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a b s t r a c t

The proliferation of ontologies and taxonomies in many domains increasingly demands
the integration of multiple such ontologies. We propose a new taxonomy merging

is target-driven, i.e. we merge a source taxonomy into the target taxonomy and preserve
the target ontology as much as possible. In contrast to previous approaches, ATOM does not
aim at fully preserving all input concepts and relationships but strives to reduce
the semantic heterogeneity of the merge results for improved understandability. ATOM

can also exploit advanced match mappings containing is-a relationships in addition to
equivalence relationships between concepts of the input taxonomies. We evaluate ATOM

for synthetic and real-world scenarios and compare it with a full merge solution.
& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Ontologies and taxonomies are increasingly used to
semantically categorize or annotate information, especially
on the web. For example, product catalogs of online shops
or web directories categorize products or websites to help
users finding relevant entries. In life sciences, ontologies are
used to describe components and functions of organisms or
objects such as genes or proteins. Since many ontologies
refer to the same domain and to the same objects, there is a
growing need to integrate or merge such related ontologies.
The goal is to create a merged ontology providing a unified
view on the two or more input ontologies.

Despite a significant amount of previous work on the
related problem of schema integration [2], ontology integra-
tion is still a challenge and not sufficiently solved. Previous
ontology merging approaches [17,13,32] are largely user-
controlled and provide little support to automatically deter-
mine merge solutions. However, such manual approaches
All rights reserved.

.de (S. Raunich),
are insufficient for merging large ontologies with thousands
of concepts so that there is a strong need to automatically
determine ontology merge results which the user can
confirm or adjust as needed. One promising approach to
this end is to decompose the complex integration problem
into match and merge subtasks and leverage the significant
advances already made for automatic ontology matching to
solve the first subproblem. The merge subtask can then
utilize a match mapping identifying corresponding concepts
in the input ontologies that should be merged. This idea
has already been applied for integrating database schemas,
where several proposed approaches merge schemas based
on a pre-determined match mapping [6,28,20,29,23].

Previous merge approaches commonly treat all input
ontologies symmetrically and require that all information
from the input ontologies should be preserved in the
merged ontology, in particular all concepts and their
relationships [22]. We argue that such symmetric, fully
information-preserving merge solutions are not always
desirable but may introduce a significant amount of
semantic redundancy due to heterogeneous organizations
of the same concepts.

For illustration, consider the simple scenario in Fig. 1
that we will use as a running example. The task is to merge
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Fig. 1. Running example.

Fig. 2. Full merge solution.
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the catalog of a new online car shop (source) into the
catalog of a price comparison portal (target). We assume
that a match mapping, expressed as a set of correspon-
dences between source and target concepts, is already
given, either automatically generated by a matching tool or
manually designed by an expert user. In this example,
the input matching contains four equivalence correspon-
dences labeled eq1, eq2, eq3, eq4 (we initially ignore the
other correspondences). A typical merge approach would
combine equivalent concepts and maintain all the remain-
ing input concepts and relationships in the merge result.
We call this a symmetric, full merge approach since it
preserves all input concepts and relationships.

The running example shows that the two taxonomies
organize the vehicles in different ways. The target initially
categorizes first by manufacturer (Audi, BMW, etc.) and
then by body style (sedan, wagon, etc.) while the source
taxonomy uses the opposite order. Fig. 2 shows the
solution that a full merge approach would produce. It
preserves both views in the merged taxonomy but thereby
introduces a semantic overlap (redundancy) and reduces
the understandability of the resulting taxonomy. In parti-
cular, multiple inheritance has been introduced for several
concepts so that there are multiple paths to several leaves.
For example, the leaf concept Sedan Audi can be reached
through both the concepts Sedan and Audi showing a
semantic overlap between these two concepts.

In our new, asymmetric merge approach we will deal
with such situations by giving preference to the target
taxonomy. We merge the source taxonomy into the target
taxonomy and only preserve the concepts and structure of
the target taxonomy but drop concepts and relationships
from the source taxonomy that would introduce redun-
dancy in the merge result. We believe that such an asym-
metric merge is highly relevant in practice. It supports the
incremental integration of new source ontologies into an
existing target ontology, such as a data warehouse or a
mediator ontology. Preserving the target ontology can
greatly improve its stability and minimize the need to
change applications of the integrated ontology. The asym-
metric merge is also useful for applications such as web
data integration or the integration of life science ontologies.
As in the running example, it supports catalog integration of
web shops, e.g. for adding the catalog of a new online shop
into the catalog of a price comparison portal. In life sciences,
there exist already large manually curated hub ontologies
such as Uberon or UMLS combining diverse anatomy or
other biomedical ontologies [15,5]. Adding further ontolo-
gies to such integrated ontologies can benefit from an
automatic, asymmetric merge that reduces human effort
and leaves the existing target ontologies largely stable.

In particular, we make the following contributions:
�
 We propose a largely automatic approach for taxonomy
merging called ATOM which utilizes a given match
mapping between the input taxonomies. ATOM is an
asymmetric, target-driven algorithm, i.e., it merges a
source taxonomy into the target taxonomy.
�
 We propose to restrict the semantic overlap in the
merge result for improved understandability. This is
achieved by giving preference to the target taxonomy
when the same concepts are differently organized in
the input taxonomies and limiting the degree of multi-
ple inheritance.
�
 We propose the use of extended match mappings
containing equivalence, is-a and inverse is-a relation-
ships between concepts of the input taxonomies. The
additional types of correspondences are used for a
better placement of source concepts and to further
reduce the semantic overlap in the merge result.
�
 We have implemented ATOM and a full merge solution
in a working prototype [26] and present an evaluation
of both approaches for medium and large real-life
ontologies.

In the next section, we introduce our ontology model
and define the main requirements for taxonomy merging.
In Section 3, we describe the ATOM merge algorithm in
detail and discuss its complexity. Section 4 sketches the
generation of mappings between the input taxonomies
and the merge result that can be used for instance
migration. In Section 5 we evaluate the algorithms on
real-life ontologies. Related work is described in Section 6
before we conclude.
2. Models and problem definition

2.1. Preliminaries

We first define data representation models used in the
paper. An ontology is a quadruple O¼ ðC;Ci; I;RÞ where C is
a collection of Classes or Concepts, CiDC is the subset of
concepts containing instances, I is the set of instances
associated to classes in Ci possibly empty, and R is the set
of relationships between concepts. Each concept C has a
name (or label) and a collection of attributes or properties
Ac, possibly empty. Several kinds of relationships can be
defined, like “is-a” or “subclass”, “part-of”, “type-of”, etc. A
relationship rða; bÞAR is a directed, binary and semantic
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connection between two concepts a and b. It can be
explicitly present in the ontology or implied by an ontology
rule. For example, given two is-a relationships rða; bÞ and
rðb; cÞ, the relationship rða; cÞ is implied since is-a relation-
ships are transitive.

Graphically, as we can see in Fig. 1, we represent
concepts with a simple label and, in case of single inheri-
tance, we use a nesting notation to represent is-a relation-
ships. For example, in the source ontology, the concept
Wagon Audi is a subclass of the concept Wagon. It is
important to note that, in general, a taxonomy is a graph
but, in this example, we use a tree-style representation to
simplify the visualization.

In this paper, we will consider only ontologies O¼ ðC;
Ci; I;RÞ where Ci contains only leaf nodes and R contains
only “is-a” relationships between concepts. For this reason,
in the following, we will use the terms ontology and
taxonomy with the same meaning. Our taxonomies are
acyclic but multiple inheritance is supported, i.e. a concept
can have multiple parents.

The (match) mapping between two ontologies OS ¼ ðCs;

Cis; Is;RsÞ and OT ¼ ðCt ;Cit ; It ;RtÞ is defined as a set of
correspondences. Correspondences are either concept cor-
respondences or attribute correspondences. Given two con-
cepts sACs and tACt , we define a concept correspondence
(s,t) as an ordered pair of a source concept and a target
concept. Similarly, given two attributes asAAs and atAAt ,
we define an attribute correspondence ðas; atÞ as an
ordered pair of a source attribute and a target attribute.
Each concept correspondence is characterized by a type
selected from equivalence, is-a and inverse-isa. Semanti-
cally, we define an equivalence correspondence (s,t) if s
and t represent the same concept; similarly, a correspon-
dence (s,t) is an is-a correspondence if s is a subclass of t
while (s,t) is an inverse-isa correspondence if t is a subclass
of s. While inverse-isa relationships are the dual of is-a
relationships we need to distinguish because correspon-
dences are ordered in our model. Furthermore, our algo-
rithm is target-driven and thus requires a different
treatment for is-a and inverse is-a relationships. Examples
of concept correspondences are shown in Fig. 1. In the
following, we refer to mappings containing not only equiva-
lence correspondences but also semantic is-a and inverse-isa
correspondences as extended mappings.

In this paper, we only consider 1:1 equivalence map-
pings. However, we can deal with mutliple is-a or inverse
is-a correspondences referring to the same source or target
concept, e.g., as for source concept SUV in Fig. 1. We do not
investigate here how these correspondences are generated
but assume that a correct and complete match mapping is
provided, automatically generated by a matching tool or
manually determined by a domain expert.
2.2. Problem definition and properties of the merge result

Given the input taxonomies OS ¼ ðCs;Cis; Is;RsÞ and
OT ¼ ðCt ;Cit ; It ;RtÞ and the input match mapping between
OS and OT, MapST , the goal is to automatically determine
the merged taxonomy OT ′ ¼ ðCt′;Cit′; It′;Rt′Þ as well as
output mappings MapST ′ between OS and OT ′ and MapTT′
between OT and OT ′, such that a set of properties hold.

We distinguish two sets of properties (requirements) to
differentiate between a full merge solution and the ATOM

approach. Based on requirements for a generic schema
merge approach introduced in [22], we first introduce four
properties for a merge that fully preserves both input
taxonomies. For the asymmetric merge approach we will
then relax the first two properties but add three additional
ones.

(P1′) Element preservation: Each element (a concept or
an attribute) in the input taxonomies OS and OT has a
corresponding element in the merge result OT′. Formally,
each concept cACs [ Ct corresponds to exactly one con-
cept c′ACt′. This equivalence concept correspondence is
defined as ðc; c′ÞAMapST ′ [ MapTT′. Similarly, each attribute
aAAc corresponds to exactly one attribute a′AAc′. This
attribute correspondence is defined as ða; a′ÞAMapST ′
[MapTT′.

(P2′) Relationship preservation: Each input is-a relation-
ship is explicitly in or implied by OT ′. Formally, for each is-
a relationship rðs; tÞARs [ Rt , if ðs; s′ÞAMapST ′ [ MapTT′ and
ðt; t′ÞAMapST ′ [ MapTT′, then either rðs′; t′ÞARt′ or rðs′; t′Þ is
implied in OT ′.

(P3) Instance preservation: All instances of both input
taxonomies must be preserved in the merged taxonomy.
Moreover, no instance overlap between concepts should
be introduced, i.e. every instance should migrate to exactly
one concept in the merge result. Formally, for each source
or target concept containing instances ciACis [ Cit there
should be at least one correspondence ðci; c′iÞAMapST′ [
MapTT′ to an instance-containing concept c′iACit′ in the
merge result. Furthermore, each instance i of ci should be
uniquely migrated by a transformation function f to an
instance i′¼ f ðiÞ, i′A It′ of an instance-containing concept
in Cit′.

Under our assumption that instances are restricted to
leaf concepts we can ensure property P3 by preserving
all leaf nodes of both the source and target taxonomies.
Preserving the leaves is generally desirable even when
there are no instances since leaf concepts represent the
most specific knowledge in a taxonomy.

(P4) Equality preservation: If two concepts s and t are
equal in MapST then they are mapped to the same merged
concept in the result OT′ and vice versa. Formally, if
two concepts s; tACs [ Ct are equal in MapST , then there
exists a unique concept cACt′ such that ðs; cÞAMapST′ and
ðt; cÞAMapTT′. If s and t are not equal in MapST , then such
a concept c does not exist and s and t correspond to
different elements in OT ′.

It is easy to see that the full merge solution shown in
Fig. 2 satisfies these properties. We now turn to the
requirements for a target-driven merge solution that aims
at reducing the semantic overlap and redundancy that
might be created by a fully information preserving
approach. For such an approach, we keep properties (P3)
and (P4) but only require the preservation of the target
taxonomy. We thus replace properties ðP1′Þ and ðP2′Þ by
the following requirements:

(P1) Target element preservation: Each concept cACt is
preserved so that there is exactly one corresponding
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concept c′ACt′. This concept correspondence is defined as
ðc; c′ÞAMapTT′. Similarly, each attribute aAAc corresponds
to exactly one attribute a′AAc′. This attribute correspon-
dence is defined as ða; a′ÞAMapTT′.

(P2) Target relationship preservation: For each is-a target
relationship rðs; tÞARt , if ðs; s′ÞAMapTT′ and ðt; t′ÞAMapTT′,
then either rðs′; t′ÞARt′ or rðs′; t′Þ is implied in OT ′.

Moreover, we add a new requirement P5 in order to
limit the redundancy in the merge result.

(P5) Control of semantic overlap: The merge algorithm
should generate an integrated taxonomy with little or no
redundancy compared to the input taxonomies. In parti-
cular, we want to avoid or limit multiple paths to leaf
nodes introduced by different concept organizations in the
input taxonomies. We thus require that for a leaf concept
of the target taxonomy no redundant paths are introduced
by the merge. Formally, for each pair of concepts cACt

and c′ACt′ such that c is a leaf concept and there exists
ðc; c′ÞAMapTT′, the number of different paths to c in OT and
c′ in OT′ should be the same.

We remark that if OT is a tree-structured taxonomy, i.e.
OT has no multiple inheritance, then (P5) implies that
the merge result OT′ will remain a tree and no multiple
inheritance will be introduced. This property is obviously
not satisfied by the full merge result shown in Fig. 2.

Finally, since we can also provide is-a and inverse-isa
relationships in MapST , we add the following requirements
P6 and P7 to define their impact in the result OT′.

(P6) Is-a correspondences preservation: If two concepts
are defined so that the first is a subclass of the second one
in MapST then a similar is-a relationship is explicitly in or
implied by OT′. Formally, given two concepts s; tACs [ Ct ,
if there exists an is-a correspondence ðs; tÞAMapST and if
ðs; s′ÞAMapST ′ and ðt; t′ÞAMapTT′, then either rðs′; t′ÞARt′ or
rðs′; t′Þ is implied in OT ′.

(P7) Inverse is-a correspondences preservation: If two
concepts are defined so that the second is a subclass of the
first one in MapST then either a similar relationship is
explicitly in or implied by OT′ or the two concepts are
combined in OT ′. Formally, given two concepts s; tACs [Ct ,
if there exists an inverse is-a correspondence ðs; tÞAMapST
and if ðs; s′ÞAMapST′ and ðt; t′ÞAMapTT′, then either rðt′; s′Þ
ARt′ or rðt′; s′Þ is implied in OT ′ or s′¼ t′.

Property P7 suggests two possible ways to translate
inverse is-a correspondences, generating a new is-a rela-
tionship between the corresponding concepts or combin-
ing them. While the first approach adds a new parent to
the target concept slightly changing the target structure
(but still satisfying all the requirements above), the second
approach simply combines input concepts keeping the
solution more compact.

As a general requirement, the merge algorithm must
terminate and produce a result that is itself a taxonomy
(respectively termination and closure); we also ask for good
efficiency and scalability providing acceptable execution
times even for large taxonomies with many concepts and
is-a relationships. As the distinction between the two
possible merge solutions shows, there are generally differ-
ent valid merge solutions so that a user should be able
to interactively influence the merge result. We will not
focus on possible strategies for such user interaction but
describe the largely automatic generation of a default
solution satisfying the introduced properties and assume
that user interaction is performed in a post-processing
step.

3. The merge algorithm

We propose a merge algorithm that, given as input two
taxonomies and a set of correspondences, produces an
integrated taxonomy that meets the requirements intro-
duced in Section 2. We split the description of the algo-
rithm in to two successive phases: a preliminary phase
that, starting from the source taxonomies and the set of
correspondences, generates a so-called integrated concept
graph; and a main phase that uses the integrated concept
graph to generate the final result. We focus on generating
the merged taxonomy in this section; the generation of the
output mappings is explained in Section 4.

3.1. Preliminary phase

The preliminary phase takes as input two taxonomies
OS and OT and a match mapping between them, provided
as a set of concept correspondences and attribute corre-
spondences, and its goal is the generation of an integrated
concept graph I. A similar algorithm was introduced in [6]
for relational and XML schemas and the preliminary phase
of our approach is based on it but with significant
differences that we will discuss later in this section. The
pseudo-code is described in Algorithm 1 in the Appendix.

The input taxonomies OS and OT are represented as two
directed concept graphs GS and GT, respectively, where
nodes are concepts and edges are is-a relationships.

To generate an integrated concept graph I, we first
generate an integrated concept C for each pair of concepts
that have an input equivalence correspondence at the
concept or attribute level. The assumption of 1:1 equiva-
lence correspondences ensures that only pairs of concepts
are merged in this way.

For an integrated concept C we derive a unique label l
from the merged concepts. Let ls and lt be the labels of the
merged concepts s and t, we define the label of the
integrated concept C as label(C)¼genLabel ðls; ltÞ. The func-
tion genLabel() can be defined in different ways. For ease
and clarity of exposition we chose to simply concatenate
the labels of the concepts to be integrated, and if ls¼ lt we
use their common string value once and append a “n”

symbol. For example, the label for the integrated concept
that merges the source concept Sedan Audi with the target
concept Sedan Audi is label¼ Sedan Audin. Note, that this
labeling convention is only used internally for the algo-
rithm and that the real labels of merged concepts should
be more meaningful, e.g. by keeping the labels of the
target concepts.

For two attributes involved in an attribute correspon-
dence, we add only one attribute with a label generated by
a similar function as for concept labels.

At this point, for each integrated concept C we generate
a new node in I. Then, we translate the set of edges in GS

and GT into a new set of labeled edges in I. In particular,
for each edge e¼ C1-C2 in GS, we produce an S-labeled



Fig. 3. Integrated concept graph for running example.
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edge in I – in the following called s-edge – defined as
es ¼ Ci1-Ci2 where Ci1 and Ci2 are the corresponding
integrated concepts in I of C1 and C2. Similarly, for each
edge e in GT, we produce a T-labeled edge (or t-edge)
in I.

Finally, for each is-a and inverse-isa correspondence we
generate an isa-edge and an inv-isa-edge, respectively, in I.
The integrated concept graph built for our running exam-
ple is in Fig. 3. Source edges and target edges are
represented by solid lines, isa-edges and inv-isa-edges by
dashed and dotted lines, respectively. The graph contains
four integrated concepts (labels with n), s-edges S1–S7,
t-edges T1–T7, one isa-edge and two inv-isa-edges.

The integrated concept graph (without isa- and inv-isa
edges) can be used to derive the full merge result in a
straightforward manner, as can be seen by the high
similarity of Fig. 3 with Fig. 2. The ATOM approach differs
from such an approach by its focus on preserving the
target taxonomy, reducing semantic overlap and utilizing
extended input correspondences. These aspects lead
already to several changes in the preliminary phase com-
pared to [6], such as the distinction in the integrated
concept graph between source edges and target edges and
support for extended (match) mappings.

3.2. Main phase

The main phase of the ATOM approach implements its
key features already mentioned in the Introduction in
order to achieve properties P1–P7 introduced in Section 2.
Based on the integrated concept graph we first take over
the target concepts and relationships in the merge result. To
preserve all instances, we include all leaf nodes from both
the target and source taxonomies into the merge result. To
reduce semantic overlap, we only consider inner concepts
of the source taxonomy if they are considered “relevant”, i.e.
they do not introduce redundant paths to leaf nodes. We
also incorporate is-a and inverse-isa relationships for
improving the merge result. Before describing the details
of the algorithm, we need to introduce some definitions.

A path P in a graph G is a sequence of nodes such that,
for each node there exists an edge between this node and
the next one in the sequence. A path has a start node and
an end node; the other nodes are called internal nodes.

Definition (Top Level Concepts). A concept C of the inte-
grated concept graph G is a Source Top Level Concept if C
has no outgoing s-edges but at least one incoming s-edge.
This is equivalent to say that C has one or more children
but no parent with respect to s-edges. Similarly, C is a
Target Top Level Concept if it has no outgoing t-edges in G
but at least one incoming t-edge. Finally C is a Top Level
Concept if it is either a Source or a Target Top Level
Concept.

In the graph shown in Fig. 3, the concept Automobilen is
both a source and a target top level concept since it has
only incoming s-edges and t-edges but no outgoing edges.
As we will discuss later in this section, Automobilen can be
set as root of I since there are no other top level concepts
in I.

A path P is called a TLC path if its end node is a Top Level
Concept in the graph. A path P in a graph G is a cycle if the
start node and the end node are the same. The choice of
start and end nodes is arbitrary.

Let N be a node in a graph G and P be a TLC path with
start node N. P is a source-path or simply s-path if it
contains only s-edges. Similarly, P is a target-path or simply
t-path if it contains only t-edges. We define P as a
combined-path or c-path if it contains only s-edges or isa-
edges. In Fig. 3, for example, P1 ¼ fS4–S1g is a s-path and
P2 ¼ fT4–T1g a t-path.

Now we are ready to discuss in detail the main phase of
the algorithm. Given an integrated concept graph I, the
algorithm generates an integrated taxonomy OT ′ using the
following steps:
�
 Step 2.1: Removing cycles in I.

�
 Step 2.2: Translation of t-edges.

�
 Step 2.3: Translation of isa-edges.

�
 Step 2.4: Translation of s-edges.

�
 Step 2.5: Translation of inv-isa-edges.

�
 Step 2.6: Finding root concept.
Steps 2.3 and 2.5 are only needed for the extended
mapping while with equivalence mappings a simpler algo-
rithm is sufficient.

In the following we detail each step of the algorithm
and we show the intermediate and final results for our
running example. The pseudo-code is shown in Algorithm 2
in the Appendix.

Step 2.1 [removing cycles]: In this step we check
whether cycles are present in the graph I in order to
remove them. If we assume correct, acyclic source and
target taxonomies then the source and the target concept
graphs GS and GT are cycle-free so that any cycle in I cannot
involve only s-edges or t-edges. If we further assume
correct correspondences, then all concepts involved in a
cycle could be considered equal due to the transitivity of
is-a relations. Pottinger and Bernstein [22] thus proposed
to merge together all concepts involved in an is-a cycle.
We follow a more conservative approach by preserving the
target taxonomy (here, its part involved in the cycle) and
breaking a cycle by removing one of the involved s-edges.
In general, there can be multiple such s-edges and thus
different alternatives to resolve a cycle with potentially
different merge results. While we provide a default approach
to automatically select a cycle-breaking s-edge we recom-
mend to interactively request user feedback to resolve a
cycle. This enables the user to verify whether the cycle is



Fig. 4. (a) Example of a cycle, (b) and (c) possible results after removing
cycles.

Fig. 5. Result with (a) and without (b) extended mapping.
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introduced by an error in the match mapping or in the input
taxonomies. Furthermore, the user can select which s-edge
should be removed to break the cycle.

To give a simple example, the integrated concept graph
in Fig. 4(a) has a cycle on the set of nodes {An, E, Cn, B} and
on the set of edges {S1, S2, T1, T2}. In this example, the cycle
can be broken in to two different ways depending on
which s-edge will be removed. Fig. 4(b) and (c) shows the
two possible results: the solution in Fig. 4(b) is obtained by
removing the s-edge S1 while Fig. 4(c) shows the result
generated by removing S2. Since the results are semanti-
cally different, we leave the final decision to the user.

Step 2.2 [translation of t-edges]: For each t-edge
e¼N1-N2 we normally create an is-a relationship
between the corresponding concepts C1 and C2 in OT′, in
order to maintain the target concepts and relationships.
The only exception is when there exists exactly one c-path
P with start node N1 and end node N2 containing more
than one s-edge or isa-edge. In the latter case we do not
create a direct relationship between C1 and C2 but we
mark all edges in P as relevant (for the merged taxonomy)
so that they will be translated in the next step. The reason
is that we want to preserve the target structure in the final
result but if two concepts have a more detailed structure
in the source, we want to reward it in the merged
taxonomy since it preserves and extends the target struc-
turing between N1 and N2, and this is possible thanks to
the transitivity of is-a relationships.

Step 2.3 [translation of isa-edges]: The intuition behind
the translation of an isa-edge is that it represents a
subclass relationship between a source concept and a
target concept and we want this relationship to be
translated also in the integrated taxonomy. For each isa-
edge e¼N1-N2, we create an is-a relationship between
the corresponding concepts C1 and C2. If we consider the
graph shown in Fig. 3, we translate the single isa-edge
with label “isa1” nesting the concept Wagon BMW in BMW
(see merge result in Fig. 5(a)).

Step 2.4 [translation of s-edges]: The translation of
s-edges is the most important step in the algorithm,
because it integrates missing source concepts into OT ′, in
a “correct” position, and translates only that concepts that
do not introduce redundancy in the solution. First of all,
we define candidates as the set of all leaf nodes L such that
L has at least one outgoing s-edge. These source leaf
concepts will be integrated into OT ′ as well as inner source
concepts that do not introduce redundant paths to the
source leaf concepts. For each node L we find all s-paths
with start node L and for each s-path P we check which of
its edges are relevant for the merge results without
introducing redundancy in addition to the target edges
that will be translated. We therefore traverse each s-path
P and consider its edges as relevant until reaching a node
in P with outgoing t-edges or isa-edges indicating that the
remaining path is already covered by OT ′. This criterion
indicates that such edges have already been identified as
relevant in the previous steps so that we do not have to
translate them again. At this point we can also decide
which source nodes should be integrated in the final result
and which not. We define a node X as not relevant if all
outgoing and incoming s-edges are not marked as rele-
vant. For each s-edge e¼N1-N2 marked as relevant, we
create an is-a relationship between the corresponding
concepts C1 and C2 in OT′.

If we apply this step to our running example shown in
Fig. 3, the set of candidate nodes is candidates¼{SUV,
Sedan Audin, Sedan BMWn, Wagon Audin, Wagon BMW}.
Since only the s-path with start node SUV has no concepts
with outgoing t-edges or isa-edges, we mark the edge S3 as
relevant and the remaining s-edges (S1, S2, S4, S5, S6, S7)
as not relevant. As a consequence, the nodes Sedan and
Wagon are considered not relevant and they will not be
translated in the integrated taxonomy.

Step 2.5 [translation of inv-isa edges]: An inverse-isa
mapping semantically describes how a source concept
can be split into two or more target concepts, i.e. there
are normally several inverse-isa correspondences for the
same source concept to different target concepts. Such
1:n relationships require special treatment to correctly
migrate (partition) source instances among several target
concepts. For example, in Fig. 1 the source concept SUV
represents all kinds of SUV without distinction of manu-
facturer, and it should be split into two target concepts
SUV Audi and SUV BMW. But, in general, SUV can also
contain vehicles with a manufacturer that is different from
both Audi and BMW (e.g. SUV Mercedes) and we must be
careful to preserve such instances in the merge result.

As discussed in Section 2 and required by property P7,
two different translations for inverse-isa correspondences
are possible. In this paper we present only the approach
that simply combines input concepts and keeps the result
more compact.

For each inv-isa-edge defined as e¼ A-B, called,
respectively, label(A) and label(B) the labels of nodes A and
B, we combine A and B in a concept with label label(B)þ
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subset(A) and generate a new concept with label label(A)þ
“(others)”. The “þ” operator indicates here a simple con-
catenation function; the subset() function indicates a subset
of the original set when applied some special conditions.
More details are in Section 4.

Let us consider the two inverse-isa-correspondences
inv� isa1 and inv� isa2 in our example:

inv� isa1 ¼ SUV-SUV Audi
inv� isa2 ¼ SUV-SUV BMW ð1Þ
This step will produce the concepts SUV AudiþsubsetAudi
(SUV), SUV BMWþsubsetBMW (SUV) and SUV (others),
where SUV (others) represents the following set:

SUVðothersÞ � S\ðsubsetAudiðSÞ [ subsetBMW ðSÞÞ ð2Þ
where S is the original source concept SUV.

By analyzing source instances it is possible to discover
if the concept SUV(others) is empty or not. Only if it is
empty, we can remove it from the merged taxonomy.
Otherwise we have to consider this node to preserve all
instances.

Step 2.6 [Finding root concept]: Let TLCs be the set of all
Top Level Concepts with no outgoing isa-edges. The idea is
that TLCs contains all the candidate roots for the merge
taxonomy and if TLCs contains only one Top Level Concept,
this will be the root of OT ′, otherwise we create an artificial
root node root in OT′ and for each concept c in TLCs we
create an is-a relationship from c to root. Note that a source
TLC c can have, for example, an outgoing isa-edge. In this
case c=2TLCs since an is-a relationship between c and a
target concept has already been created and c cannot be
set as root of OT′.

The integrated taxonomy OT ′ generated by the algo-
rithm for our running example is shown in Fig. 5(a) and it
meets the requirements P1–P7 introduced in Section 2. In
particular, all the target concepts (P1) and is-a relation-
ships (P2) are also in the merged taxonomy, all the source
and the target leaf nodes were translated so that all
instances are preserved (P3) and no semantic overlap
was introduced in the result (P5). In particular, the tree-
structure of the target is maintained and no multiple
inheritance is introduced in contrast to the full merge
solution. While the target structure is fully preserved, the
source taxonomy is only partially included since their
concepts Sedan and Wagon are covered by corresponding
target concepts.

The generation of mappings as discussed in Section 4
maps all input leaf concepts to the merged taxonomy and
ensures that corresponding concepts in the equivalence
mapping are mapped to the same merged concept in the
result (property P4). Moreover, relationships defined by isa-
edges are translated in the result (P6) and the concepts
covered by inverse is-a correspondences are combined (P7).

Fig. 5(b) shows the taxonomy generated by our algo-
rithm when the input mapping contains only equivalence
correspondences and steps 2.3 and 2.5 are thus not
applied. This result appears inferior to the result in Fig. 5(a)
since not all concepts could be well placed and there is some
semantic overlap due to the differences in the original
taxonomies. For example the concept Wagon BMW should
not be in a different subtree than concept BMW. Furthermore,
there is a likely overlap between the general SUV concept
under Automobilen and the more specific concepts SUV Audi
and SUV BMW. A merge algorithm that uses only equivalence
correspondences could not better deal with such cases
since the semantic relationships between these concepts
have not been expressed in the provided equivalence map-
ping. Note that both solutions meet the requirements defined
in Section 2 but a prerequisite to improve the merge result as
in Fig. 5(a) is the provision of more semantic mappings
between the input taxonomies.

The described algorithm allows a fully automatic mer-
ging of input taxonomies but can still benefit for manual
feedback. In fact, we already recommended user interac-
tion in Step 2.1 to resolve cycles. We might also make
Step 2.4 semi-automatic by requesting user approval
before declaring a source concept as not relevant and
dropping it from the merge result. This way the user could
force the approach to keep some concepts for complete-
ness even at the expense of some structural redundancy.
As we will show in our evaluation, relatively few source
concepts are usually candidates for dropping so that the
effort for interactive approval of concept dropping is
expected to be low.

3.3. Multiple inheritance

While the running example is based on single inheri-
tance, our approach can also merge input taxonomies with
multiple inheritance. This is illustrated by the example
shown in Fig. 6. It represents a small subset of the match
scenario proposed by the Ontology Alignment Evaluation
Initiative (OAEI) [1] that merges part of the subgraph
describing “Eye Muscles” in the Mouse Anatomy with the
subgraph describing a similar concept in the NCI Thesaurus.

Both input taxonomies have a corresponding root
concept Body part, a corresponding inner concept Muscle
and a corresponding leaf concept Ciliary Muscle. The
shared leaf can be reached by different paths in the source
and in the target; particularly it has multiple paths in the
target taxonomy due to multiple inheritance.

The integrated concept graph for the example is shown
in Fig. 6(b) and the merge result in Fig. 6(c). We highlight
with a white background the merged concepts and with a
light and dark-gray color the concepts coming only from
the source or from the target, respectively, i.e. concepts not
covered by a correspondence in the input mapping. For
example, the source leaf concept Iris Muscle does not have
an equivalent concept in the target but is still relevant for
the merge result since it is a leaf in the source and should
be preserved according to property P3. On the other hand,
source concept Tissue is not included in the merge result
since it would introduce an additional path between Body
Part and leaf Ciliary Muscle and thus lead to a semantic
overlap (see property P5). In fact, the number of paths for
this leaf concept in the merge result remains the same
than in the target taxonomy. Moreover, as we discussed in
Section 3.2, the algorithm rewards the source path fS5–S3g
since it preserves and extends the target structuring
between the concepts Ciliary Muscle and Muscle. In fact
the target is-a relationship defined by T5 is implied by is-a
relationships in S5 and S3.



Fig. 6. Example with multiple inheritance: (a) the input taxonomies and equivalence mapping, (b) the integrated concept graph and (c) the merge result.
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It is easy to see that the solution shown in Fig. 6(c)
generated by the proposed algorithm meets the require-
ments P1–P7 introduced in Section 2 also for the example
with multiple inheritance. The full merge solution is
represented by the integrated concept graph shown in
Fig. 6(b). It would keep the source concept Tissue and lead
to additional paths for leaf concept Ciliary Muscle.
3.4. Complexity

The complexity of the algorithm depends on the size
and on the kind of source taxonomies. We assume an
average number of concepts n and an average number of
is-a relationships r per input taxonomy. If OS and OT are
taxonomies with a simple hierarchy (i.e. with no multiple
inheritance), the average number of relationships is
r¼ n�1. If the input mapping contains only 1:1 corre-
spondences, the maximum number of is-a and inverse-isa
correspondences that is possible to specify is O(n). The
complexity of the preliminary phase is O(r) and thus
O(n) if input taxonomies are hierarchies. If source taxo-
nomies contain multiple inheritance, the number of edges
can degenerate in the (highly unlikely) worst case to
ðnðn�1ÞÞ=2 resulting in complexity Oðn2Þ. The complexity
of the main phase is also different if a single or a multiple
inheritance is present in the sources. In the first case the
complexity is still linear with respect to the sum of source
concepts, in the latter case it is quadratic with respect to
source concepts.
4. Mapping generation

In this section we discuss how to automatically generate
equivalence mappings between the input taxonomies and
the merged taxonomy as determined by the merge algo-
rithm. The process is fully automatic and based on the
integrated concept graph reflecting the equivalence, is-a
and inverse-isa relationships between the input taxonomies.
These relationships produce different edges in the integrated
concept graph and consequently different concepts and
relationships in the merged taxonomy. In particular, equiva-
lence correspondences describe how two concepts in the
input taxonomies should be merged in the integrated tax-
onomy; on the other side, an isa-mapping does not produce
merged concepts in the result, but it defines a subclass
relationship between a source and a target concept, describ-
ing which should be the parent of a source concept in the
merged taxonomy; finally, an inverse-isa-mapping describes
how to split a source concept – and its instances – into two or
more concepts in the final result. Algorithm 3 shows how
mappings MS and MT for relating the input taxonomies OS

and OT to the integrated taxonomy, respectively, are deter-
mined. The algorithmwill determine in MT a correspondence
for every target concept (since the merge algorithm is target-
maintaining) and in MS a correspondence for every source
concept explicitly reflected in the merged taxonomy.
In particular there will be a correspondence for every leaf
concept specifying where instances should migrate in the
merged taxonomy.

Input equivalence correspondences and is-a correspon-
dences can be translated at the same time analyzing nodes
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marked as relevant in the integrated concept graph I. Each
integrated concept in I contains the collections of source
and target concepts from which it was generated. In this
way, given an integrated concept C, it is always possible to
know if C was present only in the source, only in the target
or in both. In the following, we call, respectively, scc and
tcc the collections of source and target concepts for an
integrated concept C. It is important to note that we
assume that all integrated concepts with a nonempty
tcc are marked as relevant by default – i.e. all concepts in
the target taxonomy are relevant and will be translated in
the merged taxonomy.

As described in Algorithm 3, for each relevant inte-
grated concept CI in I such that C has no outgoing inv-isa-
edges (they will be translated later in a different way),
called scc and tcc the sets of source and target concepts, for
each concept C in scc, we create a correspondence between
C and CI in MS; similarly we create a correspondence in MT

for concepts in tcc.
For example, if we consider the integrated concept

Wagon Audin in Fig. 3, the sets scc and tcc are, respectively,
scWagon Audin ¼ fWagon Audig and tcWagon Audin ¼ fWagon
Audig and we will create a correspondence between the
source concept Wagon Audi and the integrated concept
Wagon Audin in MS and another one between the target
concept Wagon Audi and Wagon Audin in MT. If we
consider, instead, the node Wagon BMW, scWagon BMW ¼
fWagon BMWg while tcWagon BMW is empty and only one
correspondence between the source concept Wagon BMW
and the integrated concept Wagon BMW will be generated
in MS.

The translation of inverse-isa-correspondences is a
delicate step in the mapping generation process since each
correspondence describes how to move only “some”
instances of a source concept and not all instances related
to it. In our running example correspondences with label
inv� isa1 and inv� isa2 state that instances in the source
concept SUV should be split in to three disjoint subsets:
SUV Audi, SUV BMW and SUV (others). As proposed in [14],
a correspondence can have an attached filter – called filter
condition – that states under which conditions the corre-
spondence must be applied. For example, supposing the
SUV concept has an attribute called manufacturer, we
can define the following filter conditions, respectively,
for correspondences inv� isa1 and inv� isa2:

fc1 ¼ ½SUV :manufacturer¼ ‘Audi’�
Fig. 7. Mapping M
fc2 ¼ ½SUV :manufacturer¼ ‘BMW ’� ð3Þ

Filter conditions can be automatically generated by a
matching tool when correspondences are created or they
can be manually defined by a user; as discussed for
correspondences, we do not investigate how filter condi-
tions are generated since they are part of our algorithm
input. At this point, we are ready to present how inverse-
isa correspondences are translated in the mapping gen-
eration process. As shown in Algorithm 3, for each node CI
with at least one outgoing inv-isa-edge, called C the
corresponding source concept and called c-edges the list
of all outgoing inv-isa-edges for CI, we create a correspon-
dence for each edge e in c-edges and we attach the filter
condition fc defined on e. Finally, we create a correspon-
dence between C and the integrated concept with label
“(others)” attaching a filter condition fcothers defined as the
negation of all filter conditions attached on inv-isa-edges
outgoing from CI.

If we consider again the concept SUV in our running
example, the set of outgoing inv-isa-edges is finv� isa1;
inv� isa2g with filter conditions fc1 and fc2 defined above.
With respect to inv� isa1 edge, we create a correspon-
dence between the source concept SUV and the integrated
concept SUV Audi attaching fc1 on it; similarly for inv� isa2.
Finally, we create a correspondence between SUV and SUV
(others) and we define a new filter condition as given in
the following:

fcothers ¼ ½SUV :manuf !¼ ‘Audi’ AND SUV :manuf !¼ ‘BMW ’�
ð4Þ

The last correspondence states that all SUV vehicles
with a manufacturer different from Audi and BMW must
be moved to the concept SUV (others) in the merged
taxonomy.

It is important to note that if concepts in the input
taxonomies have attributes, we create an attribute corre-
spondence between each of them and the corresponding
attribute in the integrated concept. We omit details of this
process here.

Fig. 7 shows the mappings MS and MT generated for our
running example presented in Fig. 1; we have drawn
correspondences between leaf nodes with a solid line
and that ones between inner nodes with a dotted line. It
is easy to see that properties P3–P5 introduced in Section 2
are satisfied with respect to instances, since there is a
correspondence for each leaf node in source taxonomies
T and MS.



Table 1
Summary of experiments.

Merge example Anatomy eBay catalog

Mouse NCI v94 v93
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and each instance migrates to exactly one concept in the
merged taxonomy; moreover if there exists an equivalence
correspondence between two concepts in the input map-
ping, they are mapped to the same merged concept.

5. Evaluation

In this section we comparatively evaluate our approach
and the full merge solution for medium- and large-sized
real ontologies of two domains. The evaluation focusses on
qualitative aspects related to the degree of semantic over-
lap (property P5) as well as the runtime efficiency.

The proposed merge algorithm has been implemented
in the ATOM system [26], a working prototype written in
Java offering a GUI to explore all steps of generating the
merged taxonomy. ATOM allows the user to load input
taxonomies in different formats such as OWL, XSD or
XML. The mapping can be semi-automatically determined
by an internal match engine or it can be provided by the
user in plain text or XML format. For our evaluation we run
the merge algorithms in fully automatic mode, i.e. we do
not consider manual interactions to influence the merge
result.

We have used the prototype to run a number of experi-
ments both on synthetic and real-life scenarios. The syn-
thetic scenarios were of rather small size and mainly served
to verify the correctness of the merge algorithms. We
therefore focus the evaluation on two real-life scenarios
with ontologies of up to about 23,500 concepts. The first
scenario is from the life sciences domain and aims at
merging the AdultMouseAnatomy (over 2700 concepts)
with the anatomical part of the NCI Thesaurus (NCIT) (about
3300 concepts). This scenario builds on the anatomy match
scenario from the OAEI [1] and has the advantage that a
near-perfect equivalence match mapping is available. The
anatomy ontologies contain both is-a and part-of relation-
ships as well as multiple inheritance. For our experiments,
we considered only is-a relationships. For the second sce-
nario, we merge different versions of the eBay product
catalog. These versions of the catalog contain on average
more than 22,000 concepts organized in a tree structure and
input mappings contain more than 20,000 equivalence
correspondences. Since we obtained a similar trend in all
eBay experiments, we present results only for the largest
scenario.
Input size
Concepts 2700 3300 21,000 23,500
Leaf paths 2300 2600 18,400 19,700

Correspondences 1500 20,200

FULL solution
Concepts 4500 23,400
Leaf concepts 3500 20,400
Leaf paths 14,000 21,500
Δ Leaf paths 11,400 1800

ATOM solution
Concepts 4400 23,300
Leaf concepts 3500 20,400
Leaf paths 7200 20,400
Δ Leaf paths 4600 700

Execution time (s) 1 7
5.1. Quality of the merge solution

Evaluating the quality of an ontology merging algo-
rithm is a challenging task since it requires evaluating the
quality of the generated, integrated ontology. This quality
is however strongly dependent on the quality of the input
ontologies which is in turn influenced by the application
purposes of the ontologies and other factors that are
not under our control for real-world ontologies. Precisely
determining the quality of a merge result would also
require to compare it with a perfect or near-perfect merge
result which is almost impossible to obtain for large
ontologies or non-existent since there might be many
reasonable merge results [6]. These reasons also explain
why there is no benchmark that could be used to evaluate
the quality of the proposed approach, e.g. by using standard
quality measures, such as Precision, Recall or F-Measure.

We ensure the quality of our approach by guaranteeing
that it satisfies the properties stated in Section 2. For a
quantitative evaluation of quality aspects we compare the
results for the two scenarios for both the full merge
solution as well as the ATOM approach. In particular, we
consider the size or compactness of the result and evaluate
the introduced degree of semantic overlap or redundancy
in the merge result. For the latter aspect we especially
consider the number of leaf paths in both solutions and
the difference compared to the number of leaf paths in the
target taxonomy (Δ leaf paths).

Table 1 summarizes our experiments; we report the
rounded number of concepts and leaf paths for each input
taxonomy and the number of correspondences given as
input. Moreover we report the size of the solution pro-
duced by ATOM and that one of the full merge solution
expressed as their number of concepts, leaf concepts, total
and Δ leaf paths. We remark that the full and the ATOM

solutions have the same number of leaves since both
preserve all input leaf concepts. On the other hand, the
number of leaf paths can be different in the two solutions
since in ATOM result overlapping concepts and relation-
ships coming from the source taxonomy are not translated.

We observe for both experiments that ATOM solutions
are more compact than the full merge solutions both in
terms of the number of concepts and especially in terms of
the number of leaf paths. The merged taxonomy for the
asymmetric ATOM solution has only about 100 (inner)
concepts less than for the full merge approach indicating
that only very few concepts (o0:5% of the source taxon-
omy) have been dropped. By contrast, ATOM reduced the
total number of leaf paths in the merge result by half
compared to a full merge for the Anatomy scenario. We
remark that the ontologies in the Anatomy scenario con-
tain multiple inheritance so that the number of leaf paths
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in the full solution tends to substantially increase. In fact,
the number of leaf paths increases by more than a factor 4
for the full merge solution compared to the target ontology
indicating that a huge degree of redundancy has been
introduced. By contrast, ATOM introduces 60% fewer addi-
tional leaf paths (Δ leaf paths) compared to the full merge.

We see a different result with eBay scenario reporting a
reduction of the total number of leaf paths of 5%, since
eBay taxonomies have a larger overlap than Anatomy ones
(93% of equivalent concepts in eBay and only 50% in
Anatomy scenario); on the other side, we obtain a similar
relative reduction (60%) comparing Δ leaf paths, since only
few inner source concepts are copied in the result produ-
cing a limited number of leaf paths that are more relevant
if compared to the target.

Finally, we note that the total number of leaf paths in
the ATOM solution is the same as the number of leaves in
the result for eBay scenario, showing that, unlike the full
solution, the merged taxonomy still maintains the tree-
structure of the target and no multiple inheritance is
introduced.
5.2. Performance and scalability

We now analyze the runtime performance and scal-
ability of the merge algorithm for the real-life scenarios. As
already discussed in previous sections, the complexity
of the algorithm is theoretically linear w.r.t. the number
of concepts for taxonomies with single inheritance and
quadratic in the presence of multiple inheritance. All
experiments have been executed on an Intel Xeon machine
with 2.66 Ghz processors, 4 GB of RAM and a 64 bit
operating system. We experimentally confirmed that ATOM

has good performance also with real and large taxonomies.
In particular, ontologies in the Anatomy scenario have
multiple inheritance, while each concept in eBay product
catalogs has only one parent. We measured execution time
for each step in the algorithm, in particular the time
necessary to generate the integrated concept graph and
to produce the final result. We also measured the execu-
tion time to generate the final mappings between input
and merge result. Fig. 8 shows the detailed execution
times for the two medium and large-sized scenarios
indicating that generating the integrated concept graphs
is the most expensive step. The system generated the final
Fig. 8. Execution times on large-scale scenarios.
result in less than 1 s for the medium-size scenario with
multiple inheritance (Mouse-NCI), and in about 7 s for the
large-sized one (eBay product catalog), showing a very
good scalability of the algorithm.

6. Related work

Integrating heterogeneous ontologies or other meta-
data models such as database schemas are inherently
complex problems that have been investigated in research
since several decades [2,16]. Early schema integration
approaches tried to come up with comprehensive solutions
covering all related steps such as determining correspond-
ing schema elements, resolving conflicting representations
as well as merging and combining the information from
different input schemas. The problemwith such approaches
is that they tend to become very complex and difficult to
use, even when they focus on specific schema languages or
application domains [3]. The more recent approaches to
schema and ontology integration have thus mostly followed
a more modular scheme by decomposing the integration
problem into independently solvable subproblems such as
Match and Merge. The Match step is responsible for aligning
two or more ontologies or schemas. It produces a mapping
specifying all corresponding concepts or schema elements.
This mapping can then be used by the Merge step to
determine the integrated ontology or integrated schema.

The vast majority of research in the last 10–15 years on
schema and ontology integration has focussed on the
match step, i.e. schema matching and ontology alignment.
As described in several surveys and books (e.g., [25,8,24]),
numerous approaches and prototypes have been devel-
oped for ontology matching that typically utilize the
linguistic and structural similarity of ontology concepts;
some approaches also consider the similarity of ontology
instances. Most approaches focus on determining an
equivalence mapping containing all pairs of semantically
equivalent ontology concepts. Several approaches have
also been developed to determine more general ontology
mappings, including is-a relationships between ontologies
[30,31,34]. Match approaches are typically semi-auto-
matic, i.e. their result needs to be verified and corrected
(deletion of wrong correspondences, addition of missed
correspondences) by a human domain expert to obtain the
correct mapping.

The previous approaches to merge two schemas or
two ontologies can be classified as shown in Fig. 9. We
use three largely orthogonal criteria namely whether the
merge approaches are symmetric or asymmetric, whether
or not they are based on an input mapping and whether
the approach focusses on (database) schema or ontology
merging. Some approaches, e.g. “Vanilla” [22], are meant
to be generic, i.e. apply to both schemas and ontologies.

Merging of schemas has first been addressed within
comprehensive, largely manual approaches for schema
integration [2]. MOMIS is a well-known representative of
such systems [4]. More recent schema merging approaches
are “mapping-based”, i.e. they assume a correct input
mapping specifying all correspondences between the
input schemas. Such a mapping is typically the result of
a semi-automatic Match step and specifies the



Fig. 9. Classification of merging approaches.
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corresponding or related information to be integrated. The
Merge step can thus significantly be reduced in complexity
and much better automated [20]. Pottinger provides a
recent overview about mapping-based merge approaches
[19]. One of the first studies on mapping-based merge
approaches [22], specified general requirements for
schema merging and proposed a generic “Vanilla” imple-
mentation. As discussed in Section 2 we reuse and extend
some of their requirements adapting them to our target-
driven algorithm.

Most previous mapping-based schema merge approaches
are symmetric and try to completely preserve the informa-
tion of the input schemas [6,28,20,29,23,9,21]. The approach
of Chiticariu et al. [6] generates numerous integrated candi-
date schemas and requires substantial user intervention to
iteratively refine the result. We discussed the differences
between [6] and our approach in Section 3. Radwan et al.
[23] build on [6] but propose a more automatic approach
that uses directed and weighted correspondences to rank the
integrated schemas for simplified user selection. The
approaches proposed in by Pottinger and Bernstein [20] as
well as by Li et al. [12] take as input a set of relational schema
and an equivalence mapping expressed under the form of
conjunctive queries. The PORSCHE system [28] focusses on
the merging of XML schemas based on previously deter-
mined equivalence correspondences.

For ontology merging, virtually all previous approaches
have been symmetric. A notable exception is PROMPT that
can be used symmetrically (see below) or asymmetrically.
Support for asymmetric merge is provided by PROMPT
since one can specify a preferred ontology that helps to
reduce the number of user interactions. ATOM is the first
asymmetric and mapping-based ontology merging scheme
that tries to reduce the semantic overlap in the merge
result through its target-driven approach. Furthermore, it
is the first mapping-based merge approach to use more
semantic match mappings including is-a or inverse-is-a
correspondences, to improve the merge result.

For ontology merging, well-known approaches such as
PROMPT, Chimaera and FCA-Merge [17,13,32] are sym-
metric and not mapping-based. These approaches primar-
ily focus on the problem of ontology alignment and do not
use the separation of matching and merging. The merging
algorithms of both PROMPT [17] and Chimaera [13] are
semi-automatic performing some tasks automatically but
relying on user input for other tasks. PROMPT checks
whether such user interventions generate inconsistencies
in the merged ontology and suggests possible solutions
to reach a consistent ontology. The merge algorithm of
FCA-Merge [32] is based on a lattice of concepts. The
lattice is automatically derived but the generation of the
merge ontology requires the user intervention to explore
the lattice.

Further semi-automatic, symmetric ontology merging
approaches include HCONE [10] and CreaDo [18]. Both
depend on dictionaries such as WordNet for matching and
are thus currently limited to knowledge represented in
English language. CreaDo aims at limiting the scope of
the merged ontology for improved understandability by
restricting it to a significant concept (to be provided as a
parameter) and the related portions from the source ontol-
ogies that can be mapped to the specified concept [18].

CleanTax is one of the few mapping-based ontology
merging approaches that, like we, limits itself to taxo-
nomies [33]. They investigate the merging problem when
the relationships between concepts of different taxo-
nomies can be expressed as algebraic (RCC-5) constraints.
The simple “Full merge” approach considered in this paper
is also a scheme for mapping-based taxonomy merging.

Relatively little work has been performed on the
evaluation of schema and ontology merging. Lambrix
qualitatively compared the PROMPT and Chimaera tools
for merging biomedical ontologies [11]. However, the focus
was not on the merge result but on the system itself
and the user effort to obtain a specific result. In [7], an
approach to evaluate the quality of an integrated schema
(i.e. the result of schema merging approach) is proposed.
They require the specification of a perfect integrated
schema and define metrics such as Structurality, Complete-
ness and Minimality to assess the proximity of an inte-
grated schema to the (presumably) perfect one. As already
discussed in Section 5, more than one ideal solution could
exist and, moreover, it is hardly possible to manually
generate an ideal merged schema for large scenarios. In a
recent paper [27], we have advocated for the use of simple
criteria to comparatively evaluate the quality of different
ontology merging approaches similarly as we have done it
in our evaluation here.
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7. Conclusions

We proposed the ATOM approach for automatically
merging a source taxonomy into a target taxonomy. The
merge algorithm is target-driven and preserves all con-
cepts and relationships of the target taxonomy and can
largely limit the semantic overlap in the merged taxon-
omy. Furthermore, ATOM is based on a match input map-
ping and can utilize not only equivalence correspondences
but also is-a and inverse-isa correspondences to improve
the merge result. ATOM also determines mappings between
the input taxonomies and the merge result that can be
used for instance migration. The proposed algorithms have
linear complexity for hierarchical taxonomies. The ATOM

approach could be successfully applied to large real-life
taxonomies from different domains. ATOM generates a
default solution in a fully automatic way that may inter-
actively be adapted by users if needed.

There are several opportunities for future work. First it
is desirable to investigate how the asymmetric merge
approach can be extended for more general ontologies
without introducing the need for substantially more man-
ual interaction. Second, more work to evaluate the quality
of merged ontologies and merge algorithms is needed, e.g.
by focussing on different kinds of applications and their
interoperability requirements. Furthermore, it would be
interesting to investigate the potential of asymmetric
merge for integrating more than two ontologies.

Appendix A. Algorithms and pseudo-code.
Algorithm 1. ICGGenðGS;GT ;CorrÞ.

Input: two concept graphs GS ¼ ðVS ; ESÞ and GT ¼ ðVT ; ET Þ and a set

of correspondences Corr
Output: an Integrated Concept Graph I

1:
 I¼ ðV ; EÞ’ empty

2:
 for each node x in VS [ VT do

3:
 if x is involved in an equivalence correspondence (x,y)

or (y,x) then

4:
 c’ merge concepts x and y

5:
 add c to V

6:
 else

7:
 add x to V

8:
 end if

9:
 end for

10:
 for each edge eS in ES do

11:
 generate a s-edge in I

12:
 end for

13:
 for each edge eT in ET do

14:
 generate a t-edge in I

15:
 end for

16:
 for each is-a correspondence cisa in Corr do

17:
 generate an isa-edge in I

18:
 end for

19:
 for each inverse-isa correspondence cinv in Corr do

20:
 generate an inv-isa-edge in I

21:
 end for

22:
 return I
Algorithm 2. IntegratedTaxGen(I).

Input: an Integrated Concept Graph I¼ ðV ; EÞ
Output: an Integrated Taxonomy OT′
comment Step 2.1

1:
 RemoveCycles(I)
comment: Step 2.2
2:
 for each t-edge e¼N1-N2 in I do

3:
 if ( exactly one c-path P from N1 to N2 s.t. lengthðPÞ41 then

4:
 mark all edges in P as relevant

5:
 else

6:
 create an is-a relationship between N1 and N2 in OT′

7:
 end if

8:
 end for
comment: Step 2.3

9:
 for each isa-edge e¼N1-N2 in I do

10:
 create an is-a relationship between N1 and N2 in OT′

11:
 end for
comment: Step 2.4

12:
 candidates’fX : XAV4X has at least one outgoing s-edge but

no incoming s-edges}

13:
 for each X in candidates do

14:
 spaths’ set of s-paths with start node X

15:
 for each s-path P in spaths do

16:
 for each edge e¼ C1-C2 in P do

17:
 if C1 has no outgoing t-edges or isa-edges then

18:
 mark e as relevant

19:
 else

20:
 break

21:
 end if

22:
 end for

23:
 end for

24:
 end for

25:
 for each relevant edge e¼N1-N2 do

26:
 create an is-a relationship between N1 and N2 in OT′

27:
 end for
comment: Step 2.5

28:
 for each inv-isa-edge e¼N1-N2 in I do

29:
 if exists a relevant s-edge or t-edge r¼N2-N1 then

30:
 create a new concept Nothers with

labelðNothersÞ’labelðN1Þþ“ðothersÞ” (if does not exist a
similar concept)
31:
 create a new is-a relationship between Nothers and N1
32:
 else

33:
 if N1 has not yet been renamed then

34:
 labelðN1Þ’labelðN1Þþ“ðothersÞ”

35:
 end if

36:
 labelðN2Þ’labelðN2ÞþsubsetðN1Þ

37:
 end if

38:
 end for
comment: Step 2.6

39:
 A’ set of all relevant source TLC in I with no outgoing is-a

edges

40:
 B’ set of all target top level concepts in I

41:
 TLCs’A [ B

42:
 if sizeðTLCsÞ ¼ 1 then

43:
 rootðTÞ’TLCs½0�

44:
 else

45:
 rootðTÞ’ create a new node R

46:
 for each top level concept tlc in TLCs do

47:
 nest tlc in root(T)

48:
 end for

49:
 end if

50:
 return OT′
Algorithm 3. MappingGenðI; TÞ.

Input: an Integrated Concept Graph I and a merged taxonomy OT′
Output: two equivalence mappings MS and MT
1:
 Ms’ empty

2:
 Mt’ empty

3:
 E0’ all merged nodes in I

4:
 E1’ relevant nodes in I with no outgoing inv-isa-edges

5:
 E2’ nodes in I with at least one outgoing inv-isa-edge

6:
 for each node CI in E0 [ E1 do

7:
 sc’ set of source concepts for CI

8:
 tc’ set of target concepts for CI

9:
 for each concept C in tc do

10:
 create a correspondence C�CI in MT
11:
 end for

12:
 for each concept C in sc do
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13:
 create a correspondence C�CI in MS
14:
 end for

15:
 end for

16:
 for each node CI in E2 do

17:
 fcs’ empty

18:
 c_edges’ set of all inv-isa-edges outgoing from CI

19:
 for each edge e¼ C1-C2 in cedges do

20:
 create a corr. C2�CI in Ms with a filter cond. fce

21:
 add fce to fcs

22:
 end for

23:
 create a corr. C1�C1ðothersÞ in MS with a filter cond. “not fcs”

24:
 end for

25:
 return MS, MT
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