
A Clustering-based Approach For Large-scale

Ontology Matching

Alsayed Algergawy, Sabine Massmann and Erhard Rahm

Department of Computer Science, University of Leipzig
{algergawy,massmann,rahm@informatik.uni-leipzig.de}

Abstract. Schema and ontology matching have attracted a great deal
of interest among researchers. Despite the advances achieved, the large
matching problem still presents a real challenge, such as it is a time-
consuming and memory-intensive process. We therefore propose a scal-
able, clustering-based matching approach that breaks up the large match-
ing problem into smaller matching problems. In particular, we first in-
troduce a structure-based clustering approach to partition each schema
graph into a set of disjoint subgraphs (clusters). Then, we propose a new
measure that efficiently determines similar clusters between every two
sets of clusters to obtain a set of small matching tasks. Finally, we adopt
the matching prototype COMA++ to solve individual matching tasks
and combine their results. The experimental analysis reveals that the
proposed method permits encouraging and significant improvements.

1 Introduction

There is a proliferation of schema- and ontology-based web data sources using
models and languages, such as XML, RDF, and OWL [1]. Identifying semantic
correspondences among such heterogeneous data sources and their metadata
models (schemas and ontologies) is the biggest obstacle for making these data
sources interoperable. The process of identifying these correspondences across
different metadata models is called schema matching or ontology matching.

For its importance, a myriad of matching algorithms has been proposed and
a large number of matching systems have been developed (see e.g., [17, 4, 2]
for surveys). Unfortunately, most of these systems severely lack performance
when dealing with large matching problems. The results of previous OAEI con-
tests 1 show that more than half of the matching systems couldn’t match large
ontologies in less than one hour [12]. Consequently, several approaches have
been proposed to address the problem of matching two large schemas, such as
MOM [20], COMA++ [6] and Falcon [11]. As we will further discuss in Section
2, the current approaches to partition-based matching have several limitations
and the design space for such solutions has not yet sufficiently been explored.

In this paper we address two of these limitations. The first issue is partition
identification. Some solutions, such as Falcon, are specific to certain ontology

1 http://www.ontologymatching.org

2 Alsayed Algergawy, Sabine Massmann and Erhard Rahm

languages and cannot be applied to other data models. Other solutions, such as
COMA++, use relatively simple heuristic rules to partition the input schemas
resulting often in too few or too many partitions. The second issue is determina-
tion of similar partitions. Some solutions, such as COMA++, only use limited
information about the partition (only the root node of the partition) to deter-
mine the similarity between partitions of the input schemas, which results in
less matching quality. Other solutions such as Falcon, fully evaluate the input
ontologies to assess the partition similarity that leads to higher response time.

To cope with these challenges and limitations, we therefore propose and eval-
uate a new, more efficient, partition-based matching strategy. The proposed
approach shares the general procedure to match large ontologies with exist-
ing matching systems. However, the approach introduces new methodologies to
overcome the observed limitations. In particular, we make the following contri-
butions:

– We propose a new clustering-based approach to cope with the large matching
problem. The approach is generic. Similar to the current implementation of
COMA++ [6], we first represent input schemas and ontologies as directed
acyclic graphs, called schema graphs. We further apply a structure-based
clustering algorithm to partition each input ontology into a set of disjoint
sub-graphs. We thus achieve that elements that are structurally similar are
in the same cluster, while elements in different clusters are dissimilar.

– Given the two cluster sets of the input ontologies, we apply a light-weight
similarity measure to efficiently assess the similarity between cluster pairs.
To this end, we represent each cluster as a cluster document and use of both
the Vector Space Model and TF-IDF to determine the similarity between
cluster documents. Having similar clusters, we adopt a standard match tool
such as COMA++ to fully match elements inside similar clusters.

– We experimentally evaluate the efficiency and match quality of the proposed
approach for different real-world schemas and ontologies. The resulting in-
sights should be helpful for the development and evaluation of future match
systems.

Section 2 discusses related work. We then introduce the basic definitions in Sec-
tion 3. Sections 4 and 5 present the new approaches for structure-based clustering
and identifying similar pairs of clusters. Section 6 presents experimental results.
We conclude in Section 7.

2 Related work

To cope with matching two large ontologies, several techniques can be used, such
as reduction of search space, parallel matching, and self-tuning [16]. Reducing
the match search space aims to limit the number of element comparisons ei-
ther by early pruning dissimilar element pairs [7, 14] or by partitioning the two
ontologies [18, 6, 11, 19, 10]. Quick ontology mapping [7] was one of the first ap-
proaches that considers both matching quality and run-time complexity. It first
determines match candidates based on element labels and evaluates structure

A Clustering-based Approach For Large-scale Ontology Matching 3

Fig. 1: Steps of matching two large ontologies.

properties only for the most similar pairs from the first step. The approach pro-
posed in [14] uses a set of filters within the matching process to prune dissimilar
element pairs from intermediate match results.

Similar to our approach, partition-based matching aims at partitioning input
ontologies/schemas in such a way that each partition of the first ontology has to
be matched only with a subset of the second ontology. As shown in Fig. 1, the
skeleton of partition-based matching involves four main steps. Step 1, partition
identification, partitions the input schemas into a set of disjoint clusters. The
second step, determination of similar partitions, is devoted to identifying similar
partitions. Once settling on similar partitions (called fragments in COMA++ [6]
or blocks in Falcon [11]), in Step 3, normal matching algorithms can be used to
determine local correspondences between similar partitions. Finally, from these
local correspondences, Step 4 is to construct the final match result. COMA++
implements one of the first approaches for partition-based matching. Its approach
called fragment matching [6] has the four general steps similar of Fig. 1. Fragment
matching first partitions two input schemas into two set of fragments, which
are then compared with each other to identify the most similar fragments in
the two sets worth to be fully matched later. Both Falcon [11] and Anchor-
Flood [19] focus on matching (OWL) ontologies but do not support matching of
XML schemas or relational schemas. The Falcon system uses a specific structure-
based clustering technique to partition entities of ontology into blocks. Matching
is then applied to the most similar blocks from the two ontologies. The Anchor-
Flood system follows a dynamic partitioning technique. It starts off with an
anchor, a pair of look-alike concepts from each ontology, gradually exploring
concepts by collecting neighboring concepts until no further matches are found
or all concepts are processed. The partitions are located around the anchors
and their size depends on the continued success of finding match partners of
the considered concepts. Further details about different techniques of large-scale
matching can be found in [16].

3 Preliminaries

We first present definitions and basic concepts used throughout the paper.

4 Alsayed Algergawy, Sabine Massmann and Erhard Rahm

Fig. 2: Schema graph representation.

Schema graph. In order to make the proposed approach generic, we represent
input schemas (e.g., XML schemas) and ontologies as labeled directed acyclic
graphs, called schema graphs (SG).

Definition 1. A schema graph is a rooted node-labeled directed acyclic graph.
It is represented as a 3-tuple (V,E, Labv), where: V = {r, v2, ..., vn} is a finite
set of nodes, each of them is uniquely identified by an object identifier (OID),
where r is the schema graph root node. E = {(vi, vj)|vi, vj ∈ V } is a finite set of
edges. Labv is a finite set of node labels. These labels are strings for describing
the properties of the element and attribute nodes, such as name and data type.

Fig. 2 represents the schema graph representation of an XML schema taken from
[3]. DeptDB represents information about departments with their employees and
grants, as well as the projects for which grants are awarded. The figure shows
that each node is associated with the node name and the node identifier. For
example, the node v1 has the name deptDB.

Node Context. The context of a node in a schema graph is represented by
its descendants, ancestors, and siblings. The descendants of the node include
both its immediate children and the leaves of the subgraphs rooted at the node.
The immediate children reflect its basic structure, while the leaves reflect the
node’s content. Without loss of generality, to construct the context of a node, we
consider descendants and ancestors of the node up to one level, i.e., the parents
and the children elements, as well as the node itself. Formally, we introduce the
definition of the node context (C) as follows:

Definition 2. Given a schema graph SG = (V,E, Labv), the context of a node
v ∈ V is given by C(v) = {vi|(v, vi) ∈ E ∪ (vi, v) ∈ E ∪ v}

For the schema graph in Fig. 2, C(v6) = {v1, v6, v7, v8, v9}. We claim that the
more contexts two nodes share, the higher their structural similarity is. We
therefore define and use the following context-based similarity measure.

A Clustering-based Approach For Large-scale Ontology Matching 5

Definition 3. Given two nodes vi and vj ∈ SG, the context similarity, σ, be-
tween them is computed using the node contexts as follows:

σ(vi, vj) =
|C(vi) ∩ C(vj)|
√

|C(vi)|.|C(vj)|
(1)

|C(vi) ∩ C(vj)| represents the number of common nodes between their contexts

and
√

|C(vi)|.|C(vj)| is the geometric mean of the two contexts’size used to nor-
malize the value of the structure similarity. In fact, Eq.1 guarantees that the
more common nodes the two nodes share, the higher context similarity they
have. Furthermore, the equation shows that context similarity has several prop-
erties. Among them are: it is normalized, 0 ≤ σ(vi, vj) ≤ 1, and symmetric,
σ(vi, vj) = σ(vj , vi).

Example 1. The node contexts of nodes v2 , v4 and v6 are as follows: C(v2) =
{v1, v2, v3, v4, v5}, C(v4) = {v2, v4} and C(v6) = {v1, v6, v7, v8, v9}, respectively.
The structure similarity between these nodes can be computed as follows: σ(v2, v4) =
0.63, σ(v2, v6) = 0.2, and σ(v4, v6) = 0.

4 Structure-based clustering

Our goal is to divide the schema graph into disjoint subgraphs in order to fa-
cilitate matching large ontologies represented as schema graphs. Clustering is
a useful technique for grouping nodes such that nodes within a single cluster
are structurally similar, while nodes in different groups are dissimilar. In the
following, we present a clustering algorithm based on the introduced context
similarity so that structurally similar nodes are placed in the same cluster while
the nodes of different clusters are structurally dissimilar. We first describe how
to use the computed structure similarity to construct so-called links. After this
we introduce the proposed clustering algorithm.

To avoid the repeated calculation of intra-ontology element similarities for
clustering, we predetermine and store the structural similarity between selected
node elements as so-called links. In particular, we are interested in the follow-
ing set of element pairs for which the context similarity exceeds a predefined
threshold, th:

links = {Li|Li = (vi, vj , σ(vi, vj)) s.t. σ(vi, vj) ≥ th , vi, vj ∈ SG} (2)

Using this set of items (links) we construct a links hash table. Given a schema
graph SG with n nodes, the worst case each node may be compared with n− 1
other nodes resulting in quadratic number of comparisons. However, as shown
in Example 1, σ(v4, v6) = 0 since the two nodes have no common nodes in their
contexts. Therefore, we limit the comparison of a node with the set of neighboring
nodes to achieve a linear number of comparisons. By using a threshold value
greater than 0 we can dramatically reduce the number of entries in the links
hash table. It should be noted that the similarity is assumed to be 0 if there is
no pre-computed link.

6 Alsayed Algergawy, Sabine Massmann and Erhard Rahm

The clustering algorithm presented in this paper is an agglomerative hier-
archical algorithm mainly extended from the SCAN approach [21], which is a
very scalable algorithm in the area of network clustering. The algorithm pro-
duces a tree representing the hierarchy of clusters in a bottom-up fashion, called
dendrogram. Initially, each node represents its own single-member cluster. The
algorithm iteratively merges nodes of a schema graph in descending order of
structure similarity to build the hierarchy. As shown in Algorithm 1, the pro-
posed clustering algorithm proceeds in four stages as follows.

– Preparation. The algorithm accepts the schema graph, SG, to be clustered
and prepares it for the next stages. The stage starts by initializing the out-
put set of clusters (ClusterSet) and the cluster hierarchy (Dendro), line 1.
Then, the algorithm proceeds to extract schema graph nodes, elements to
be clustered, line 2, and constructs the links hash table.

– Cluster initialization. The initialization stage constructs the bottom level of
the cluster hierarchy. Each node represents its own cluster resulting into n
clusters in the cluster set (ClusterSet), lines 4 to 7. Once getting the initial
cluster set, the bottom level of the hierarchy is added to the dendrogram,
line 8.

– Cluster hierarchy construction. This is the main stage of the clustering algo-
rithm and is dedicated to construct the cluster hierarchy. It first initializes

A Clustering-based Approach For Large-scale Ontology Matching 7

the distance between levels of hierarchy with 1, line 9. The algorithm iter-
atively merges clusters at a certain level until either the number of clusters
reaches 1 or there is no possibility to merge more clusters. We keep the
current size of the cluster set in variable k, lines 11& 16. If the number of
clusters after merging is changed, line 13, the new cluster set is added to the
cluster hierarchy at the specified level. Furthermore, as we will explain later,
the intra-cluster similarity is computed and the k value is updated. After
that the algorithm checks if there is a possibility to further merge clusters
and finally updates the distance for the current hierarchy level.

– Best cluster set selection. The task of the final stage is to select the best
cluster set. Each level in the dendrogram is associated with a value that
represents the average value of intra-cluster similarities of clusters at that
level. Therefore, the algorithm returns the cluster set at the level with the
best value, line 23.

In the following we give more details considering the two main operations in
the clustering algorithm: cluster merging and intra-cluster similarity computa-
tion.

Cluster merging. Once obtaining the first (bottom) level of the cluster hier-
archy (line 8, Algorithm 1), we need to merge nodes into groups such that nodes
in the same group are structurally similar while nodes in different groups are
dissimilar. To this end, we call for a measure that quantifies relationship between
individual clusters as well as a condition that should be satisfied to decide that
nodes in two clusters have to be merged into one. To quantify the relationship
between clusters, we rely on the pre-computed links. Having two clusters C1 and
C2 containing k1 and k2 nodes (elements) respectively, the similarity between
them can be expressed as the average context similarity of their elements. It can
be represented as follows [9]:

Sim(C1, C2) =

∑k1

i=1

∑k2

j=1
σ(v1i, v2j)

k1 + k2
. (3)

where σ(v1i, v2j) is the context similarity between nodes v1i ∈ C1 and v2j ∈ C2

computed by Eq.1. Having this similarity between every cluster pair, a condi-
tion is required to decide if elements in the cluster pair should be merged. This
condition has to reflect the level of the cluster hierarchy at which elements come
together. Therefore, the introduced distance variable is used (dist, line 9). Ele-
ments of every cluster pair are combined when the similarity between the two
clusters exceeds the predefined level similarity threshold (1/dist). The value of
the level distance is then updated to reflect the nature of the next level (line 21,
Algorithm 1).

It is worth noting that we add another condition in order to limit the merging
process. Once two nodes in two different clusters have been merged into a new
cluster, their links in the links hash table have been removed. The merging
process stops when no more links are in the table, (lines 18& 19).

8 Alsayed Algergawy, Sabine Massmann and Erhard Rahm

Intra-clustering similarity. The proposed clustering algorithm produces a
cluster hierarchy (dendrogram) in a bottom-up fashion. The cluster solution
does not give information regarding the cut-off level. Cutting off the hierarchical
tree requires the selection of a suitable level. To select the best level, we compute
intra-clustering similarity at each level (line 15, Algorithm 1).

The intra-clustering similarity measures the cohesion within a cluster, how
similar nodes within a cluster are. This is computed by measuring the similarity
between each pair of data within a cluster, and the intra-clustering similarity
of a clustering solution is determined by averaging all computed similarities
taking into account the number of nodes. Let at a certain level of the cluster
hierarchy, L, be a number of clusters K of the n nodes of a schema graph. The
intra-clustering similarity, IntraSim, at this level can be computed from the
following formula:

IntraSimL =

∑K

i=1
IntraSim(Ci)

n
. (4)

where IntraSim(Ci) is the intra-clustering similarity for the cluster Ci. In gen-
eral, the larger the values of intra-clustering similarity (IntraSim), the better
the clustering solution is.

Example 2. Applying Algorithm 1 to the schema graph represented in Fig. 2, the
cluster solution consists of two clusters C1 = {v1, v2, v3, v4, v5, v6, v7, v8, v9} and
C2 = {v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, }

2. It should be noted that this
cluster solution represents a reasonable solution in the sense that C1 includes
information about projects and grants for these projects, while C2 represents
information about departments and their employees.

Complexity analysis of clustering algorithm. Given a schema graph with
n nodes, the algorithm contains four main stages. The worst case total cost of the
preparation stage is O(n(n− 1)) = O(n2) if every node in the schema graph has
to be compared with all other n− 1 nodes. However, on average, each node can
only be compared with a set of nodes in the context of the node. With a typically
constant average context size, this results in an average cost O(n). The worst
case total cost of the initialization stage is O(n), and the time complexity of
the final stage is O(1). The cluster hierarchy construction stage initially iterates
over n clusters, and then n/2 until either the number of clusters reduces to
one or the merge condition, line 18, is satisfied. This results in an average time
complexity of O(n). Therefore, the time complexity of the clustering algorithm
is O(n)+O(n)+O(n)+O(1) = O(n). Results reported in the evaluation section
verify and confirm this complexity.

2 It should be noted that the cluster solution is based on the state of the schema
graph. The state of schema graph represented in Fig. 2 is reduced. More information
can be found in [6]

A Clustering-based Approach For Large-scale Ontology Matching 9

5 Determination of similar clusters

The goal of this step is to identify partitions (clusters) of the two schema graphs
that are sufficiently similar to be worth matching in more detail. This aims at
reducing the match overhead by not trying to find correspondences between
unrelated partitions. The approach determines a cluster document per partition
and makes use of the Vector Space Model (VSM) for computing the similarity
between cluster documents.

To determine the similarity between clusters of different ontologies we can
utilize different features of cluster elements, such as name, data type, cardinality
constraints, etc. It has been verified that the node name is the most dominant
feature [2]. Therefore, we construct a so-called cluster document based on the
node name.

Definition 4. Given a cluster J, the text document that contains the names of
cluster elements is called a cluster document, CDJ .

Adopting VSM provides the possibility to model document terms as elements of
a vector space. Let W1,W2, ...,Wt be the words (terms) in a cluster document.
Let us suppose that there exists a unit length vector in the space corresponding
to each word. We therefore can express each cluster document (CDJ) as a vector
in terms of words as follows:

VJ = (W1J ,W2J ,,WtJ) (5)

whereWiJ s are real numbers reflecting the importance of word i in CDJ . Given a
vector VJ representing the cluster document CDJ containing t words, the values
of the vector elements can be computed using the WiJ = TF ∗ IDF equation
[5], where TF is the term frequency and IDF is the inverse document frequency.

To determine the cluster similarity, we propose the use of a light-weight
similarity function based on the vector representation of the cluster document.
Given two vectors V1I and V2J representing two cluster documents from two
different ontologies, the cluster document similarity, CDSim, can be defined as
the inner product (cosine) of the two vectors. It can be expressed as:

CDSim(CD1I , CD2J) = cos(V1I , V2J) =

∑

t

i
Wi1I .Wi2J

√

∑

t

i
(Wi1I)2.

∑

t

i
(Wi2J)2

(6)

where t is the size of the vectors. It should be noted that the equation yields a
value of 0 when the elements of the two clusters do not have names in common,
however, the similarity value becomes 1 when the elements of the two clusters
have the same names. It is worth noting that representing cluster documents as
vectors provides the possibility to utilize efficient similarity measures, such as
the used one.

Now we are in a position to state the problem of similar clusters determi-
nation. Given two schema graphs SG1 and SG2 with n and m elements, and
K and K ′ clusters, respectively. The problem is to identify the similar clusters

10 Alsayed Algergawy, Sabine Massmann and Erhard Rahm

Table 1: Data set specification

Series Tested schemas No. matching tasks min./max. No. of elements

1
PO (5 XDR) 10 27/74
Spicy (4 XSD) 2 20/125

2 Webdirectory (4 OWL) 6 418/1132

3 Anatomy (2 OWL) 1 2746/3306

between the two sets. The computed similarities between cluster pairs of the
two ontologies are used to construct a so-called cluster similarity matrix. Due to
uncertainty inherent in ontology/schema matching, the best matching can ac-
tually be an unsuccessful choice [8]. To overcome this problem, the elements of
the matrix are ranked according to their similarity to each other and the top-k 3

elements are selected from the ranked list.
Once settling on the similar clusters of the two ontologies, the next step

is to fully match similar clusters to obtain the correspondences between their
elements. Each pair of the similar clusters represents an individual match task
that is independently solved. Match results of these individual tasks are then
combined to a single mapping, which represents the final match result.

6 Experimental evaluation

In order to evaluate the performance of the clustering-based matching approach,
we conducted a set of experiments utilizing real-world ontologies of different sizes.
We aim to evaluate both the quality and the efficiency of the proposed approach.
We ran all our experiments on a 2.66 GHz Intel(R) Xeon(R) processor with 4
GB RAM running Windows 7.

6.1 Data sets & evaluation criteria

Table 1 shows the characteristics of the test ontologies. In Series 1, we use five
XML schemas for purchase orders (PO) taken from the COMA++ evaluation
[6] and four XML schemas from [15]. In Series 2, we match four ontologies
taken from the Web directory domain [13]. Series 3 contains a single match
task taken from the OAEI initiative to match two large anatomy ontologies
(AdultMouseAnatomy with 2,746 concepts vs. the anatomical part of the NCI
Thesaurus with 3,306 concepts) 4. We choose these data sets to demonstrate the
applicability of our approach to different data sources represented in different
models and having different characteristics. We performed the required matching
tasks between schemas/ontologies within the similar domains with a total of 22
different matching tasks. More details about data sets in Table 1 can be found
in [6, 13].

3 k may equal 1, 2, or 3 based on the similarity value between clusters.
4 http://www.ontologymatching.org/

A Clustering-based Approach For Large-scale Ontology Matching 11

(a) Series1: PO (b) Series2: Web directory

Fig. 3: Matching quality.

To match elements within similar clusters, we used the COMA++’s Allcon-
text (a combination of Name, Path, Leaves, and Parents matchers) for match
tasks of Series 1, the Context strategy (a Path matcher) for match tasks of Se-
ries 2, while the name matcher (without using synonyms) is used to perform the
anatomy matching task. The threshold (th) used to construct links hash table
is set to 0.15.

To measure the matching quality, we use the same criteria used in the lit-
erature, including precision, recall and F-measure. We call the execution time
needed to perform the matching process including four steps of Fig. 1 the re-
sponse time. We use it as a criterion of matching efficiency.

6.2 Experimental results

We present results for two sets of experiments. The first set is used to answer
the following question: ”Which node context shall be used in computing context
similarity?”. To this end, we made use of five different contexts, namely children
(Ch), parents (P), grandparents (GP), siblings (S), and leaves (L) in eight dif-
ferent combinations. The experimental results on matching quality (precision,
recall, and F-measure) are reported in Fig. 3.

Figs 3(a,b) give the matching quality for matching tasks of the PO and Web
directory domains, respectively. For the PO domain, all the exploited contexts,
except the child and Ch+P+S contexts, produce F-measure equal to or higher
than 80%. It should be noted that both P and Ch+P contexts achieves the
highest F-measure (82%), as shown in Fig. 3(a). Since schemas in the Web
directory domain contain more heterogeneities and a simple matcher is used, the
highest F-measure merely reaches 55% using also the Ch+P context, as shown
in Fig. 3(b). This motivates and verifies our selection of the Ch+P context in
computing context similarity. To verify this selection, we also investigated the
generated number of partitions and the response time using of the ontologies in
Series 2 (Web directory).

Table 2 illustrates the average number of partitions (clusters) generated us-
ing different node contexts. The Ch+P+S, P, and Ch contexts lead to mostly

12 Alsayed Algergawy, Sabine Massmann and Erhard Rahm

Table 2: Average no. of partitions
Context Ch P Ch+P Ch+P+GP Ch+P+S Ch+P+S+GP Ch+P+L Ch+P+L+GP

Avg. partitions 38 62 22.8 19.8 112.7 28.9 25.6 19.1

higher number of partitions while the Ch+P context achieves a medium number
of partitions that is largely in the same range for different match tasks. Fur-
thermore, using this context performs on average faster than the other contexts.
Hence, we conclude that the Ch+P context is most suitable for our clustering
approach and we will use this choice in the next set of experiments.

The second set of experiments is used to compare the proposed approach
with two current matching strategies in COMA++ and Falcon (for the anatomy
match task). For COMA++ we consider the non-partitioned strategy (AllCon-
text) and different Fragment-based strategies [6]. We choose different techniques
to select fragments, such as inner (Fragment inner) and Parent of Leaves (Frag P L).
The first selects inner nodes as roots of fragments, while parents of leaves are
selected as roots of fragments in the second strategy. The experimental results
are reported in Fig. 4.

(a) Series 1: Spicy (b) Series 1: PO (c) Series 2: Web directory

Fig. 4: Matching quality comparison.

Figs. 4(a, c) show that our proposed approach achieves, despite its reduced
search space for matching, the best matching quality for the Spicy and Web
directory schemas. The approach produces the highest F-measure compared with
the other matching strategies. The clustering-based approach could correctly
identify similar clusters which helps in achieving good recall; good precision is
favored by the restricted search space reducing the risk of false positives. Fig. 4(b)
also illustrates that the approach realizes a sufficient matching quality for the
PO schemas.

We conducted another set of experiments to verify the matching efficiency.
We measured the response time required to perform the specified match tasks
of Series 2 illustrated in Table 1. We also compared the response time of the
clustering-based approach to the mentioned strategies of COMA++. Results
are reported in Fig. 5. The figure shows that the clustering-based approach
outperforms the other strategies. The approach needs a total of 28 seconds

A Clustering-based Approach For Large-scale Ontology Matching 13

to match the specified matching tasks. While, AllContext, Fragment inner and
Fragement parents leaves require 101, 72, and 66 seconds, respectively. We also
analyzed the number of generated partitions (clusters or fragments) and we found
that COMA++ generates more partitions than the new cluster approach. We
also tested with Frag sub [6], we found that only few partitions are determined
so that no correspondences could be found for several matching tasks. We thus
do not include the detailed results produced by the Frag sub strategy.

Fig. 5: Res. time comparison

Clustering-based Falcon

No. of partitions 84/80 139/119

Precision 0.975 0.964
Recall 0.613 0.591

F-measure 0.753 0.73

Res. time 58.8 sec 10 mins.

Table 3: Anatomy results

We finally evaluate our clustering approach on the anatomy match task and
compare it with Falcon. For this purpose, we installed the publicly available Fal-
con system and run it on the same machine. Results are reported in Table 3. The
table shows that our approach achieves a slight improvement in matching quality
as Falcon, however, our system is about ten times faster (1 vs. 10 minutes).

In summary, the evaluation results show that the proposed approach achieves
for different domains better matching response times compared to previously
proposed partition-based strategies at a comparable or better match quality.

7 Conclusions

We proposed a new clustering-based matching approach for large-scale ontology
matching. The proposed approach is generic and can be applied to different data
models including XML schemas. It shares the same steps of other partition-
based match strategies. However, it uses different techniques for partitioning
and finding similar partitions. The partitioning process is based on a bottom-
up clustering scheme utilizing context-based structural node similarities, while
finding similar partitions to match is based on an effective and light-weight
linguistic technique. To verify the performance of the proposed approach, we
conducted several sets of experiments. The results show that the proposed ap-
proach presents significant and encouraging improvement, especially in runtime
efficiency. In future work we want to further explore the design space of partition-
based match strategies by taking further algorithms for the key steps and further
application domains into account.

Acknowledgements: This work is supported by the Federal Ministry of
Education and Research (BMBF), grant 03FO2152 (“Web Data Integration”).

14 Alsayed Algergawy, Sabine Massmann and Erhard Rahm

References

1. S. Abiteboul, D. Suciu, and P. Buneman. Data on the Web: From Relations to
Semistructed Data and XML. Morgan Kaumann, USA, 2000.

2. A. Algergawy, R. Nayak, and G. Saake. Element similarity measures in XML
schema matching. Information Sciences, 180(24):4975–4998, 2010.

3. L. Chiticariu, M. A. Hernndez, P. G. Kolaitis, and L. Popa. Semi-automatic schema
integration in Clio. In VLDB’07, pages 1326–1329, 2007.

4. N. Choi, I.-Y. Song, , and H. Han. A survey on ontology mapping. SIGMOD
Record, 35(3):34–41, 2006.

5. W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance
metrics for name-matching tasks. In IIWeb, pages 73–78, 2003.

6. H. H. Do and E. Rahm. Matching large schemas: Approaches and evaluation.
Information Systems, 32(6):857–885, 2007.

7. M. Ehrig and S. Staab. QOM- quick ontology mapping. In International Semantic
Web Conference, pages 683–697, 2004.

8. A. Gal. Managing uncertainty in schema matching with top-k schema mappings.
Journal on Data Semantics, 6:90–114, 2006.

9. G. Guerrini, M. Mesiti, and I. Sanz. An Overview of Similarity Measures for
Clustering XML Documents. Emerging Techniques and Technologies. 2007.

10. F. Hamdi, B. Safar, C. Reynaud, and H. Zargayouna. Alignment-based partitioning
of large-scale ontologies. In Advances in Knowledge Discovery and Management,
volume 292, pages 251–269. Springer, 2010.

11. W. Hu, Y. Qu, and G. Cheng. Matching large ontologies: A divide-and-conquer
approach. DKE, 67:140–160, 2008.

12. O. A. E. Initiative, 2010. http://20.ontologymatching.org/.
13. S. Massmann and E. Rahm. Evaluating instance-based matching of web directories.

In 11th Workshop on Web and Databases (WebDB), 2008.
14. E. Peukert, H. Berthold, and E. Rahm. Rewrite techniques for performance opti-

mization of schema matching processes. In EDBT, pages 453–464, 2010.
15. E. Peukert, S. Massmann, and K. Konig. Comparing similarity combination meth-

ods for schema matching. In GI-Workshop, pages 692–701, 2010.
16. E. Rahm. Towards large-scale schema and ontology matching. In Data-Centric

Systems and Applications, volume 5258, pages 1–25. Springer, 2010.
17. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-

ing. VLDB Journal, 10(4):334–350, 2001.
18. E. Rahm, H.-H. Do, and S. Massmann. Matching large XML schemas. SIGMOD

Record, 33(4):26–31, 2004.
19. M. H. Seddiquia and M. Aono. An efficient and scalable algorithm for segmented

alignment of ontologies of arbitrary size. Web Semantics, 7(4):344–356, 2009.
20. Z. Wang, Y. Wang, S. Zhang, G. Shen, and T. Du. Matching large scale ontology

effectively. In ASWC 2006, LNCS 4185, pages 99–105, 2006.
21. N. Yuruk, M. Mete, X. Xu, and T. A. J. Schweiger. AHSCAN: Agglomerative hier-

archical structural clustering algorithm for networks. In International Conference
on Advances in Social Network Analysis and Mining, pages 72–77, 2009.

