation -- hasBeenTo -- to indicate that
hasBeenTo is a many-to-many relationship, and so on. In each pair, the two associa-
tions are “semantically similar” in terms of their cardinality constraints.

Furthermore, we can express a pair of SeSA as a mapping statement in a declarative
language (see [3]) or an executable query in a particular query language (e.g., SPARQL
[15]). �

In this paper, we aim to discover an association δ1 between a pair of concepts
〈C1, C2〉 in a CM and an association δ2 between a pair of concepts 〈D1, D2〉 in an-
other CM when given correspondences C1!D1 and C2!D2. We expect that δ1 and
δ2 are “semantically similar”. More complex associations connecting more than two
concepts can be constructed by using the pair-wise associations so we leave it for the
future work. In addition, we do not take the linguistic information encoded in the names
of elements into consideration, which will be incorporated in the future work as well.
Essentially, we seek for associations that are “semantically similar” in terms of the se-
mantic types of relationships between concepts. For example, an ISA relationship is
semantically similar to an ISA relationship, a partOf relationship is semantically sim-
ilar to a partOf relationship, and so on. To effectively discover “semantically similar”
associations from complex CMs, we create a mapping graph by taking the cross prod-



uct of two CM graphs. We then turn the mapping discovery problem into a problem of
finding some optimal structures in a graph, which can be solved by applying efficient
graph-theoretic algorithms.

Our major contributions are: (1) we propose an innovative approach for discovering
SeSA between CMs by using efficient graph-theoretic algorithms; and (2) we demon-
strate the effectiveness of the proposed solutions through real world CMs. The rest of
the paper is organized as follows. We contrast our approach with related work in Section
2. In Section 3 we present formal notations used later on. We describe the principles in
Section 4 and the mapping discovery algorithm in Section 5. In Section 6 we report on
experimental studies. Finally, we summarize the results of this work and conclude the
paper in Section 7.

2 Related Work

A schema mapping tool infers meaningful relationships between a source and a target
database schema from element correspondences. Typical schema mapping tools rely
on integrity constraints, especially referential integrity constraints, to assemble “log-
ically connected elements”. These logical elements, together with the element corre-
spondences, then give rise to mappings between the schemas. A representative schema
mapping tool is Clio [14]. It is natural to ask whether we could utilize the mapping tech-
niques developed in schema mapping tools by viewing the CMs as (relational) database
schemas. Unfortunately, this approach does not work as illustrated below.

Let us view the CMs (consider CMs with only binary relationships for now) as re-
lational schemas consisting of unary tables for concepts, binary tables for relationships
and attributes. For example, in Example 1, the CM CM1 could be viewed as a schema
consisting of unary table CM1:Person(x1), binary tables such as CM1:born in(x1,x2)
and CM1:Country(x2), and the obvious foreign key constraints from binary to unary
tables; and the same view applies to the CM CM2 thus creating various tables includ-
ing CM2:Person(y1), CM2:born in(y1, y2) CM2:City(y2), CM2:located in(y2, y3),
CM2:Country(y3) and again the obvious foreign key constraints. Suppose that ele-
ment correspondences were given between the columns of unary tables Person and
Country. Then one could in fact try to apply directly the schema mapping techniques
to the problem. A desired mapping expressed in the formula M in Example 1 would
not be produced due to the following reasons: (i) The schema mapping techniques (e.g.,
[14]) work by taking each table and using a chase-like algorithm to repeatedly extend
it with columns that appear as foreign keys referencing other tables. Such “logical as-
sociations” in the source and target are then connected by queries. Specifically, for the
CM CM2 this would lead to logical relations such as CM2:Person ∧ CM2:born in ∧
CM2:City and CM2:City ∧ CM2:located in ∧ CM2:Country, but not the entire for-
mula on the right-hand side of “⇔” in M . (ii) The semantics that CM1:born in is
many-to-one relationship leads us to prefer a many-to-one relationship/association be-
tween CM2:Person and CM2:Country in CM2. The schema mapping techniques (e.g.,
[14]) do not use such semantics to pair up “logical associations”.

The previous work [2] proposes a semantic approach for deriving schema mapping
expressions by using the semantics of the modeling constructs in a CM. That work an-



alyzes the graphical structures and the semantics of relationships (cardinalities, ISA,
partOf, etc.,) of the CMs associated with input schemas to eliminate/downgrade un-
reasonable options that arise in mappings between database schemas. In this paper, we
focus on the problem of discovering complex mappings between CMs and propose a
novel technique which is different from the previous work.

Schema/ontology matching (e.g., [16, 7, 12, 10]) identifies semantic relations be-
tween model elements based on their names, data types, constraints, and model struc-
tures. The primary goal is to find the one-to-one correspondences between model el-
ements. We aim at the discovery of complex relationships between sets of model ele-
ments.

3 Conceptual Models (CMs) and Mappings between CMs

Conceptual Models We consider in this paper the type of CMs, e.g., UML class di-
agrams, that are often used to describe static aspects of an application. However, we
do not restrict ourselves to any particular language for describing CMs. Instead, we
use a generic conceptual modeling language (CML), which contains many common as-
pects of most semantic data models (e.g., ER diagrams), UML class diagrams, ontology
languages such as OWL, and description logics. Specifically, the language allows the
representation of entities/classes/concepts (unary predicates over individuals), object
properties/relationships (binary predicates relating individuals), and datatype proper-
ties/ attributes (binary predicates relating individuals with values such as integers and
strings). Concepts are organized in the familiar ISA hierarchy. Relationships, and their
inverses, are annotated with types such as partOf and subject to cardinality constraints,
which here allow 1 as lower bounds (called total relationships), and 1 as upper bounds
(called functional relationships). For n-ary relationships connecting more than two en-
tities, and relationships with attributes, we represent them by “reified relationships” [6]
concepts whose instances represent tuples, connected by so-called “roles” to the tuple
elements.

A CM can be represented in a labeled graph called CM graph. We construct the CM
graph from a CM as follows: We create a concept node labeled with C for each concept
C, and an edge labeled with p from the concept node C1 to the concept node C2 for
each binary relationship p linkingC1 toC2; for each such p, we annotate it with the type
information such as partOf or reified role. For each subclassC1 of a classC2, create an
edge labeled with ISA connecting C1 to C2 with cardinality 1..1 (a C1 must be a C2),
and 0..1 on the inverse. Graphically, we use rectangles to represent concepts/classes
and a line to represent relationships. Textually, a many-to-many relationship p between
concepts C and D is written as C ---p--- D , while a many-to-one (functional)
relationship p is written as C ---p->-- D .

In this paper, we assume that attributes are globally unique, simple, and single-
valued (complex and multi-valued attributes can be transformed into concepts with sim-
ple and single-valued attributes.) We use circles to represent attributes. Each attribute
is connected to the concept where the attribute belongs to. Since in this paper we focus
on discovering associations between concepts, we will strip off attribute nodes in our
illustrations in later sections.



CM Mappings A declarative mapping statement over a pair of CMs 〈CM1, CM2〉 is
of the form CM1:E1 ⇔ CM2:E2, where E1 and E2 are expressions representing asso-
ciations over CM1 and CM2, respectively. Since the symbol “⇔” can be interpreted as
subset, superset, or equivalent operator according to the particular application, a more
generic mapping statement is written as a two-tuple 〈E1, E2〉. In the sequel, we will use
associations directly in a mapping statement as 〈δ1, δ2〉. The algorithm for translating
an association into a conjunctive formula is provided in [3].

4 Principles for Mapping Discovery

We now turn to the task for discovering “semantically similar” associations between
CMs. First, we present the principles underlying our approach.

The problem we are addressing is formulated as follows. Given two simple corre-
spondences v1:C1 !D1 and v2:C2!D2 linking two pairs of concepts 〈C1, C2〉 and
〈D1, D2〉 in conceptual models CM1 and CM2, respectively, find an association δ1 be-
tween C1 and C2 and an association δ2 between D1 and D2 such that δ1 and δ2 are
“semantically similar.” The problem is graphically described in Figure 2

A simple case is that both
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CM1:

C1

C2

δ1

CM2:

D1

D2

δ2

v1

v

Fig. 2: The Mapping Discovery Problem

associations δ1 and δ2 are direct
relationships, i.e., δ1 is a rela-
tionship between 〈C1, C2〉 and
δ2 is a relationship between 〈D1, D2〉.
To determine whether two rela-
tionships are semantically simi-
lar, we analyze the types of the
relationships, e.g., partOf, and
the cardinality constraints imposed
on the corresponding concepts participating in the relationships. Our first principle is
to use the semantic information encoded in the types of relationships and the cardinality
constraints imposed on the relationships to discover semantically similar relationships.

However, for a complex CM, an association between two concepts may consist of a
sequence of relationships through a set of intermediary concepts. Our goal is to discover
SeSAs that are not just single relationships. For instance, each of the two pairs of asso-
ciations discovered in Example 1 contains an association consisting two relationships
that connect Person to Country in CM2.

Our second principle is to analyze the semantic information encoded in the types of
the relationships as well as the cardinality constraints imposed on the relationships to
discover pairs of SeSAs. Given a CM graph G1 = (V1, E1), an association δ1 in G1 is
an alternating sequence of different nodes and edges δ1 = 〈v1, `1, v2, `2, v3..., vm, `m,
vm+1〉, where vi ∈ V1 and `i = (vi, vi+1) ∈ E1 for i ∈ {1, ...,m}. Likewise, for a CM
graph G2 = (V2, E2), we can represent an association δ2 as an alternating sequence of
different nodes and edges as δ2 = 〈u1, γ1, u2, γ2, u3..., un, γn, un+1〉, where ui ∈ V2

and γi = (ui, ui+1) ∈ E2 for i ∈ {1, ..., n}. Intuitively, the following associations δ1
and δ2 are semantically similar:

1. δ1=〈v1〉, δ2=〈u1〉, and v1!u1;



2. δ1=〈v1〉, δ2=〈u1, γ1, u2〉, v1!u1, v1!u2, and γ1 is a functional or ISA relation-
ships; or δ1=〈v1, `1, v2〉, δ2=〈u1〉, v1!u1, v2!u1, and `1 is a functional or ISA
relationships;

3. δ1=〈v1, `1, v2〉, δ2=〈u1, γ1, u2〉, v1!u1, v2!u2, and `1 and γ1 are two relation-
ships that both are (i) the type of partOf relationships; (ii) ISA; (iii) many-to-one;
or (iv) many-to-many;

4. δ1=〈v1, `1, v2〉, δ2=〈u1, γ1, u2, ..., un, γn, un+1〉, v1!u1, v2!un+1, and γi, i =
{1, .., n} have the same semantic type as `1, e.g., γi, i = {1, .., n} are all many-to-
many relationships if `1 is many-to-many; or the symmetric case when δ1 and δ2
get exchanged.

5. δ1=〈v1, `1, v2,..., vm, `m, vm+1〉, δ2=〈u1, γ1, u2, ..., un, γn, un+1〉, v1!u1,
vm+1!un+1, and there is a partition of δ1=〈δ11 , δ12 , ..., δ1k〉 and a partition of
δ2=〈δ21 , δ22 , ..., δ2k〉 such that δ1j and δ2j , j = {1, .., k} are semantically similar.

The above conditions 1-4 describe several base cases for semantically similar asso-
ciations (SeSA). Condition 5 states that two associations are considered semantically
similar if they can be divided recursively into partitions in the same size, and the cor-
responding components of the partitions are semantically similar. The description pro-
vides guidelines for designing an algorithm; however, challenges are involved. First,
what is the degree of similarity between two associations? Intuitively, the similarity be-
tween two “compatible” relationships should be greater than that between two paths
with more than one relationships. Second, there are too many ways to enumerate asso-
ciations between two concepts in a single CM graph. Which associations are the most
likely ones in terms of mapping? Third, there are too many ways to enumerate the par-
titions of a single associations. How to divide an association into partitions? Can an
edge/node be divided? How to efficiently decide whether two associations are semanti-
cally similar according to the condition 5?

To address these challenges, we turn to efficient graph-theoretic algorithms. The
first step is to encode our mapping problem in terms of a single graph structure. We
utilize the notion of cross product for two graphs which encodes certain relationships
between the two graphs. We need to extend the notion of cross product to encode map-
ping relationships between two CM graphs.

5 Mapping Discovery Algorithm

In graph theory, the cross product G = G1 × G2 of two graph G1 = (V1, E1) and
G2 = (V2, E2) is the graph G = (V,E), where V = V1×V2 and t = (viui, vjuj) ∈ E
for vi, vj ∈ V1 and ui, uj ∈ V2 if only if e = (vi, vj) ∈ E1 and r = (ui, uj) ∈ E2.
We extend the definition of the cross product of two graphs to the notion of mapping
graph by allowing t = (viui, vjuj) ∈ E if vi = vj and r = (ui, uj) ∈ E2, or
e = (vi, vj) ∈ E1 and ui = uj .

Definition 1 (Mapping Graph). The mapping graph M = G1 ⇔ G2 of two graph
G1 = (V1, E1) and G2 = (V2, E2) is the graph M = (V,E), where V = V1 × V2 and
t = (viui, vjuj) ∈ E for vi, vj ∈ V1 and ui, uj ∈ V2 if only if one of the following
conditions is satisified: (1) e = (vi, vj) ∈ E1 and r = (ui, uj) ∈ E2; (2) vi = vj and
r = (ui, uj) ∈ E2; or (3) e = (vi, vj) ∈ E1 and ui = uj .



Example 2. Figure 3 (a) shows two graphs G1 = (V1, E1) and G2 = (V2, E2) that
both are simple paths with three nodes. Figure 3 (b) shows the cross product of the two

v1u1 v1u2 v1u3

v2u1 v2u2 v2u3

v3u1 v3u2 v3u3
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Fig. 3: Cross Product and Mapping Graph

graphs G = G1 × G2, while Figure 3 (c) shows the mapping graph of the two graph
M = G1 ⇔ G2. �

An edge in the mapping graph M = (V,E) encodes either a pair of edges or a node
and an edge in the original graphs. For example, the edge t2 = (v1u1, v2u2) ∈ M in
Figure 3 (c) encodes the edge e1 = (v1, v2) ∈ E1 and the edge r1 = (u1, u2) ∈ E2; the
edge t1 = (v1u1, v1u2) ∈ M in Figure 3 (c) encodes the node v1 ∈ V1 and the edge
r1 = (u1, u2) ∈ E2. Moreover, a path in the mapping graph encodes a way to map the
source graph to the target graph. For example, the path 〈(v1u1, t2, v2u2, t15, v3u3)〉 ∈
M in Figure 3 (c) maps in a “one-to-one” fashion the elements of the original path G1

to the elements of the path G2.
For two conceptual models CM1 and CM2, if we are given two pairs of concepts

〈C1, C2〉 and 〈D1, D2〉, then a path between the two nodes C1D1 and C2D2 in the
mapping graph M=CM1 ⇔ CM2 gives rise to an association δ1 between C1 and C2

and an association δ2 between D1 and D2.
However, the mapping graph encodes all pairing ups between all possible associa-

tions connecting 〈C1, C2〉 in CM1 and all possible associations connecting 〈D1, D2〉 in
CM2. In addition, the mapping graph also encodes pairing ups between possible parti-
tions of an association and possible partitions of another association. For a very dense
mapping graph, the number of paths between any pair of nodes is quite huge. Therefore,
we need to address the problem of discovering the paths in the mapping graph which
probably encode those SeSA that are desirable.

The solution is to assign weights to the edges of the mapping graph and discover
an optimal structure such as shortest/longest/heaviest paths in the mapping graph. The
weight of an edge in the mapping graph denotes the semantic similarity of the two
elements encoded by the edge. We assign the similarity as a real number between 0 and
1. We use letter α for highest similarity, e.g., the similarity between two ISA edges,
letter β for the similarity between an ISA edge and a functional relationship, letter λ



for compatible similarity, e.g., the similarity between a node and a functional edge, and
letter µ for the least similarity. Table 1 shows the categorization of pairs of elements
and the similarity values that are assigned to the pairs.

〈e1, e2〉, e1 ∈ CM1 e2 ∈ CM2 Similarity 〈e1, e2〉, e1 ∈ CM1 e2 ∈ CM2 Similarity
e1=ISA edge 0 ≤ α ≤ 1 e1=ISA edge 0 ≤ β ≤ 1
e2=ISA edge e2=functional edge
e1=many-to-many edge 0 ≤ α ≤ 1 e1=a node 0 ≤ λ ≤ 1
e2=many-to-many edge e2=functional edge
e1=many-to-one edge 0 ≤ α ≤ 1 e1=reified role edge 0 ≤ α ≤ 1
e2=many-to-one edge e2=reified role edge
e1=partOf edge 0 ≤ α ≤ 1 other 0 ≤ µ ≤ 1
e2=partOf edge

Table 1: Assigning Similarity to Pair of Elements 〈e1, e2〉 of two Conceptual Models CM1 and
CM2

Example 3. Figure 4 (b) shows the mapping graph of the two graphs G1 = (V1, E1)
and G2 = (V2, E2) in Figure 4 (a). Both G1 and G2 contain a functional relationship
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Fig. 4: Weight Assignments to a Mapping Graph

edge which is indicated by an arrow, e.g., e1 = (v1, v2) ∈ E1, and a many-to-may
relationship edge. Weights enclosed by parentheses are assigned to the edges of the
mapping graph in Figure 4 (b). To reduce clumsiness, we only show two edge labels: t2
and t15 in the Figure.

We compute the similarity between the two original paths by computing the weights
of the paths that encode the two original paths. The weight of a path is the product of



the weights of the edges along the path. The path 〈(v1u1, t2, v2u2, t15, v3u3)〉 ∈ M
has the heaviest weight α2. By taking the weight of the heaviest paths, we obtain the
similarity between the two original paths as α2. �

Equipped with the weighted mapping graph, we design the mapping discovery al-
gorithm as to discover the heaviest paths between two given nodes, where the weight
of a path is the product of the weights of the edges along the path. This is justified by
our preference to the paths with fewer edges. Each edge has a greater weight/similary
value. To compute the heaviest paths, we take the logarithm of the edge weights and
negate the results. After this, the traditional algorithms for computing shortest paths in
a graph, e.g., Dijkstra’s algorithm, will produce the expected results. Figure 5 presents
the procedure discSeSA(), which takes as input two CMs and two simple correspon-
dences linking a pair of concepts in the first CM to a pair of concepts in the second
CM. The results of the discSeSA() are pairs of desired associations. A resulted pair
of associations are considered as “semantically similar” because they have the highest
similarity based on the appropriate similarities assigned to the edges in the mapping
graph.

Procedure: discSeSA(G1, G2, L)
Input: conceptual model graphs G1 = (V1, E1), G2 = (V2, E2), and simple correspon-
dences L={C1!D1, C2!D2 | C1, C2∈V1, D1, D2∈V2}
Output: {〈δ1, δ2〉| δ1 is an association between C1 and C2, δ2 is an association between
D1 and D2, and δ1 and δ2 have the greatest similarity}
Steps:

1. Create the mapping graph M = (V,E) = G1 ⇔ G2 of the input CM graphs, where
V = V1 × V2 and E is the set of edges of the mapping graph;

2. For each edge e = (viui, vjuj) ∈ E, vi, vj ∈ V1, ui, uj ∈ V2

(a) Assign a weight to e according to Table 1; the two elements encoded by the edge
e are either two edges (vi, vj) ∈ E1, (ui, uj) ∈ E2, or a node and an edge, e.g.,
vi = vj .

3. End for
4. For each edge e ∈ E, let w be the weight of e

(a) Let w = − lgw
5. End for
6. Let P = shorestPath(M)a.
7. Let A = makeAssociates(P )b.
8. return A.
a shortestPath() computes the shortest paths of a weighted graph.
b makeAssociation(P) splits each path in P into two associations in the original graphs.

Fig. 5: discSeSA Procedure



6 Experimental Results

We now report our experimental results. The purpose of the experiments is three-fold:
(1) selecting the values for the parameters α, β, λ, and µ which are presented in Table
1, (2) applying the proposed technique to various CMs in different applications, and
(3) testing the efficiency and effectiveness of the proposed algorithm. The algorithm is
implementated in JAVA and the experiments were conducted on a PC with an Intel Core
2 Duo processor and 2G memory.
Data Set. The test data sets (see Table 2) in our experiments were collected from a
variety of applications. The CMs Sdb0, Sdb1, Sdb2, and Sdb3 are four versions
of the conceptual model for describing a biological sample database extracted from
the industrial GeneExpress Data Management (GXDM) project described in [13]. In
this paper, we used controlled mapping cases based on these four CMs to empirically
determine the values of the similarity parameters that would have the best performance.
We experimented the mappings between Sdb0 and Sdb1, betwen Sdb1 and Sdb2, and
between Sdb2 and Sdb3. The remaining three pairs of test CMs in our experiments
were collected from our previous work in [2].

First CM # Nodes # Edges Second CM # Nodes # Edges Time for Creating Avg. Time for
Mapping Graph (sec) Discovering SeSA (sec)

Sdb0 68 73 Sdb1 54 58 7.8 1.9

Sdb1 54 58 Sdb2 74 80 9.5 2.2

Sdb2 74 80 Sdb3 49 56 8.0 1.8

Bibliographic 75 80 DBLP 7 10 0.32 0.068

Amalgam1 7 14 Amalgam2 26 27 0.13 0.028

Factbook 52 112 Mondial 26 55 4.6 1.7

Table 2: Characteristics of Test Data

Table 2 shows the characteristics of the test CMs. For each pair, the table lists the
numbers of nodes and the numbers of edges of the first and second CMs.
Selecting Values for the Similarity Parameters. The key to the proposed technique
is to assign weights to the edges in the mapping graph. The value of a weight is based
on the semantic similarity between two elements encoded by an edge. Table 1 presents
the categorization of pairs of elements and the similarity values that are assigned. The
values denoted by the letters α, β, λ, and µ are real numbers between 0 and 1. We
hypothesized that different values assigned as element similarity might have differ-
ent performance in terms of discovering SeSA. We conducted experiments to verify
the hypothesis and hopefully to select the set of values that had the best performance
on our controlled experiments. First, we assigned each parameter an array of possi-
ble values as follows. Let α = {0.9, 0.8, 0.7, 0.6, 0.5}, β = {0.8, 0.6, 0.5, 0.4, 0.2},
λ = {0.8, 0.6, 0.5, 0.4, 0.2}, and µ = {0.01}. Second, we chose a number of pairs
of concepts in each of the following CMs: Sdb0, Sdb1, Sdb2, and Sdb3, and tested
mappings between Sdb0 and Sdb1, between Sdb1 and Sdb2, and between Sdb2 and



Fig. 6: Experimental Results for Selecting Similarity Values

Sdb3. Third, we combined the values from the four arrays under the constraints α ≥ β
and α ≥ λ, which indicate that the highest similarity value should not be less than other
similarity values. Finally, for each combination of the values, we measure the perfor-
mance of the algorithm using this set of values for assigning weights as described in the
following.

To measure the performance of the algorithm, for each mapping case, we manually
chose pairs of associations based on our understanding and expectation on the CMs.
These selected pairs of associations acted as the “gold standard” when we compared the
results generated by the algorithm using different similarity values. We were concerned
with the following two questions: Did the algorithm generate all the expected pairs of
associations? Did the algorithm generate pairs of associations that were not manually
selected. The first concern is related to the traditional recall measure, while the second
concern is about the precision measure. Specifically, let R be the set of “gold standard”
pairs and let P be the set of pairs generated by the algorithm. The precision and recall
measures are computed as: precision = |P∩R|

|P | and recall = |P∩R|
|R| . To measure the

overall performance, we take the harmonic mean of precision and recall which is called
F-Measure, calculated as follows:

F measure = 2
1

precision + 1
recall

.

Using the controlled mapping cases with expected results, we measure the perfor-
mance of the algorithm with different similarity values in terms of the F-measures. Fig-
ure 6 shows the average F-meaures for all combinations of values over the controlled
experiments. The x-axis lists the combinations of the values in the form of (α, β, λ, µ).
There were 91 combinations of values tested (the total number of combinations is 125
but some combinations were not considered due to the given constraints.) The highest
peak of the average F-measure curve appears at the point on the x-axis which corre-
sponds to the combination {α = 0.8, β = 0.5, λ = 0.6, µ = 0.01}. The ups and downs



of the curve indicate that different values assigned as element similarity indeed had
different performance.
Results of Applying the Algorithm. With the set of selected values for similarity,
we applied the algorithm to the mapping pairs in our test data sets including SDB0,..,
SDB3 again. The last two columns of Table 2 contain the times for creating mapping
graphs and discovering SeSA for the test pairs. In terms of time complexity, it took sev-
eral seconds to create a mapping graph for some pairs of CMs in our test set. However,
the mapping graph of a certain pair only needs to be created once and can be reused
many times. The process of discovering SeSA spent a couple of seconds to produce the
final results. It employed the standard shortest path algorithm, e.g., Dijkstra’s algorithm.

To evaluate the effectiveness of the algorithm, we continue to use the notion of re-
call and precision. This time, we conducted a post-inspection to measure the recall and
precision. Specifically, for a mapping case, we inspected the pairs of associations gen-
erated by the algorithm against the CMs. For precision, we checked whether each pair
in the result set indeed contained two “semantically similar“ associations. For recall,
we checked whether there were other “semantically similar” associations that were not
returned by the algorithm. The inspection results showed that the algorithm is effective
in discovering SeSA. In particular, precisions for all mapping cases were 100%, while
the average recall over all mapping cases is about 90%. The imperfect recall is due to
the algorithm’s preference to heaviest (shortest) paths. For example, in the pair of CMs,
CIA factbook and Mondial, both CMs contain a relationship City -- capital->-

Country and a path City -- capital ->- Province --located_in->-

Country . The algorithm generates the two relationships as a pair of SeSA exclud-
ing the two paths. A solution would be to set the similarity α = 1; however, this setting
would disable α as a damper factor for longer paths. We plan to extend the algorithm by
using an additional parameter for controlling the content of the result set in our future
work.

7 Conclusions

In this paper, we studied the problem of discovering semantically similar associations
(SeSA) in two different conceptual models. Our method finds an association between
a pair of concepts in one conceptual model and a “semantically similar” association
between a pair of concepts in another conceptual model. We are motivated by the need
of specifying complex semantic mappings between CMs for many applications that
require interoperability such as data management over the semantic web and peer-to-
peer systems. We proposed a novel technique for discovering desirable SeSA by using
efficient graph-theoretic algorithms. Our solution is unique in that we turn the problem
of discovering SeSA into a problem of finding shortest paths in a special graph called
mapping graph. We create a mapping graph by taking the cross product of the two input
CM graphs. Our contributions include experiments for evaluating the efficiency and
effectiveness of the proposed algorithm. Experimental results showed that the technique
was effective in discovering SeSA in our problem setting. We plan to incorporate the



linguistic information in the names of elements into the mapping discovery approach in
the future work.
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