
SCHEMA - An Algorithm for Automated
Product Taxonomy Mapping in E-commerce

Steven S. Aanen, Lennart J. Nederstigt, Damir Vandić, and Flavius Frăsincar

Erasmus Universiteit Rotterdam
PO Box 1738, NL-3000 DR

Rotterdam, The Netherlands
{steve, lennart}@student.eur.nl, {vandic, frasincar}@ese.eur.nl

Abstract. This paper proposes SCHEMA, an algorithm for automated
mapping between heterogeneous product taxonomies in the e-commerce
domain. SCHEMA utilises word sense disambiguation techniques, based
on the ideas from the algorithm proposed by Lesk, in combination with
the semantic lexicon WordNet. For finding candidate map categories and
determining the path-similarity we propose a node matching function
that is based on the Levenshtein distance. The final mapping quality
score is calculated using the Damerau-Levenshtein distance and a node-
dissimilarity penalty. The performance of SCHEMA was tested on three
real-life datasets and compared with PROMPT and the algorithm pro-
posed by Park & Kim. It is shown that SCHEMA improves considerably
on both recall and F1-score, while maintaining similar precision.

Keywords: schema mapping, e-commerce, lexical matching, word sense
disambiguation

1 Introduction

In recent years the Web has increased dramatically in both size and range,
playing an increasingly important role in our society and world economy. For
instance, the estimated revenue for e-commerce in the USA grew from $7.4
billion in 2000 to $34.7 billion in 2007 [10]. Furthermore, a study by Zhang et
al. [25] indicates that the amount of information on the Web currently doubles
in size roughly every five years. This exponential growth also means that it is
becoming increasingly difficult for a user to find the desired information.

To address this problem, the Semantic Web was conceived to make the Web
more useful and understandable for both humans and computers, in conjunction
with usage of ontologies, such as the GoodRelations [9] ontology for products.
Unfortunately, as it stands today, the vast majority of the data on the Web has
not been semantically annotated, resulting in search failures, as search engines
do not understand the information contained in Web pages. Traditional keyword-
based search cannot properly filter out irrelevant Web content, leaving it up to
the user to pick out relevant information from the search results.

Search failures manifest themselves in e-commerce as well [23]. In addition,
more than half of the surveyed users in the aforementioned study on online
shopping in the USA [10], have encountered various frustrations when shopping
online. Due to the absence of Web-wide faceted product search, it is difficult
to find the product which satisfies the user’s needs best. Users switch between
Web-wide keyword-based search results and price comparison tools to find the
‘best’ product. As this is a time-consuming process, prices are often the de-
termining factor for a purchase. This is an unwanted situation for both buyer
and seller: the buyer might like a more expensive product, because it suits his
needs better, whereas the seller would like to be able to differentiate his offering
on other characteristics than pricing alone. The solution would be to realise a
uniform presentation of Web product information, which requires the data to
be annotated and structured. A method for the aggregation of data from Web
stores is to use the existing hierarchical product category structure: the product
taxonomy. By matching the product taxonomies from different Web stores, it be-
comes easier to compare their products. This should contribute towards solving
the search problems encountered by users when shopping online.

In this paper we introduce the Semantic Category Hierarchy for E-commerce
Mapping Algorithm (SCHEMA), to be used for mapping between heterogeneous
product taxonomies from multiple sources. It employs word sense disambigua-
tion techniques, using WordNet [17], to find synonyms of the correct sense for
the category name. Furthermore, it uses lexical similarity measures, such as the
Levenshtein distance [14], together with structural information, to determine the
best candidate category to map to. In order to evaluate SCHEMA, its perfor-
mance is compared on recall and precision with PROMPT [19] and the algorithm
proposed by Park & Kim [20].

The structure of the paper is as follows. In Sect. 2 related work is reviewed.
Section 3 presents SCHEMA, our framework for taxonomy mapping. Section 4
discusses the evaluation results of SCHEMA, compared to existing approaches.
Last, in Sect. 5, we give our conclusions and suggest future work.

2 Related Work

The field of taxonomy or schema mapping has generated quite some interest
in recent years. It is closely related to the field of ontology mapping, with one
important difference: whereas for matching of taxonomies (hierarchical struc-
tures), and schemas (graph structures), techniques are used that try to guess
the meaning implicitly encoded in the data representation, ontology mapping
algorithms try to exploit knowledge that is explicitly encoded in the ontolo-
gies [22]. In other words, due to the explicit formal specification of concepts and
relations in an ontology, the computer does not need to guess the meaning. In
order to interpret the meaning of concepts in an ontology or schema, algorithms
often exploit the knowledge contained in generalised upper ontologies, such as
SUMO [18] or WordNet [17]. In this way the semantic interoperability between
different ontologies is enhanced, facilitating correct matching between them. The

semantic lexicon WordNet plays a specifically important role in many mapping
algorithms, helping to overcome the ambiguity occurring in natural language,
often in combination with word sense disambiguation approaches, such as the
approach of Lesk [2,13]. In addition to the usage of upper ontologies for produc-
ing the mappings between ontologies and schemas, lexical similarity measures are
also often used. Using lexical similarity measures helps algorithms to deal with
slight lexical variations in words. The Levenshtein distance [14] is known as the
edit distance, and has been augmented to allow for transposition of characters
in the Damerau-Levenshtein distance [4], both utilised in our algorithm.

In their algorithm for product taxonomy mapping, Park & Kim [20] propose
to use a disambiguation technique in combination with WordNet to obtain syn-
onyms for a category name, in order to find candidate paths for matching. The
candidate paths are assessed using co-occurrence and order consistency, which
evaluate the overlap and the order of the categories between the source and
candidate path, respectively. While specifically targeted at e-commerce, some
phenomenons that occur frequently in product taxonomies are neglected, such
as composite categories, in which multiple concepts are combined. Various other
(database) schema matching approaches exist. SimilarityFlooding [16] uses the
similarity between adjacent elements of schema entities to score possible map-
pings, but does not take the frequently occurring terminological variations, ap-
plicable to e-commerce, into account. COMA++ [1] provides a collection of
simple matching algorithms and combinations of these. Some approaches use
class attribute data for matching, such as S-Match [8] and CUPID [15]. A good
overview of existing approaches has been made in recent surveys for schema
matching [5,21,22].

PROMPT [19] is a general-purpose ontology mapping tool, which uses pre-
defined (automatic or manual) mappings, called anchors, as guidelines for the
mapping of similar nodes. However, due to its emphasis on mapping ontologies in
general, it fails in matching many categories when employed for product taxon-
omy mapping. H-Match [3] uses WordNet for determining the correct contextual
and linguistic interpretation of concepts, combined with semantic ontology data.
Yu et al. [24] propose to use an upper ontology, in order to create a semantic
bridge between various e-commerce standards. QOM [7] uses only simple sim-
ilarity measures, aiming to reduce time complexity, without significant loss of
accuracy. Ehrig & Sure [6] propose a rule-based approach, combined with neural
networks. Other approaches are discussed in recent surveys for ontology map-
ping [11].

3 SCHEMA

This section discusses the SCHEMA framework, together with all the assump-
tions for our product taxonomy matching algorithm. Figure 1 illustrates the
high-level overview of the framework. This sequence of steps is executed for ev-
ery category in the source taxonomy. First, the name of the source category is
disambiguated, to acquire a set of synonyms of the correct sense. This set is used

to find candidate categories from the target taxonomy, and is needed to account
for the varying denominations throughout taxonomies. After the Candidate Tar-
get Category Selection, every candidate category path is compared with the path
of the source category, by means of the Candidate Target Path Key Comparison.
The best-fitting candidate target category is selected as the winner. The objec-
tive of SCHEMA is to map source categories to a selected target category, if and
only if, all products in the source category fit in the selected target category.
This reflects our definition of a successful and meaningful category mapping.
First, the general assumptions — the basis for the development of SCHEMA
— are explained. Next, each step of the framework, as shown in Fig. 1, will be
discussed in more detail.

Candidate Target
Category Selection

Candidate Target
Category Set

Candidate Target Path
Key Comparison Mapping Complete

Source Category
Disambiguation

Extended Split
Term Set

Fig. 1. Framework overview for SCHEMA

3.1 General Assumptions

In product taxonomies, a frequently seen phenomenon is that of composite cate-
gories. These are nodes, that combine multiple — usually related — classes into
one, like category ‘Movies, Music & Games’ from Amazon. Each of the three
parts could have been a separate class as well, as different product concepts are
represented. An assumption in the development of SCHEMA was that composite
categories need to be treated adequately, as the target taxonomy might not use
the same conjunction of classes. To handle the phenomenon, SCHEMA splits
categories on ampersands, commas, and the string ‘and’. The resulting set of
classes, making up the composite category, is called the Split Term Set.

Product taxonomies are tree-structured data schemes, and thus have a root
node. However, in product taxonomies, root categories (e.g. ‘Products’ or ‘Shop-
ping’) are meaningless, as they do not provide information about the prod-
ucts falling under. The assumption used for SCHEMA is that, as root nodes
are meaningless, they should get automatically mapped in taxonomy matching.
Furthermore, roots should be disregarded in all computations, such as in path
comparisons. Fig. 2 shows that the root categories in dark blue (the left-hand
side categories in black & white printing) are matched by SCHEMA, despite
being lexically dissimilar.

Between different product taxonomies, it is apparent that varying degrees of
specialisation exist with respect to the product classification. This could mean

Books & Media Humor BooksBooks

BooksProducts

Online Shopping

Fig. 2. Mapping example for Overstock (top) to Amazon (bottom) categories. Normal
lines indicate a parent-child relationship; dashed lines indicate SCHEMA’s mapping

that there possibly is no direct match for a very specific source category in the
target taxonomy. In such a case, it makes sense to match the source category
to a more general target category, as from a hierarchical definition, products
from a specific category should also fit into a more general class. Figure 2 shows
that category ‘Books’ (Overstock) is mapped to ‘Books’ (Amazon), as one would
expect. Unfortunately, there is no direct match for ‘Humor Books’ (Overstock)
in Amazon. However, humor books are also a kind of books, so SCHEMA will
map this category to the more general ‘Books’ category from Amazon. The more
general category is found by following the defined mapping for the parent of the
current source category. Note that root mappings are precluded.

SCHEMA’s last assumption is, that as usage of capitals in category names
does not affect the meaning, all lexical matching is performed case-insensitive.

3.2 Source Category Disambiguation

The first step in creating a mapping for a category from the source taxonomy,
is to disambiguate the meaning of its name. As different taxonomies use vary-
ing denominations to identify the same classes, it is required that synonyms of
the source category label are taken into account for finding candidate target
categories. However, using all synonyms could result in inclusion of synonyms
of a faulty sense, which could for example cause a ‘laptop’ to be matched with
a book to write notes (i.e., a notebook). To account for this threat, SCHEMA
uses a disambiguation procedure in combination with WordNet [17], to find only
synonyms of the correct sense for the current source category. This procedure is
based on context information in the taxonomy, of which can be expected that
it gives some insight into the meaning of the source category name. Concerning
the general assumption on composite categories in Sect. 3.1, SCHEMA disam-
biguates every part of the source category (Split Term Set) separately. The result
after disambiguation is called the Extended Split Term Set. Note that the target
taxonomy does not play a role in the source category disambiguation.

Algorithm 1 explains the procedure that is used to create the Extended
Split Term Set for the current source category. First, Algorithm 1 splits the
(composited) source category into separate classes: the Split Term Set. The same
split is performed for all children, and for the parent of the source category, which
will act as ‘context’ for the disambiguation process. Next, the disambiguation
procedure itself, which will be discussed shortly, is called for every split part

of the source category. The result, the Extended Split Term Set, contains a set
of synonyms of the correct sense for each individual split term. The Extended
Split Term Set is used in SCHEMA to find candidate target categories, and to
evaluate co-occurrence of nodes for path-comparison.

Algorithm 1 Finding Source Category’s Extended Split Term Set

Require: source category to disambiguate: wcategory

Require: source category’s parent: wparent, and set of its children: Wchildren

Require: function splitComposite(w), which splits composite category name w into a
set of individual classes: a split term set W

Require: function disambiguate(wtarget,Wcontext), disambiguates a word using a set
of context words, resulting in a set of correct synonyms (described by Algorithm 2)

1: {First, all used categories get split on composite classes}
2: Wcategory ← splitComposite(wcategory)
3: Wparent ← splitComposite(wparent)
4: Wchild ← ∅
5: for all wcurrentChild ∈Wchildren do
6: Wchild ←Wchild ∪ splitComposite(wcurrentChild)
7: end for
8: Wcontext ←Wchild ∪Wparent

9: extendedSplitTermSet← ∅
10: {For every split part of the source category, find the extended term set}
11: for all wsrcSplit ∈Wcategory do
12: extendedTermSet← disambiguate(wsrcSplit,Wcontext)

{Always include original split term, also when WSD is unsuccesful}
13: extendedTermSet← extendedTermSet ∪ {wsrcSplit}
14: extendedSplitTermSet← extendedSplitTermSet ∪ {extendedTermSet}
15: end for
16: return extendedSplitTermSet

As explained before, disambiguation of the source category name is based
on a set of words from its context. The idea to use this context is based on a
well-known algorithm for word sense disambiguation from Lesk [13]. However,
traditional dictionary glosses, used by Lesk, may not provide sufficient vocabu-
lary for successful matching. Therefore Banerjee & Pedersen [2] propose to use
the rich semantic relations of WordNet, considering also related glosses of both
target and context words to reduce this effect. Unfortunately, this introduces
another problem: the computation time increases exponentially with the num-
ber of context words. To prevent computation time from exploding, Kilgarriff &
Rosenzweig [12] propose to use Lesk’s traditional algorithm with heuristics to
simplify the search. Instead of using a dictionary gloss for every context word,
they propose to use only the context words. This method reduces time complex-
ity, but has similar vocabulary-related restrictions as the original Lesk algorithm.
SCHEMA uses the best of these procedures, utilising the rich semantic relations
of WordNet for the target word, while comparing only to the plain terms from

the context, as described in Algorithm 2. For every possible sense of the tar-
get word, the overlap between its related glosses and the plain context words
is assessed. The length of the longest common substring is used as similarity
measure, and the sense with the highest accumulated score is picked as winner.

Algorithm 2 Context-Based Target Word Disambiguation

Require: word to disambiguate: wtarget, and set of context words: Wcontext

Require: function getSynsets(w), gives all synonym sets (representing one sense in
WordNet), of which word w is a member

Require: function getRelated(S), gives synonym sets directly related to synset S in
WordNet, based on hypernymy, hyponymy, meronymy and holonymy. Result in-
cludes synset S as well.

Require: function longestCommonSubstring(wa, wb), which computes the length of
the longest common sequence of consecutive characters between two strings, cor-
rected for length of the longest string, resulting in an index in the range [0, 1]

Require: function getGloss(S), returns the gloss associated to a synset S in WordNet
1: Z ← getSynsets(wtarget) {Z holds all possible senses}
2: bestScore← 0
3: bestSynset← ∅
{Evaluate every possible sense (synset) S ∈ Z of target word wtarget}

4: for all S ∈ Z do
5: senseScore← 0
6: R← getRelated(S)

{For every combination of context words & (related) glosses, check similarity}
7: for all (Srelated, wcontext) ∈ R×Wcontext do
8: gloss← getGloss(Srelated)
9: senseScore← senseScore + longestCommonSubstring(gloss, wcontext)

10: end for
11: if senseScore > bestScore then
12: bestScore← senseScore
13: bestSynset← S {Update best known synset so far}
14: end if
15: end for
16: return bestSynset

3.3 Candidate Target Category Selection

The result of the Source Category Disambiguation, the Extended Split Term Set,
is used to find matching categories in the target taxonomy. This set of candidate
categories is basically a pre-selection for the decision to which target category
the current category can be mapped to. The selection relies on SCHEMA’s def-
inition of a category node match, Semantic Match, described by Algorithm 3,
which is used consistently throughout SCHEMA. It is used to classify a source
category and a target category as equivalent or dissimilar, utilising the enriched
information provided by the Extended Split Term Set for the source category, in

combination with lexical matching to evaluate similarity between the category
names. For the composite categories, SCHEMA assumes that with respect to the
split terms, the source category is a subset of the target category. This ensures
that all products in a mapped source category fit in the target category.

For every split part of the source category, Semantic Match checks whether
there is a matching part in the target category. A match can mean either that
the source split part is contained as separate component in a target part, or that
they share a lexical similarity based on the normalised Levenshtein index [14],
exceeding a chosen threshold. When all split parts of the source category have
a match in the target category, the match is considered semantically correct.

Algorithm 3 Semantic Match

Require: extended split term set E, with sets of synonyms S of the correct sense for
every split term of the source category

Require: target taxonomy category name: wtarget

Require: Node Match Threshold tnode, defines the minimum degree of lexical simi-
larity in order to classify two class names as equal

Require: function splitComposite(w), splits composite category name w into a set of
individual classes: a split term set W

Require: function levenshtein(wa, wb), computes the edit distance between two strings
Require: function containsAsSeparateComponent(wa, wb), indicates whether string

wa contains string wb as separate part (middle of another word is not sufficient)
1: Wtarget ← splitComposite(wtarget)
2: subSetOf ← true {Starting assumption: source split term set is subset of target}
3: for all SsrcSplit ∈ E do
4: matchFound← false
5: for all (wsrcSplitSyn, wtargetSplit) ∈ SsrcSplit ×Wtarget do
6: edit dist← levenshtein(wsrcSplitSyn, wtargetSplit)

{Normalise distance based on length and convert to similarity measure}
7: similarity ← 1− edit dist/max(wsrcSplitSyn, wtargetSplit)
8: if containsAsSeparateComponent(wtargetSplit, wsrcSplitSyn) then
9: matchFound← true

10: else if similarity ≥ tnode then
11: matchFound← true
12: end if
13: end for
14: if matchFound = false then
15: subSetOf ← false
16: end if
17: end for
18: return subSetOf

Figure 3 shows some candidates that have been found for category ‘Tubs’
from Overstock. The Source Category Disambiguation procedure discussed in
Sect. 3.2 results in the following Extended Split Term Set: {{Tubs, bathtub,

bathing tub, bath, tub}}. Synonym ‘bath’ is sufficient for candidate category

‘Kitchen & Bath Fixtures’ (at the top of Fig. 3), to be selected. As ‘bath’ is
included in split target part ‘Bath Fixtures’ (as separate word), it matches,
according to Algorithm 3, making target category ‘Kitchen & Bath Fixtures’ a
superset of source category ‘Tubs’. Hence it is classified as a semantic match,
and thus selected as proper candidate target category.

Home & Garden TubsHome
Improvement

Source Path

Online Shopping

Home, Garden &
Tools

Kitchen & Bath
Fixtures

Tools & Home
ImprovementProducts

Home, Garden &
ToolsProducts

Toys, Kids &
Baby BathingProducts Baby

Home, Garden &
Tools HardwareProducts Tools & Home

Improvement

Kitchen & Bath
Fixtures

Bathing Tubs

Bath Hardware

Candidate Paths
A B C

A B C

A C

D E F C

A B D C

Fig. 3. Source category path for ‘Tubs’ in Overstock, with associated candidate target
categories from Amazon

3.4 Candidate Target Path Key Comparison

SCHEMA’s last step is to select the best alternative from the set of found can-
didate target categories, using a method that scores the similarity of the source
category path against a candidate target path. This Candidate Target Path Key
Comparison is used for every element from the set of candidate target paths.
The candidate with the highest score is selected as winner. The idea of the Can-
didate Path Key Comparison is simple in nature, though powerful in the sense
that it assesses similarity based on both structural and lexical relatedness.

For both source and candidate target path, a key is generated for every node
(category) in the path. This is done in such a way, that every unique node gets
a unique key. Similarly, when two nodes — independent from the path they
come from — are seen as identical, they are labelled with the same key. An
important question is: when are two nodes seen as identical? A straightforward
way would be to base this purely on lexical similarity of the category names.
However, SCHEMA uses a richer source of information for nodes from the source

path: the Extended Split Term Set. Two nodes from the source path are seen as
identical if and only if their Extended Split Term Sets are the same. A node from
the source path and a node from the candidate target path are seen as identical
when Algorithm 3, the Semantic Match procedure, decides so. The result is a
key list for both the source path and the current candidate target path.

Figure 3 shows the key list for the source and candidate targets paths for
category ‘Tubs’. The candidate path at the bottom, is a good example of how
Semantic Match classifies nodes as being similar. Candidate node ‘Tools & Home
Improvement’ is assigned the same key (‘B’) as source node ‘Home Improvement’,
as the first one is a superset of the last one, thus all products under the second
should fit into the first. Considering candidate ‘Bath Hardware’ itself, one of
the synonyms of source category ‘Tubs’ (‘bath’), is included in the name of the
candidate category. Hence, ‘Bath Hardware’ gets the same key (‘C’) as ‘Tubs’.

For the key lists found for source and candidate path, the similarity is as-
sessed using the Damerau-Levenshtein distance [4]. This measure captures the
(dis)similarity and transposition of the nodes, hence both the number of co-
occurring nodes and the consistency of the node order are taken into account.
As the Damerau-Levenshtein distance is used in normalised form, a dissimilar
node in a long candidate path is weighted as less bad than the same dissimilar
node in a shorter path, which can unfortunately lead to biased results. There-
fore, a penalty is added for every unique key assigned solely to the candidate
path, or more precise: for every node for which no match exists in the source
path. The formula used as similarity measure for the key lists is as follows:

candidateScore = 1− damLev(Ksrc,Kcandidate) + p

max(Ksrc,Kcandidate) + p
(1)

where K is a key list, p the penalty (# dissimilar nodes in candidate path),
damLev() computes the Damerau-Levenshtein distance between two key lists,
and max() computes the maximum length of two key lists.

In Fig. 3, the uppermost and lowermost candidate paths give an example
of the penalty’s usefulness. One is too short, the other too long. The shortest
(‘Kitchen & Bath Fixtures’) does not contain new nodes in comparison to the
source path. With just one edit operation (insertion of key ‘B’), it gets a candi-
date score of 1 − 1+0

3+0 = 2
3 . The longest contains a new node: ‘Hardware’. This

gives the long path a penalty of 1, while the edit distance is also 1 (deletion of
key ‘D’), resulting in a score of 1− 1+1

4+1 = 3
5 . Without penalty it would score 3

4 ,
causing it to win from the short path, which does not contain unrelated nodes.
Clearly, we prefer the first candidate path, because the second candidate path
possibly changes the meaning of node ‘C’ as it has as parent a new node ‘D’.

Once the candidate target category with the highest score has been found,
it is mapped if the score exceeds the Final Similarity Threshold (tfinal). This
threshold prevents the algorithm of performing incorrect mappings, and should
not be confused with the Node Match Threshold used in Algorithm 3. When a
path does not pass the Final Similarity Threshold, or when no candidate paths
have been found, the source category is mapped to the mapping of its parent

(but excluding the root), according to the assumption in Sect. 3.1. The complete
framework procedure then repeats for the next source taxonomy category.

4 Evaluation

In order to assess SCHEMA’s performance, it is compared to similar algorithms.
We have chosen to compare it with PROMPT [19], being a general-purpose
algorithm that is well-known in the field of ontology mapping. Additionally, the
algorithm of Park & Kim [20] is included in the comparison, due to their focus
on product taxonomy mapping in particular. First, we briefly discuss how the
evaluation has been set up. Then, we present the results for each algorithm and
discuss their relative performance.

4.1 Evaluation Design

Three product taxonomies from real-life datasets were used for the evaluation.
The first dataset contains more than 2,500 categories and is from Amazon
(www.amazon.com). The second dataset contains more than 1,000 categories and
is from Overstock (www.o.co). Overstock is an online retailer with RDFa-tagged
product pages for the GoodRelations [9] ontology. The last dataset contains over
44,000 categories and is from the shopping division in the Open Directory Project
(ODP, www.dmoz.org). Using these three datasets, six different combinations of
source and target taxonomies can be made. In order to evaluate the algorithms’
performance on the mappings, it is required that each of the mappings is done
manually as well. However, as the datasets are too large to manually map every
category, we have taken a random sample of five hundred category nodes from
each dataset. For every node it is assured that its ancestors are included in the
sample as well. The mappings are made from a sampled source taxonomy to
a full target taxonomy. Occasionally there are multiple nodes in the reference
taxonomy to which a source category node could be correctly mapped. To ac-
count for this fact, the manual mapping may define multiple correct mappings
for each source category node. The manual mappings were collectively made by
three independent individuals, in order to prevent bias.

Each algorithm performed a mapping for every combination of datasets.
SCHEMA and the algorithm of Park & Kim carried out multiple mappings,
with different parameter values for each combination. Both algorithms use a fi-
nal score threshold, referred to as tfinal, ranging from 0 to 1, with increments of
0.05. Furthermore, SCHEMA uses a threshold for node matching, denoted by
tnode, with range 0.50 to 1 and increments of 0.025. The completed mappings,
generated by the algorithms, are compared with the manual mappings, in order
to obtain their performance measures. Though ordinary classification and con-
fusion matrix measures apply, the situation is slightly different as there are n
‘positive’ classes (all target categories), and only one negative (null mapping).
We therefore define the ‘false positives’ as number of mappings to an incorrect
path (either wrong or null), and the ‘false negative’ as incorrect mappings to
null. The ‘true’ classes are similar to those in binary classification.

www.amazon.com
www.o.co
www.dmoz.org

4.2 Results

Table 1 presents a comparison of average precision, recall and F1-score for every
algorithm. Tables 2, 3, and 4 give a more detailed overview of the results achieved
by SCHEMA, the algorithm of Park & Kim, and PROMPT, respectively.

Table 1. Comparison of the best average results for each algorithm

Algorithm Precision Recall F1-score Senses found WSD accuracy

PROMPT 28.93% 16.69% 20.75% n/a n/a
Park & Kim 47.77% 25.19% 32.52% 5.70% 83.72%
SCHEMA 42.21% 80.73% 55.10% 82.03% 84.01%

Table 2. Best results for SCHEMA

Mapping Precision Accuracy Specificity Recall F1-score tnode tfinal

A → ODP 27.27% 40.00% 34.12% 52.50% 35.90% 0.800 0.25
A → O.co 36.34% 49.40% 34.30% 82.69% 50.49% 0.850 0.15
ODP → A 57.49% 68.94% 51.70% 93.66% 71.24% 0.875 0.30
ODP → O.co 39.13% 50.70% 29.59% 95.03% 55.43% 0.850 0.25
O.co → A 53.72% 56.60% 29.13% 84.96% 65.83% 0.850 0.15
O.co → ODP 39.30% 45.80% 27.27% 75.52% 51.69% 0.925 0.30

Average 42.21% 51.91% 38.26% 80.73% 55.10%

As shown in Table 1, SCHEMA performs better than PROMPT and the al-
gorithm of Park & Kim, on both average recall and F1-score. The recall has im-
proved considerably with 221% in comparison to the algorithm from Park & Kim,
and 384% against PROMPT. This can be partly attributed to the ability of
SCHEMA to cope with lexical variations in category names, using the Leven-
shtein distance metric, as well as the ability to properly deal with composite
categories. Furthermore, SCHEMA maps a category node to its parent’s map-
ping when no suitable candidate path was found, improving the recall when the
reference taxonomy only includes a more general product concept. Achieving a
high recall is important in e-commerce applications, as the main objective is
to automatically combine the products of heterogeneous product taxonomies in
one overview, in order to reduce search failures. A low recall means that many
categories would not be aligned, which would mean that many products will be
missing from search results. For this reason, it is generally better to map to a
more general category rather than not mapping at all. Worthy to mention is the
slight decrease in average precision for SCHEMA compared with the algorithm
of Park & Kim: 42.21% against 47.77%. This is due to the fact that there is a

Table 3. Best results for Park & Kim algorithm

Mapping Precision Accuracy Specificity Recall F1-score tfinal

A → ODP 35.77% 34.00% 57.89% 16.84% 22.90% 0.05
A → O.co 60.16% 47.20% 76.78% 25.61% 35.92% 0.00
ODP → A 37.06% 41.48% 51.94% 30.29% 33.33% 0.00
ODP → O.co 36.76% 35.87% 48.68% 25.09% 29.82% 0.10
O.co → A 61.14% 36.20% 52.11% 29.89% 40.15% 0.00
O.co → ODP 55.71% 36.60% 62.87% 23.42% 32.98% 0.50

Average 47.77% 38.56% 58.38% 25.19% 32.52%

Table 4. Best results for PROMPT

Mapping Precision Accuracy Specificity Recall F1-score

A → ODP 13.55% 25.40% 44.17% 8.08% 10.12%
A → O.co 51.69% 45.40% 74.44% 22.02% 30.89%
ODP → A 20.20% 35.47% 46.44% 19.61% 19.90%
ODP → O.co 20.86% 29.86% 42.64% 16.18% 18.22%
O.co → A 50.00% 32.20% 45.96% 25.66% 33.92%
O.co → ODP 17.27% 25.80% 47.73% 8.57% 11.46%

Average 28.93% 32.36% 50.23% 16.69% 20.75%

trade-off between precision and recall: achieving a higher recall means that an
algorithm has to map more categories, resulting in possible imprecision when
the similarity between categories is low. Both SCHEMA and the algorithm of
Park & Kim use configurable final thresholds to filter out weaker matches, but it
cannot fully prevent mistakes from occurring. Despite the slightly worse perfor-
mance on precision, SCHEMA manages to find a more suitable trade-off between
precision and recall for product taxonomy mapping than PROMPT and the al-
gorithm of Park & Kim. This is illustrated by the good performance on recall and
the higher F1-score of 55.10%. PROMPT uses a conservative mapping approach,
well-suited for general ontology mapping, but unsuitable for e-commerce due to
the small portion of mappings. The algorithm of Park & Kim performs better in
this regard, especially on precision, but the recall is hampered by the fact that
it neglects the existence of composite categories. Furthermore, it uses a rather
strict lexical matching procedure between category names, in which a category
name has to be a full substring of the other, creating issues when slight lexical
variations occur. In addition, the disambiguation procedure from Park & Kim
only manages to find a sense in WordNet in 5.70% of the total categories on
average. Unfortunately, the rather good accuracy of disambiguation (83.72%) is
therefore based on a very small amount of cases, making the number rather un-
trustworthy. The Lesk-based disambiguation algorithm employed by SCHEMA
performs well on both the percentage of senses found and the accuracy, scoring
82.03% and 84.01%, respectively.

5 Conclusions & Future Work

This paper proposes SCHEMA, an algorithm capable of performing automated
mapping between heterogeneous product taxonomies in e-commerce. The main
objective for developing SCHEMA is facilitating the aggregation of product in-
formation from different sources, thus reducing search failures when shopping
online. To achieve this objective, SCHEMA utilises word sense disambiguation
techniques on category labels, based on the ideas from the algorithm proposed
by Lesk [13], in combination with the WordNet semantic lexicon. Furthermore,
it deals with domain-specific characteristics, such as composite categories, and
lexical variations in category labels. It employs a node matching function, based
on inclusiveness of the categories in conjunction with the Levenshtein distance
for the class labels, for finding candidate map categories and for assessing the
path-similarity. The final mapping quality score is calculated using the Damerau-
Levenshtein distance, with an added penalty for dissimilar nodes in the target
category’s path.

The performance of our algorithm was tested on three real-life datasets and
compared with the performance of PROMPT and the algorithm of Park & Kim.
This evaluation demonstrates that SCHEMA achieves a considerably higher av-
erage recall than the other algorithms, with a relatively small loss of preci-
sion. The average F1-score resulted in 55.10% for SCHEMA, against 20.75% for
PROMPT, and 32.52% for the algorithm of Park & Kim.

As future work, we would like to improve SCHEMA by making use of part-
of-speech tagging. As a noun is often more important for concept similarity than
an adjective, it makes sense to distinguish between them and treat them accord-
ingly. Another possibility is to combine the hierarchical category structure with
product information, as the data fields in product instances could yield extra in-
formation for the taxonomy mapping. Additionally, this work could support the
creation of an automatic product comparison Web site, capable of autonomously
matching products and product taxonomies from different sources.

References

1. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and Ontology Matching
with COMA++. In: ACM SIGMOD International Conference on Management of
Data 2005 (SIGMOD 2005). pp. 906–908. ACM (2005)

2. Banerjee, S., Pedersen, T.: An Adapted Lesk Algorithm for Word Sense Disam-
biguation using WordNet. In: 3rd International Conference on Computational Lin-
guistics and Intelligent Text Processing (CICLing 2002). pp. 136–145 (2002)

3. Castano, S., Ferrara, A., Montanelli, S.: H-MATCH: An Algorithm for Dynami-
cally Matching Ontologies in Peer-Based Systems. In: 1st VLDB Int. Workshop on
Semantic Web and Databases (SWDB 2003). pp. 231–250 (2003)

4. Damerau, F.J.: A Technique for Computer Detection and Correction of Spelling
Errors. Communications of the ACM 7(3), 171–176 (1964)

5. Do, H.H., Melnik, S., Rahm, E.: Comparison of Schema Matching Evaluations. In:
Web, Web-Services, and Database Systems (NODe 2002). LNCS, vol. 2593, pp.
221–237. Springer (2002)

6. Ehrig, M., Sure, Y.: Ontology Mapping — An Integrated Approach. In: 1st Euro-
pean Semantic Web Symposium. The Semantic Web: Research and Applications
(ESWS 2004). LNCS, vol. 3053, pp. 76–91. Springer (2004)

7. Ehrig, M., Staab, S.: QOM - Quick Ontology Mapping. In: International Semantic
Web Conference 2004 (ISWC 2004). pp. 683–697 (2004)

8. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: An Algorithm And An Im-
plementation of Semantic Matching. In: Dagstuhl Seminar Proceedings of Semantic
Interoperability and Integration 2005 (2005)

9. Hepp, M.: GoodRelations: An Ontology for Describing Products and Services Of-
fers on the Web. In: 16th International Conference on Knowledge Engineering
(EKAW 2008). LNCS, vol. 5268, pp. 329–346. Springer (2008)

10. Horrigan, J.B.: Online Shopping. Pew Internet & American Life Project Report
36 (2008)

11. Kalfoglou, Y., Schorlemmer, M.: Ontology Mapping: The State of the Art. The
Knowledge Engineering Review 18(1), 1–31 (2003)

12. Kilgarriff, A., Rosenzweig, J.: Framework and Results for English SENSEVAL.
Computers and the Humanities 34(1–2), 15–48 (2000)

13. Lesk, M.: Automatic Sense Disambiguation using Machine Readable Dictionaries:
How to Tell a Pine Cone from an Ice Cream Cone. In: 5th Annual International
Conference on Systems Documentation (SIGDOC 1986). pp. 24–26. ACM (1986)

14. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals 10(8), 707–710 (1966)

15. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid.
In: 27th International Conference on Very Large Data Bases (VLDB 2001). pp.
49–58. Morgan Kaufmann Publishers Inc. (2001)

16. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph
Matching Algorithm and its Application to Schema Matching. In: 18th Interna-
tional Conference on Data Engineering (ICDE 2002). pp. 117–128. IEEE (2002)

17. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM 38(11), 39–41 (1995)

18. Niles, I., Pease, A.: Towards a Standard Upper Ontology. In: International Confer-
ence on Formal Ontology in Information Systems 2001 (FOIS 2001). ACM (2001)

19. Noy, N.F., Musen, M.A.: The PROMPT Suite: Interactive Tools for Ontology
Merging and Mapping. International Journal of Human-Computer Studies 59(6),
983–1024 (2003)

20. Park, S., Kim, W.: Ontology Mapping between Heterogeneous Product Taxonomies
in an Electronic Commerce Environment. International Journal of Electronic Com-
merce 12(2), 69–87 (2007)

21. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Match-
ing. The VLDB Journal 10(4), 334–350 (2001)

22. Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. Journal
on Data Semantics IV (3730), 146–171 (2005)

23. VijayaLakshmi, B., GauthamiLatha, A., Srinivas, D.Y., Rajesh, K.: Perspectives
of Semantic Web in E- Commerce. International Journal of Computer Applications
25(10), 52–56 (2011)

24. Yu, Y., Hillman, D., Setio, B., Heflin, J.: A Case Study in Integrating Multiple
E-commerce Standards via Semantic Web Technology. In: International Semantic
Web Conference 2009 (ISWC 2009). pp. 909–924 (2009)

25. Zhang, G.Q., Zhang, G.Q., Yang, Q.F., Cheng, S.Q., Zhou, T.: Evolution of the
Internet and its Cores. New Journal of Physics 10(12), 123027 (2008)

	SCHEMA - An Algorithm for Automated Product Taxonomy Mapping in E-commerce

