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Abstract. In this paper we propose an asymmetric semantic similarity among 
instances within an ontology. We aim to define a measurement of semantic 
similarity that exploit as much as possible the knowledge stored in the ontology 
taking into account different hints hidden in the ontology definition. The 
proposed similarity measurement considers different existing similarities, which 
we have combined and extended. Moreover, the similarity assessment is 
explicitly parameterised according to the criteria induced by the context. The 
parameterisation aims to assist the user in the decision making pertaining to 
similarity evaluation, as the criteria can be refined according to user needs. 
Experiments and an evaluation of the similarity assessment are presented 
showing the efficiency of the method. 

1  Introduction 

Semantic similarity plays an important role in information systems as it supports the 
identification of objects that are conceptually close but not identical. Similarity 
assessment is particularly significant in different areas of knowledge management 
(such as data retrieval, information integration, and data mining) because it facilitates 
the comparison of the information resources in different types of domain knowledge 
[1,2]. 
 
Nowadays domain knowledge is often available in the form of an ontology, which 
reflects the understanding of a domain that a community has agreed upon. An 
ontology consists of different parts, including a set of concepts and their mutual 
relations and instances. In particular, ontologies have recently been imposed as means 
of organizing the metadata (called ontology-driven metadata) of complex information 
resources. According to Sheth et al. [3] ontology-driven metadata provide syntactic 
and semantic information about complex information resources. Syntactic metadata 
describe non-contextual information about the content (e.g. language, a bit rate, 
format). This offers no insight into the meaning of a document. In contrast, semantic 
metadata describe domain specific information about the content and contextual 
information, such as which entities take part in the production and usage of the 
information resource. The metadata of the resources are encoded as instances in the 



ontology. Therefore, the definition of a method for assessing the semantic similarity 
among ontology instances becomes essential in order to compare all these complex 
resources.  
 
The concept of similarity among information resources is not univocal as it is affected 
by the human way of thinking as well as by the application domain [4]. Its evaluation 
cannot ignore some cognitive properties related to the human way of perceiving the 
similarity. In particular, we underline three main aspects. Firstly, considering that, in 
the naïve view of the word, similarities defined in terms of a conceptual distance are 
frequently asymmetric, the formulation of similarity should for many applications 
provide an asymmetric evaluation [5]. Secondly, it should be flexible and adaptable to 
different application contexts, which affect the similarity criteria. Moreover, 
considering that part of the domain knowledge as it is perceived by the domain expert 
is already formalized in the ontology and the ontologies are artefacts whose 
definitions require time consuming and costly processes, the similarity evaluation 
should be able to exploit as much as possible all the hints that have already been 
expressed in the ontology.  
 
So far, most of the research activity pertaining to similarity and ontologies has been 
carried out within the field of ontology alignment or in order to assess the similarity 
among concepts. Unfortunately, these methods produce results that are inappropriate 
for the similarity among instances. On the one hand, similarities for ontology 
alignment strongly focus on the comparison of the structural parts of distinct 
ontologies, and their application for assessing the similarity among instances might 
give misleading results. On the other hand, similarities among concepts mainly deal 
with the lexicographic database, ignoring the comparison of the values of the 
instances. Apart from these, few methods for assessing similarities among instances 
have been proposed. Unfortunately, these methods rarely take into account the 
different hints hidden in the ontology, and they do not consider that the ontology 
entities concur differently in the similarity assessment according to the application.  

 
To overcome the limitations mentioned above, our ongoing research is aimed at 
defining a framework for assessing the semantic similarity among instances. This 
paper proposes an asymmetric similarity assessment, where the asymmetry is 
explicitly adopted to stress the principle of “containment” between the two sets of 
characteristics of two instances representative of two information resources. The 
similarity between two instances tends to be greater for instances that have a higher 
level of containment.  
The measurement of the asymmetric semantic similarity is defined by an 
amalgamation function. The amalgamation function combines and extends different 
similarities already defined in literature: it takes into account both the structural 
comparison between two instances, in terms of the classes that the instances belong 
to, and the comparison between the attributes and relations of the instances. 
Moreover, the framework provides a parametric evaluation of the similarity with 
respect to different applications. The application induces the criteria of similarity, 
which are explicitly formalized in the application context. An application context 
models the importance of the entities, which concur in the assessment of similarity, 



and the operations used to compare the instances. The parametric evaluation allows us 
to tailor the similarity assessment to specific application contexts, but also allows us 
to obtain different similarity assessments employing the same ontology. 
The main framework contributions are: 
• To exploit as much as possible the implicit knowledge stored in the ontology: the 

similarity assessment is set up by considering different kinds of hints in the 
ontology. 

• To tailor the similarity assessment according to the needs arising from the specific 
application contexts: different similarity assessments can be defined for the same 
ontology, according to the criteria arising from different applications. 

• To improve the decision making of the user in the similarity evaluation: as the 
similarity assessment is completely parameterized on context criteria, the criteria 
can be refined according to user needs. 

 
This paper is an extension of an ongoing research programme whose first result has 
been presented previously [6]. Here, we aim to provide more information useful for 
exploiting our similarity evaluation: detailed illustrations of the motivations that are 
behind the principle of our approach are discussed and some scenarios are illustrated. 
In addition, the asymmetric property in the assessment is stressed and argued more 
deeply with each equation. The paper is organized as follows. In the first section, we 
illustrate the motivation and the scenario that drove us to the similarity definition. 
Then, after providing some useful assumptions (section 3), we discuss the main 
principle of the approach (section 4). The approach description is characterised by 
three main parts: context, ontology, data and knowledge layers according with the 
framework proposed by Ehrig et al. [7]. A formalization of the similarity criteria 
induced by the context is proposed as context layer (section 5). The ontology layer 
(section 6) and data and knowledge layer (section 7) are devoted to the definition of 
the similarity functions that characterize our approach, followed by two experiments 
and an evaluation of the results (section 8). At the end, we evaluate related works 
(section 9), underlining how they have been useful as a starting point for our research 
but how, contrary to the proposed framework, they do not fulfil the requirements and 
goal we address by our contributions. 

2  Motivations and scenarios 

This section discusses the motivations that are behind the design of our approach as 
well as the reference scenario that has been developed with respect to this work.  

2.1  Motivations 

Here we provide the motivations behind our approach underlying the need of a 
similarity evaluation among ontology instances that takes into account the hints 
hidden in the ontology as well as the dependence on the context. In particular, we aim 
to answer the following questions: 



• Why define a semantic similarity among ontology instances?  
• What is the role of the implicit knowledge expressed by the ontology in setting up 

a similarity assessment? 
• What is the role of the application context in the similarity evaluation?  

 
Why define a semantic similarity among ontology instances?  
Defining a semantic similarity among ontology instances represents a challenging 
priority in future research as it will pave the way for the next wave of knowledge 
intensive methods that will facilitate intelligent browsing as well as information 
analysis.  
Here we do not refer to similarity as a tool for identifying possible mapping or 
alignment among different ontologies. Rather, we address a different problem related 
to the comparison of the ontology instances. We realize the importance of solving this 
problem from our direct research experience working in the European founded 
Network of Excellence AIM@SHAPE [8]. 
Within the NoE AIM@SHAPE, ontology has been adopted to organize the metadata 
of complex information resources. Different ontologies are integrated to describe 3D / 
2D models (i.e. models of mechanical objects, digital terrains or artefacts from 
cultural heritage) as well as the tools for processing the models [9,10,11]. From our 
experience, we realize that the ontology driven metadata definition turns out to be 
outrageously expensive in terms of man-month efforts needed, especially whenever 
the domain that is expected to be formalized is complex and compound. The 
“standard ontology technology” provides reasoning facilities that are very useful in 
supporting querying activity as well as in checking ontology consistency, but the 
current technology lacks an effective tool for comparing the resources (instances). In 
addition to efforts to formalize the ontology, domain experts are often quite willing to 
provide the domain knowledge required to characterize their resources. However, 
they are disappointed when their efforts do not result in any measure of similarity 
among the resources.  
Aware of this shortcoming, we address our research efforts towards investigating how 
to better employ the information encoded in the ontology and to provide tools that 
exploit as much as possible the result of the aforementioned efforts [6,12].  
 
What is the role of the knowledge expressed by the ontology in setting up a similarity 
assessment? 
An ontology reflects the understanding of a domain, which a community has agreed 
upon. Gruber defines an ontology as “the specification of conceptualizations, used to 
help programs and humans share knowledge” [13]. 
There is a strong dependence between the knowledge provided by the domain expert 
in order to define the ontology and his expectation of the results of the semantic 
similarity. Actually, the domain expert will perceive a similarity that is based on the 
knowledge he has provided.  
The main ontology components (concepts, relations, instances) as well as its structure   
are representative of the domain knowledge conceptualized in the ontology. 
Therefore, they provide the base on which to set up the different hints to define the 
similarity. Classes provide knowledge about the set of entities within the domain. 
Properties, namely relations and attributes, provide information about the interactions 



between classes as well as further knowledge about the characteristics of concepts. 
Moreover, the class structure within the ontology is also relevant as the attributes and 
relations shared by the classes, as well as their depth in the ontology graph, are 
representative of the level of similarity among their instances. In our proposal, the 
similarity assessment takes advantage of all of these ontology entities, which are 
usually available in the most popular ontology languages. Other entities could be 
considered as long as more specific ontology languages are adopted.     
 
What is the role of the application context in the similarity evaluation?  
The definition of a similarity explicitly parameterized according to the context is 
essential because the similarity criteria depend on the application context. Two 
instances may be more closely related to each other in one context than in another 
since humans compare the instances according to their characteristics but the 
characteristics adopted vary with the context.  
In particular, as a consequence of the explicit parameterization of the similarity with 
respect to the application context, it is possible to:  
• Use the same ontology for different application contexts. The ontology design 

usually ignores the need to tailor the semantic similarity according to specific 
application contexts. In that case, to assess the similarity between two different 
applications, two distinct ontologies need to be defined instead of simply defining 
two contexts. 

• Provide a tool for context tuning that supports the decision-making process of the 
ontology user. The user often has not clearly defined in his mind the set of 
characteristics relevant for the comparison of the instances, or his specification 
does not match the result induced by the information system. A parameterization 
of the semantic similarity measurement supports a refinement process of the 
similarity criteria. The parameterization provides a flexible and adaptable way to 
refine the assessment toward the expected results and, therefore, it reduces the gap 
between user-expected and system results. 

2.2  Framework scenario 

We have identified two main scenarios where the proposed similarity framework is 
relevant: scenario 1 refers to a similarity evaluation in different application contexts 
exploiting the same ontology; scenario 2 refers to the iterative criteria refinement 
process used to properly assess the similarity in accord with the expectations of the 
domain expert.  
In both scenarios we assume that we have an ontology describing the metadata of the 
resources in a complex domain and that the different resources are already annotated 
according to this ontology driven metadata.  
Two actors play important roles in the two scenarios:  
• The user who is the domain expert and who is looking for the semantic similarity. 

He has the proper knowledge to formulate the similarity criteria in the domain.  
• The ontology engineer who is in charge of defining the similarity assessment on 

the basis of the ontology design and the information provided by the domain 
expert. He plays the role of communication channel for the requests of the domain 



expert, with the system defining the application context to properly parameterize 
the similarity assessment. 

2.2.1  Scenario 1: two different application contexts 
Fig. 1 illustrates the first scenario, which highlights the dependence of the similarity 
result on the similarity criteria induced by the application. The domain expert user 
formulates different similarity criteria in two different application contexts. The two 
sets of criteria are formalized by the ontology engineer according to the system 
formalization, and the evaluation is performed. Two different results of the similarity 
evaluation are provided by the system and represented by similarity matrices. It is 
evident in this scenario how two application contexts induce two different similarity 
matrices just by exploiting the same ontology. 
 

 
Fig. 1.  Scenario 1: similarity evaluation according to different application contexts. 

2.2.2  Scenario 2:  similarity criteria refinement 
This scenario is characterized by an interactive exchange of information between the 
two actors. The domain expert browses the repository looking for similar resources. 
He relies on his domain of knowledge to compare the resources, perceives the 
similarities among resources (which are not provided directly from the standard 
ontology reasoning technology), and provides some informal similarity criteria to be 



adopted in the similarity evaluation. The ontology engineer translates the user 
requests to the system: he figures out which ontology entities are relevant and how to 
use them during the similarity assessment. The ontology engineer runs the similarity 
evaluation proposed in this paper and he shows the result to the domain expert. 
 

 
Fig. 2 Scenario 2: similarity criteria refinement. 

 
Analysing the result, the domain expert might point out some unexpected result to the 
ontology engineer. Then the ontology engineer refines the similarity criteria, 
interacting with the domain expert, until the results are correct. 
We assume that usually the user expert is so familiar with the domain conceptualized 
in the ontology that his expectations about similarities are often implicit. Thus, he 
does not provide to the ontology engineer a complete set of information concerning 
the criteria of similarity to be used. With this assumption the criteria definition 
process requires further iterative refinement. 
In this scenario the framework supports the iterative criteria refinement process to 
precisely adapt the similarity assessments to the user expectations.  



3  Preliminary assumptions 

This paper proposes a semantic similarity among instances taking into account the 
different hints hidden in the ontology. As the hints that can be considered largely 
depend on the level of formality of the ontology model adopted, it is important to 
state clearly to which ontology model a similarity method is referring. In this paper, 
the ontology model with data type defined by Ehrig et al. [7] is considered.    

 
Definition 1: Ontology with data type An Ontology with data type is a structure 

),,,,,,,,,,,,,,(: ARTCARARc llllVIARTCO ≤≤≤= σσ where C,T,R,A,I,V are disjoint sets, 
respectively, of classes, data types, binary relations, attributes, instances and data 
values, and the relations and functions are defined as follows:  

 

 
 

 
A symmetric normalized similarity is a function ]1,0[: →IxIS , which satisfies the 
following axioms:  
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An asymmetric normalized similarity is a function ]1,0[: →IxIS  that does not 
satisfy the symmetric axioms. The preference between symmetric and asymmetric 
similarity mainly depends on the application scenario; in general, there is no a-priori 
reason to formulate this choice. A complete framework for assessing the semantic 
similarity should be provided by both of them.  

 
The preference between symmetric and asymmetric similarity mainly depends on the 
application scenario; often the symmetric similarity is preferred because it is 
mathematically closer to the inverse of distance measure than the asymmetric one. 
However, according to the assumption of Tvesky, often a non-prominent item is more 
similar to a prominent item than vice versa [14]. In this paper we chose to propose an 
asymmetric similarity because we think it is more informative. This informativeness 
is useful for example in application such as the browsing of information resources. 
During the browsing, we need to identify similar resources that are representative of a 
searched resource and that can be used to replace it. For instance if we consider as 



information resources the members of a research staff, and we suppose to search for a 
member with a specific scientific expertise, usually a PhD student can be replaced by 
his PhD advisor, because the experience of a PhD student is usually contained in the 
expertise of his PhD advisor but the vice versa is not true. As a consequence the 
similarity between the PhD student and his PhD advisor is greater than the similarity 
between the PhD advisor and his PhD student. The symmetric similarity is not 
suitable to support this characteristic of containment.  
Then a representative resource is the resource that includes others. A similar approach 
has been proposed in [15] for the retrieval of documents. We stress the relation of 
containment between the sets of characteristics of two information resources. The 
information resources are characterized by ontology driven metadata; therefore, each 
resource is assumed to be an instance and the similarity is defined among pairs of 
instances. 
 
Definition 2: Containment between two information resources/instances. Given 
two information resources x, y (represented as instances in the ontology) and their 
sets of characteristics (coded as instance attributes and relation values), x is 
contained in y if the set of characteristics of x is contained1 in the set of 
characteristics of y.  
 
We assume that instance similarity behaves coherently with the concept of 
containment.  Given two instances x, y, their similarity is sim(x,y)=1 if and only if the 
set of characteristics of x is contained in the set of characteristics of y. On the 
contrary, unless y is contained in x, the similarity between y and x is sim(y,x)<1. The 
similarity value between x and y tends to decrease as long as the level of containment 
of their sets of properties decreases. Of course, the containment has to consider also 
the inheritance between the classes: if x belongs to a sub-class of the class of y, the 
asymmetric evaluation is performed relying on the idea that humans perceive 
similarity between a sub-concept and its super-concept as greater than the similarity 
between the super-concept and the sub-concept [16]. 

4  Semantic similarity approach 

The proposed approach adopts the schematization of the similarity framework defined 
by Ehrig et.al. [7]: the similarity is structured in terms of data, ontology and context 
layers plus the domain knowledge layer, which spans all the others. The data layer 
measures the similarity of entities by considering the data values of simple or 
complex data types such as integers and strings. The ontology layer considers the 
similarities induced by the ontology entities and the way they are related to each 
other. The context layer assesses the similarity according to how the entities of the 
ontology are used in some external contexts. The framework defined by Ehrig et al. is 
suitable for supporting the ontology similarity as well as instances similarity.  
 

                                                           
1  The containment is not meant as proper containment. In other words each set A is considered 

as an A subset. 



Our contribution with respect to the framework defined by Ehrig et al. is mainly in the 
definition of a context layer including an accurate formalization of the criteria in order 
to tailor the similarity with respect to a context and in the definition of an ontology 
layer explicitly parameterized according to these criteria. Concerning the data and 
domain knowledge layers, this paper adopts a replica of what is illustrated in [7]. The 
formalization of the criteria of similarity induced by the context is employed to 
parameterize the computation of the similarity in the ontology layer, forcing it to 
adhere to the application criteria. 
 
The overall similarity is defined by the following amalgamation function ( Sim ), 
which aggregates two similarity functions defined in the ontology layer named 
external similarity ( ExternSim ) and extensional similarity ( ExtensSim ). The external 
similarity performs a structural comparison between two instances i1∈lc(c1), i2∈lc(c2) 
in terms of the classes c1, c2 that the instances belong to, whereas the extensional 
similarity performs a comparison of the instances in terms of their attributes and 
relations. 

ExtensSimExternSim

ExtensSimExternSim
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wExternSim and wExtensSim are the weights used to balance the importance of the 
functions. By default they are equal to 1/2.  
 
In the section, we have illustrated a full description of the approach. In the next, the 
approach is detailed in three sections. In particular our definition of context layer is 
described in detail as well as the ontology layer where the two similarities ExternSim   
and ExtensSim  are designed, while the description of data and knowledge layer is 
shortly provided.  

5  Context layer  

The context layer, according to Ehrig at al. [7], describes how the ontology entities 
concur in different contexts. Here we adopt the same point of view. However, we aim 
to formalize the application context in the sense of modelling the criteria of similarity 
induced by the context. This design choice does not hamper the eventual definition of 
a generic description of context followed by an automatic determination of which 
criteria would have been suitable for a given context. Rather, it allows us to calculate 
directly the similarity acting on the criteria, especially when it is necessary to refine 
them. In the following we underscore the importance of this formalization. 

5.1  Motivation behind the application context formalization  

The application context provides the knowledge for formalizing the criteria of 
similarity induced by the application. The criteria are context-dependent as the 



context influences the choice of classes, attributes and relations that are considered in 
the similarity assessment and the operations used to compare them. 
 
We describe the motivation behind the proposed formalization through an example 
based on the domain of academic research, considering as resources to be compared 
the researchers of a research institution. We chose this domain instead of a more 
specific area related to our research experience in the AIM@SHAPE project (such as 
solid modelling, 3D model reconstruction, virtual humans, etc.) as it is without doubt 
a more familiar field to the readers of this paper. Let us consider a simplified version 
of the ontology KA2 that defines concepts from academic research (Fig. 3) and focus 
on the two applications “comparison of the members of the research staff according to 
their working experience” and “comparison of the members of the research staff with 
respect to their research interest”.  

 

 
Fig. 3 Ontology defining concepts related to academic research. 

Two distinct application contexts may be induced according the applications: 
•  “Exp” induced by the comparison of the members of the research staff according 

to their working experience. The similarity among the members of the research 
staff (instances of the class ResearchStaff3) is roughly assessed by considering the 
member’s age (the attribute age inherited by the class Person) and the number of 
projects and publications a researcher has worked on (the number of instances 
reachable through the relation publications and the relation workAtProject 
inherited by Staff).  

                                                           
2 http://protege.stanford.edu/plugins/owl/owl-library/ka.owl 
3 The italics is used to explicit the reference to the entities (attributes, relations, classes) of the 

ontology in Fig 1.  



•  “Int” induced by the comparison of the members of the research staff with respect 
to their research interests.  The researchers can be compared with respect to their 
interests (instances reachable through the relation interest) and, again, their 
publications (instances reachable through the relation publications and the relation 
workAtProject).  

 
The following points need to be considered when analysing these examples: 
1. The similarity between two instances can depend on the comparison of their 

related instances: the researchers are compared with respect to the instances of the 
class Publication connected through the relation publications. 

2. The attributes and relations of the instances can contribute differently to the 
evaluation according to the context: the attribute age of the researchers is 
functional in the first application but it might not be interesting in the second; the 
relations publication and workAtProject are included in both application contexts 
but using different operators of comparison—in the first case just the number of 
instances is important whereas in the latter case the related instances have to be 
compared.  

3. The ontology entities can be considered recursively in the similarity evaluation: in 
the context “Int” the members’ research topic (instances of ResearchTopic 
reachable navigating through the relation ResearchStaff->interest4) are considered 
and their related topics (instances of ResearchTopic reachable via ResearchStaff-
>interest->relatedTopic) are recursively compared to assess the similarity of 
distinct topics. 

4. The classes’ attributes and relations can contribute differently to the evaluation 
according to the recursion level of the assessment: in the second application the 
attribute topicName and the relation relatedTopic can be considered at the first 
level of recursion to assess the similarity between researchTopic. By navigating 
the relation relatedTopic it is possible to apply another step of recursion, and here 
the similarity criteria can be different from the previous ones. For example, in 
order to limit the computational cost and stop the recursion, only the topicName or 
the instances identifier could be used to compare the relatedTopic. 

 
As pointed out in the second remark, different operations can be used to compare the 
ontology entities:  
• Operation based on the “cardinality” of the attributes or relations: the similarity is 

assessed according to the number of instances the relations have or the number of 
values that an attribute assumes. For example, in the first context “Exp”, two 
researchers are similar if they have a similar “number” of publications.  

• Operation based on the “intersection” between sets of attributes or relations: the 
similarity is assessed according to the number of elements they have in common. 
For example, in the context “Int”, the more papers two researchers share, the more 
their interests are similar.  

Operation based on the “similarity” of attributes and relations: the similarity is 
assessed in terms of the similarity of the attribute values and related instances. For 

                                                           
4 The arrow is used to indicate the navigation through a relation, for example A->B->C  means 

that starting from the class A we navigate through the relations B and C. 



example, in the context “Int”, two researchers are similar if they have “similar” 
research topics.  
The example shows that an accurate formalism is needed to properly express the 
criteria that might arise from different application contexts. The formalization has to 
model the attributes and relations as well as the operations to compare their values. 
Moreover, as stated in the fourth remark, the level of recursion of the similarity 
assessment also has to be considered. 

 

5.2  Application context formalization 

The formalization provided here represents the restrictions that the application context 
must adhere to. An ontology engineer is expected to provide the application context 
according to specific application needs. The formalization relies on the concepts of a 
“sequence of elements belonging to a set X”, which formalizes generic sequences of 
elements, and a “path of recursion of length i” to track the recursion during the 
similarity assessment. In particular, a “path of recursion” represents the recursion in 
terms of the sequence of relations used to navigate the ontology.  
 
The application context function (AC) is defined inductively according to the length 
of the path of recursion. It yields the set of attributes and relations as well as the 
operations to be used in the similarity assessment. The operations considered are 
those described in the previous section and named, respectively, Count to evaluate the 
cardinality, Inter to evaluate the intersection, and Simil to evaluate the similarity. 
 
Definition 3: Sequences of a set X Given a set X, a sequence s of elements of X with 
length n is defined by the function [ ] +∈→ NnXns ,,..,1: and represented in a simple 
way by the list [s(1),..,s(n)].  

 
Let }],1[:|{ XnssS n

X →=  be the set of sequences of X having length n. 
Let mn

YX
m
Y

n
X SxSS +

∪→⋅ :   be the operator “concat” between two sequences. 
 

Table 1 defines the polymorphism functions, which identify specific sets of entities in 
the ontology model.  
 
Table 1. List of functions defining specific sets of elements in the ontology model. 

 



Definition 4: Path of recursion A path of recursion p with length i is a sequence 
whose first element is a class and whose other elements are relations recursively 
reachable from the class: ))1(()()(],2[)1(| −∈∧∈∈∀∧∈∈ ∪ jpjpRjpijCpSp r

i
RC δ . 

 
For example, a path of recursion with length longer than three is a path that starts 
from a class p(1) and continues to one of its relations as the second element p(2) and 
then to one of the relations of the class reachable from p(2) as the third element p(3), 
and so on. In general, a path of recursion p represents a path that is followed to assess 
the similarity recursively. The recursion expressed in the previous section in the 
context “Int” as ResearchStaff->interest->relatedTopic is formalized with the path of 
recursion [ResearchStaff, interest, relatedTopic].  
 
Let Pi be the set of all paths of recursion with length i and P be the set of all paths of 
recursion P=  ∪ i∈N Pi. 

 
Definition 5: Application context AC Given the set P of paths of recursion, 

},,{ SimilInterCountL = , the set of operations adopted as an application context is 
defined by a partial function AC having the signature )2()2(: LRLAPAC ×× ×→ , yielding 
the attributes and relations as well as the operations to perform their comparison.    

 
In particular, each application context AC is characterized by two operators 

LA
A PAC ×→ 2:  and  2: LR

R PAC ×→ , which yield, respectively, the parts of the context 
AC related to the attributes and the relations. Formally 

),(()( pACpACPp A=∈∀ ))( pACR  and ACA(p) and ACR(p) are set of pairs {(e1,o1), 
(e2,o2),…, (ei,oi),…,(en,on)} n ∈N where ei is, respectively, the attribute or the relation 
relevant to define the similarity criteria and oi∈L is the operation to be used in the 
comparison. 
We provide two examples of AC formalization referring to the two application 
contexts “Exp” and “Int” mentioned in the previous section.  

 
Example 1. Let us formalize the application context “Exp” with ACExp to assess the 
similarity among the members of a research staff according to their experience. We 
consider the set of paths of recursion {[ResearchStaff], [Research], [Fellow]} and we 
compare them according to age similarity and the numbers of publications and 
projects. Thus ACExp is defined by: 

Count)}}ject,(workAtProCount),ions,{(publicatSimil)},{{(age,]Fellow[

Count)}}ject,(workAtProCount),ions,{(publicatSimil)},{{(age,]Researcher[

Count)}}ject,(workAtProCount),ions,{(publicatSimil)},{{(age,]affResearchSt[

⎯⎯⎯ →⎯

⎯⎯⎯ →⎯

⎯⎯⎯ →⎯

ExpAC

ExpAC

ExpAC

 

(2) 

 
An example of ACR is {(publication,Count),(workAtProject,Count)} while an 
example of ACA is {(age,Simil)}. 
 
Note that [Researcher] and [Fellow] belong to the set of paths of recursion considered 
in ACExp because their instances are also instances of ResearchStaff. The application 



context can be expressed in a more compact way assuming that, whenever a context is 
not defined for a class but is defined for its super class, the comparison criteria 
defined for a super class are by default inherited by the subclasses. According to this 
assumption ACExp can be expressed by: 

Count)}}ject,(workAtProCount),ions,{(publicatSimil},{{age,]affResearchSt[ ⎯⎯⎯ →⎯ ExpAC  (3) 

 
Example 2. Let us formalize the application context “Int” to assess the similarity 
among the members of a research staff according to their research interest. The 
similarity is computed considering the set of paths of recursion 
{[ResearchStaff],[ResearchStaff, interest]}. The researchers are compared 
considering common publications, common projects or similar interests. A compact 
formalization for “Int” is defined by ACInt:  

Inter)}}opics,{(relatedTInter},e,{{topicNam]interestaff,ResearchSt[

Simil)}}(interest,Inter),ject,(workAtProInter),ions,{(publicat},{{]affResearchSt[

⎯⎯ →⎯

⎯⎯ →⎯
IntAC

IntAC φ  (4) 

 
In general, the operator Count applied to attributes or relations means that the number 
of attribute values or related instances is considered in the similarity assessment. For 
example, according to the context formalized in equation 2 (second row), two 
researchers, who are represented as instances of Researcher, are similar if they have a 
similar numbers of instances of Publication reachable through the relation 
publications. 
The operator Inter applied to attributes or relations means that common attribute 
values or related instances are considered in the similarity assessment. For example, 
according to the context formalized in equation 4 (first row) two researchers are 
considered as similar if they have common project instances.  
When applied to an attribute, the operator Simil determines that the attribute values of 
two instances will be compared according to a datatype similarity provided by the 
data layer (see the example in equation 2, first row, attribute age). When it is applied 
to a relation, it determines a step of recursion, in the sense that the instances related 
through the relation have to be considered during the similarity assessment. How 
these related instances have to be compared is specified by the value provided by the 
context function for the corresponding recursion path. Note that the researchers are 
compared recursively in the context expressed by equation 4. In fact the relation 
interest is included with the operator Simil in the first row of equation 4. This means 
that the instances of ResearchTopic associated with the researcher via interest have to 
be accessed and compared recursively when the researchers’ similarity is worked out. 
Actually, [ResearchStaff,interest] is the path of recursion to navigating the ontology 
from ResearchStaff to ResearchTopic via the relation interest. Once the assessment 
has accessed the related instances, it compares them as indicated by the second row of 
equation 4.  The interests are compared with respect to both their topicName and their 
relatedTopic; thus, two ResearchTopics having distinct topicNames but some 
relatedTopics in common are not considered completely dissimilar.  
 
The image of an AC function can be further characterized by the following. 
1. For a path of recursion p, AC has to yield only the attributes and relations 

belonging to the classes reached through p. For example, considering the ontology 



in Fig. 3 and the path of recursion [ResearchStaff,interest], it is expected that only 
the attributes and relations belonging to the class ResearchTopic reachable via 
[ResearchStaff,interest] can be identified by AC([ResearchStaff,interest]). 
Attributes or relations (such as age, publications, etc), which do not belong to 
ResearchTopic, define an incorrect application context.  

2. Given a path of recursion p, an attribute or a relation can appear in the context 
image at most one time. In other words, given a path of recursion it is not possible 
to associate two distinct operations with the same relation or attribute. For 
example, the following application context definition is not correct as interest is 
specified twice 

Inter)}(interest, Simil),(interest,Inter),ions,{(publicat},{{]affResearchSt[ φ⎯→⎯  (5) 

6  Ontology layer 

The ontology layer defines the asymmetric similarity functions ExternSim  and 
ExtensSim  that constitute the amalgamation function (equation 1). The “external 
similarity” ExternSim  measures the similarity at the level of the ontology schema 
computing a structural comparison of the instances. Given two instances, it compares 
the classes they belong to, considering the attributes and relations shared by the 
classes and their position within the class hierarchy. The “extensional similarity” 
ExtensSim  compares the extension of the ontology entities. The similarity is assessed 
by computing the comparison of the attributes and relations of the instances.  
 
At the ontology layer additional hypotheses are assumed: 
• All classes defined in the ontology have the fake class Thing as a super-class. 
• Given i1∈lc(c1), i2∈lc(c2), if c1, c2 do not have any common super-class different 

from Thing, their similarity is equal to 0.  
• The least upper bound (lub) between c1 and c2, is unique and it is c2 if c1 IS-A c2, or 

c1 if c2 IS-A c1, or the immediate super-class of c1 and c2 that subsumes both 
classes.   

The aim is to force the lub to be a sort of “template class” that can be adopted to 
perform the comparison of the instances whenever the instances belong to distinct 
classes. Referring to the ontology in Fig. 3, it can be appropriate to compare two 
instances belonging, respectively, to AdministratorStaff and ResearchStaff as they are 
both a kind of Staff and Staff is their lub. However, it does not make sense to evaluate 
the similarity between two instances belonging to Publication and to Staff, because 
they are intimately different; in fact, there is not any lub available for them. Whenever 
a lub x between two classes exists, the path of recursion [x] is the starting path in the 
recursive evaluation of the similarity.  



6.1  External similarity  

The external similarity ( ExternSim ) performs the structural comparison between two 
instances i1, i2 in terms of the classes c1, c2 that the instances belong to: more formally 

),(),( 2121 ccExternSimiiExternSim =  where )(),( 2211 clicli cc ∈∈ .  
 
In this paper the external similarity function is defined starting from the similarities 
proposed by Maedche and Zacharias [17] and Rodriguez and Egenhofer [16]. The 
structural comparison is performed by two similarity evaluations:  
• Class Matching, which is based on the distance between the classes c1, c2 and 

their depth with respect to the hierarchy induced by C≤ .  
• Slot Matching, which is based on the number of attributes and relations shared by 

the classes c1, c2 and the overall number of their attributes and relations. Then two 
classes having many attributes/relations, some of which are in common, are less 
similar than two classes having fewer attributes but the same number of common 
attributes/relations. 

 
Both similarities are needed to successfully evaluate the similarity with respect to the 
ontology structure. For example, let us consider the ontology schema in Fig. 3 and let 
us compare an instance of the class ResearchStaff with an instance of the class 
AdministrationStaff.  
They are quite similar with respect to Class Matching but less similar with respect to 
Slot Matching. In fact, the sets of IS-A relations joining the classes ResearchStaff and 
AdministrationStaff to Thing are largely shared. However, from the point of view of 
the slots, ResearchStaff and AdministrationStaff share only the attribute inherited   and 
they differ with respect to the others. Likewise, it would be easy to show an example 
of two classes that are similar with respect to Slot Matching and less similar 
according to Class Matching.  

 
Definition 6: ExternSim similarity The similarity between two classes according to 
the external comparison is defined by: 
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where ( SM ) is Slots Matching, ( CM ) is Classes Matching and wSM, wCM  are weights 
in the range [0,1].  
 
For the purpose of this paper, wSM and wCM   are defined as equal to 1/2.  

6.1.1  Class Matching 
Classes Matching is evaluated in terms of the distance of the classes with respect to 
the IS-A hierarchy. The distance is based on the concept of Upwards Cotopy (UC) 
[17]. We define an asymmetric similarity adapting the symmetric definition of CM in 
[17] . 
 



Definition 7: Upward Cotopy (UC) The Upward Cotopy of a set of classes C with 
the associated partial order C≤  is:  

})(|{:)( jijCijiC ccccCccUC =∨≤∈=≤  (7) 

 
It is the set of classes composing the path that reaches from ci to the furthest super-
class (Thing) of the IS-A hierarchy: for example, considering the class Researcher  in 
Fig. 3    =≤ r)(ResearcheCUC {Researcher, ResearchStaff, Staff, Person, Thing5} 
 
Definition 8: Asymmetric Class Matching Given two classes c1, c2 and the Upward 
Cotopy )( iC cUC≤ , the asymmetric Class Matching is defined by: 
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≤≤ ∩
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CM  between two classes depends on the number of classes they have in common in 
the hierarchy.  Let us note that the Class Matching is asymmetric: for example, 
referring to Fig. 3, 4/3)ResearchertionStaff,Administra( =CM  but 

5/3)tionStaffAdministra,Researcher( =CM . Moreover it is important to note that 

1)Researcher,Staff( =CM . The rationale behind this choice of design pertains to the 
property of containment between instances: the instances of Researcher fit with the 
instances of Staff, and they can replace the instances of Staff at the class level.  

6.1.2  Slot Matching  
Slot Matching is defined by the slots (attributes and relations) shared by the two 
classes. We refer to the similarity proposed by Rodriguez and Egenhofer [16], based 
on the concept of distinguishing features employed to differentiate subclasses from 
their super-class. In their proposal, different kinds of distinguishing features are 
considered (i.e. functionalities and parts) but none coincides immediately with the 
native entities in our ontology model. Of course it would be possible to manually 
annotate the classes, adding the distinguishing features, but we prefer to focus on 
what is already available in the adopted ontology model. Therefore only attributes and 
relations are mapped as two kinds of distinguishing features. 
 
Definition 9: Slot Matching Given two classes c1,c2, two kinds of distinguishing 
features (attributes and relations), and wa, wr, the weights of the features, the 
similarity function SM between c1 and c2 is defined in terms of the weighted sum of 
the similarities aS  and rS , where aS   is the Slot Matching according to the attributes 
and rS  in the Slot Matching according to the relations. 

),(),(),( 212121 ccSccSccSM rraa ⋅+⋅= ωω  (9) 

                                                           
5 The class Thing is not explicitly included in the Fig. 3 but it is expected to be the super class 

of all the other classes, so it can be seen as superclass of Person, Project, Publication, 
ResearchTopic.  



 
The sum of the weights is expected to be equal to 1, and by default we assume 
wa=wr=1/2. The two Slot Matching similarities aS  and rS  rely on the definitions of 
slot importance as defined in the following. 
 
Definition 10: Function of “slot importance” α Let c1, c2, be two distinct classes 
and d be the class distance d(c1,c2) in terms of the number of edges in an IS-A 
hierarchy, then α is the function that evaluates the importance of the difference 
between the two classes.  
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where )),lub(,()),lub(,(),( 21221121 cccdcccdccd += .  
 
α(c1, c2) is a value in the range [0,0.5]. Referring to the image in Fig. 3, 
α(Researcher,ResearchStaff) is equal to zero because the lub between Researcher  
and Researcher is Researcher itself, d(ResearchStaff,Researcher)=1 and 
d(Researcher,Researcher)=0. Whereas α(Researcher,Fellow) is equal to 0.5 because 
the lub is still Researcher, and d(Researcher,Fellow)=2. 

 
Definition 11: Slot Matching according to the kind of distinguishing feature t 
Given two classes c1 (target) and c2 (base) and t, a kind of distinguishing feature (t=a 
for attributes or t=r for relations), let tC1  and tC2  be the sets of distinguishing 

features of type t, respectively, of c1 and c2; then Slot Matching ),( 21 ccS t  is defined 
by:6 
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According to the ontology in Fig. 3, considering the classes Researcher and Fellow, 
their sets of distinguishing features of type relation are Researcherr ={workAtProject, 
cooperateWith, pubblications, interest, supervises} and Fellowr={workAtProject, 
cooperateWith, pubblications, interest, supervised} and α(Fellow,Researcher)=0.5;  
then )Researcher,Fellow(rS = 4/5. Furthermore, this formulation of Class Matching 
is coherent to the containment property: considering the classes Staff and Fellow, their 
sets of distinguishing features of type relation are respectively 
Staffr={workAtProject}, Fellowr={workAtProject, cooperateWith, publications, 
interest, supervised} and α(Staff,Fellow)=0, so that )FellowStaff,(rS =1. This means 
that the instances of Fellow can replace the instances of Staff because they have some 

                                                           
6 This formulation is slightly different from that provided by Egenhofer and Rodriguez: the 

parameters of the similarity have been reversed to be coherent with the relation between 
instances containment and the similarity value equal to 1. 



quality more rather than less similar. The contrary is not true; in fact 
α(Fellow,Staff)=0 and )Staff,Fellow(rS =1/5. In general, whenever α=0.5 the 
differences between features of both classes are equally important for the matching: 
for example, this happens when the classes are sisters, as for Researcher and Fellow.  
In the case of α=0, only the features that are in c1 and not in c2 are important for the 
matching.  

6.2  Extensional similarity   

The extension of entities plays a fundamental role in the assessment of the similarity 
among the instances: it is needed to perform a comparison of the attribute and relation 
values.  
The extensional comparison is characterized by two similarities functions: a function 
based on the comparison of the attributes of the instances and a function based on the 
comparison of the relations of the instances. 

 
Definition 12: Extensional asymmetric similarity Given two instances i1∈lc(c1), 
i2∈lc(c2), c=lub(c1,c2) and p=[c], a path of recursion defined in the application 
context AC,7 let ),( 21 iiSim

p
a  and ),( 21 iiSim

p
r  be the similarity measurements between 

instances considering, respectively, their attributes and their relations. The 
extensional similarity with asymmetric property is defined by 
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where ),( 21 iiSim
p
I  is defined by 
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A first principle of the proposed extensional similarity between two instances is to 
consider the lub x of their classes as the common base for comparing them when the 
instances belong to different classes. Note that the index p, is a kind of stack of 
recursion adopted to track the navigation of relations whenever the similarity among 
instances is recursively defined in terms of the related instances. [x] is adopted to 
initialize p at the beginning of the assessment. 

),( 21 iiSim
p
a  and ),( 21 iiSim

p
r  are defined by a unique equation as follows.  

 
Definition 13: Similarity on attributes and relations Given two instances i1∈lc(c1), 
i2∈lc(c2), c=lub(c1,c2), p=[c] (a path of recursion), X (a placeholder for the “A” or 

                                                           
7 Note that 0|)(||)(| ≠+ pACpAC RA  each time the context AC specifies at least a relevant 

attribute or relation for the recursion path p. 



“R”, RA∪∈x ),  then  let  
• }2)(),()( .. ),(lv)(i, |V{)( A

V
TAA TlTyatsCyavii =∧=∈∃∈∈= σ , the set of values 

assumed by the instance i for the attribute a, 
• )}(),(),()( .. )(|)({)( rliiccrtsccliccliii RRccR ∈′∧′∈′∃∈∃′∈′= σ , the set of instances 

related to the instance i by the relation r, 
• AC be the application context defined according to the restrictions defined in 

paragraph  5.2   
• }|)2()1(:{ bijectiveandpartialisgiXiiXigFX →= . 
The similarity between instances according to their attributes or relations is: 
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These equations are designed to be asymmetric and to respect the properties of 
containment among instances: if an instance i2 has at least the same attribute and 
relation values as i1, then the extensional similarity between i1 and i2 is equal to one.  
The approach computes 

p
xSim , selecting one of the above equations according to the 

definition of AC:  
• In the first case, the similarity is 1 if the set of the property values of the first 

instance is empty, because an instance having no characteristics is contained in all 
the other instances. 

• In the second case, the similarity is 0 if the first instances having at least a 
property value are compared with an instance that does not have any value.   

• The third expression is adopted if AC yields a relation or attribute associated with 
the operation Count.  

• The fourth expression is adopted if AC yields a relation or attribute associated 
with the operation Inter.   



• The fifth expression is adopted if AC yields an attribute with the operation Simil.  
• The last expression is adopted if AC yields a relation with the operation Simil. It is 

important to note that each time the similarity is assessed in terms of related 
instances (whenever (r,Simil) ∈  ACR(p)), the relation r followed to reach the 
related instances is added to the path of recursion. Thus, during the recursive 
assessment, the AC is always worked out on the most updated path of recursion. 

In the last two expressions, the comparison of the attribute values relies on the 
function a

TSim , which defines the similarity for the values of the attribute a  having 

data type T. a
TSim  is provided by the data layer as suggested by [7] and briefly 

discussed in the next paragraph.  
 

Example of extensional similarity according with the definition 12.  
We refer to the ontology in Fig. 3. We consider two instances illustrated in Table 2: 
AB and RA respectively of the classes Researcher and Fellow and their instances 
related to the classes Publication, Project, ResearchTopic. We adopt the application 
context ACint (equation 4). We evaluate their similarity applying the equation 13. 

Table 2 Example of instances of the academic research ontology.  

Instance ID Instance class Publication Instance Project Instance ResearchTopic Instance 
AB Researcher P2 Pr1, Pr2  T1, T2 
RA Fellow P2, P1 Pr1 T3 

 

Table 3: Details of  ResearchTopic instances. 

Instances ID Instance class topicName attribute RelatedTopic instance 
T1 ResearchTopic Topic 1   
T2 ResearchTopic Topic 2 T4 
T3 ResearchTopic Topic 3 T4 
T4 ResearchTopic Topic 4  

 
Their lub is the class ResearchStaff then p=[ResearchStaff] and according to the 
context defined in equation 4 the similarity assessment is performed considering the 
relations publication, workAtProject and interest, respectively using the operations 
Inter, Inter and Simil. Therefore, the equation 13 is an average among the three 
addends calculated with the formula in definition 13:  

 

 [ ]
)RAAB,(

affResearchSt
npublicatioSim =1, [ ]

)RAAB,(
affResearchSt
ectworkAtProjSim =1/2, [ ]

)RAAB,(
affResearchSt

InterestSim =1/4  
 

The first two is calculated applying the fourth expression.  
The last is calculated with the sixth expression in definition 13. It requires a more 
detailed argumentation. 
The set of partial functions in FX in definition 13 is employed to represent the possible 
matching among the set of values when the instances have relations or attributes with 
multiple values. In the example depicted in Table 2, the instances AB and RA are 
respectively related via the relation interest to T1, T2 and T3, then x is equal to 
“interest” and )(ABiR ={T1,T2} and )(RAiR ={T3}. When AB and RA are 
compared, two possible partial and bijective functions f1 and f2 can be considered 
between the instances related to AB and RA: f1:T1 T3 and f2:T2 T3. The max 
operator selects the function which provides the matching with the highest 



contribution:  in the example, it is f2. Thus the sum has only one addend: 
))T2(,T2( 2fSim

pNew
I

 which leads to the recursive call of the similarity assessment.  
 

The difference in number of attributes values or related instances affects the similarity 
evaluation as modelled in the multiplying factors in the fifth and sixth expression of 
definition 13:  
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These factors yield 1 if i1 is contained in i2; otherwise they yield the ratio between the 
number of properties of i1 and the number of properties of i2. In the example of AB 
and RA, looking at the Table 3, T1 and T2 are the instances of ResearchTopic related 
to AB, T3 is the instance related to RA. In this case the second factor induces a 
multiplying factor equal to 1/2 because half of the instances related to AB are leaved 
out from the matching. 
 
The functions ))T2(,T2( 2fSim

pNew
I  is applied to assess the similarity between AB and 

RA recursively with respect to the class ResearchTopic which are their interest. 
During the recursion the sixth expression in definition 13 is applied: 
[ResearchStaff,interest] is a new path of recursion and assigned to pNew.  
Applying the application context to the new path of recursion, new criteria are listed. 
In particular, according to equation 4 the instances of ResearchTopic related to AB 
and RA are compared according to the values assumed by their attribute topicName 
and relation  relatedTopics.  
The similarity between T2 and T3 with respect to topicName is equal to 0, whereas 
with respect to relatedTopic is 1, then ))T2(,T2( 2fSim

pNew
I =1/2. It is multiplied for the 

aforementioned multiplying factor thus [ ]
)RAAB,(

affResearchSt
InterestSim =1/4.   

The overall similarity is ),AB( RASim
p
I

= 7/12.  

7  Data layer and knowledge layer 

Data layer assesses the similarity of entities by considering the data values of simple 
types such as integers and strings or more complex data types such as geographical 
reference and shapes descriptors. The knowledge layer represents special shared 
ontology domains, which have their own additional vocabulary. As it can be placed at 
any level of the ontological complexity, it spans all the other layers. 
In this paper, we adopt the data layer proposed by [7]. It relies on the distance 
measure proposed in [18] to assess the similarity between misspelled terms (e.g. 
Alignment and Allignment). Moreover, in real world data values are often affected by 
inconsistencies: for example there are data values that differ in representation of 
entity abbreviation (e.g. Genova, GE, GOA are terms referring to the same city, or 
IMATI-CNR-GE, IMATI-GE, GE-IMATI are terms referring to the same research 
institute). Contrary to the similarity assessment among misspelled terms, the 
management of inconsistence of data values requires a full-matching among the terms 



in order to obtain a satisfactory evaluation of their similarity. The aspect of different 
representations of abbreviation can be addressed relying on both the data layer and the 
knowledge layer. The knowledge layer contains explicitly information about the 
relation of equivalence among terms used in a specific knowledge domain. The data 
layer can exploit such information to evaluate the similarity among terms. The lexical 
similarity introduced by [18] is applied only if the terms are defined not equivalent in 
the knowledge layer.  

8  Experiments and evaluations 

We evaluated our approach for the similarity assessment among the members of the  
research staff working at the Institute (CNR-IMATI-GE). An experiment was 
performed to demonstrate both the need for the content-dependent similarity and the 
importance of defining an asymmetric similarity based on the containment to select 
similar resources.  

8.1  Experiments 

Two experiments were performed considering the contexts “Exp”and “Int” mentioned 
in section 4.1. Eighteen members of the research staff were considered. The 
information related to their projects, journal publications and research interests was 
inserted as instances in the ontology depicted in Fig. 3 according to what was 
published at the IMATI web site.8 The ontology was expressed in OWL ensuring that 
only the language constructs consistent with the ontology model considered in 
definition 1 were adopted. The resulting ontology is available at the web site [19].  
Our method was implemented in JAVA and tested on this ontology. 

Using the formalization of the two application contexts ACInt and ACExp previously 
defined [equations (3), (4)], we have computed the similarity through the proposed 
framework. The results are represented by the similarity matrices in Fig. 4: (a) is the 
result related to the context “Exp” and (b) is the result related to the context “Int”. 
Each column j and each row i of the matrix represents a member of the research staff 
(identified by the first three letters of his name). The grey level of the pixel (i,j) 
represents the similarity value (Sim(i,j)) between the two members located at row i 
and column j: the darker the colour, the more similar are the two researchers. 
Analysing the similarity matrices we can make the following statements. 
• It is easy to see that they are asymmetric: for example sim(Dag,Bia)=1 while 

sim(Bia, Dag)<1. This confirms that the proposed model assesses an asymmetric 
similarity. The asymmetry result is particularly useful for comparing researchers 
because it behaves according to the property of containment defined in Definition 
2. For example, the two results sim(Dag,Bia)=1 and sim(Bia, Dag)<1 in Fig. 4.a 
mean that if Bia has at least the experience of Dag, then Dag can replace Bia. The 
inverse is not true, and if the domain expert decides to choose Dag instead of Bia, 

                                                           
8 http://www.ge.imati.cnr.it, accessed  the 12/05/2006 



the similarity value provides a hint about the loss inherent in this choice [for 
example, if  sim(Bia, Dag)=0.85,  then the loss is 15%].    

• The comparison of the two matrices shows how they are different; it is evident 
that the two contexts induce completely different similarity values. For example, 
“Dag” results are very similar to “Bia” with respect to their experience (black 
pixel in Fig. 4.a), but they are not similar with respect to their research interests 
(white pixel in Fig. 4.b).  

• During the test process we realized that the approach provides a sort of tool for 
context tuning, supporting us in the decision-making process to formulate the 
similarity criteria. From the similarity results we were able to learn and refine our 
criteria to obtain the expected results. 

 
 

 
(a) 

 
(b) 

Fig. 4. (a) Similarity matrix for context “Exp”; (b) Similarity matrix for context “Int”. 

8.2  Evaluations 

Two kinds of evaluations of the results concerning the similarity obtained with 
respect to research interests (Fig. 4.b) were performed.  
 
The first evaluation was based on the concept of recall and precision, calculated 
considering the same adaptation of recall and precision made by [20]. More precisely, 
considering an entity x, the recall and precision were defined, respectively, 
as B)/AA( ∩  and  B)/BA( ∩ , where A is the set of entities expected to be similar to x 
and B is the set of similar entities calculated by a model. A critical issue in the 
similarity evaluation is to have a ground truth with respect to comparing the results 
obtained. We faced this problem in referring to the research staff of our institute when 
considering as “similar” two members of the same research group. In fact at IMATI 
researchers and fellows are grouped into three main research groups, and one of those 
is composed of three further sub-groups. Therefore, we considered the research staff 
as split into five groups. For each member i, A is the set of members of his research 
group while B is composed of the first n members retrieved by the model. We have 
calculated recall and precision for each group considering “n” as the smallest number 
of members needed to obtain a recall of 100%, and then we have evaluated the 



precision. The average recall was estimated to be equal to 100% with a precision of 
95%. These results are quite encouraging: a recall equal to 100% demonstrates that, 
for each research group, the similarity is able to rank all the expected members, while 
a precision equal to 95% means that the average number of outsiders that need to be 
included to rank all group members is equal to 5%.  

 
Fig. 5. The dendrogram obtained through hierarchical gene clustering. 

We have performed a second evaluation according to the context “Int” using a data 
mining application. For each researcher and fellow we have computed his similarity 
with respect to the other members applying our method. In this way, we associated 
with each research staff member a string of values, which correspond to his relative 
distances from the other members. The strings correspond to the rows of the similarity 
matrix (Fig. 4.b). Then we have applied a tool to perform hierarchical clustering 
among the genetic microarray [21] to the set of strings, considering each string as a 
kind of researcher genetic code. The dendrogram obtained is shown in Fig. 5. It 
recognizes the five clusters that resemble the research group structure of our institute.  

9  Related work 

Semantic similarity is employed differently according to the application domain 
where it is adopted. Currently it is relevant in ontology alignment [22,23] and 
conceptual retrieval [24] as well as in semantic web service discovery and matching 
[25,26]. It is expected to increase in relevance in the framework for metadata analysis 
[27]. We discuss here related works according to their purpose and the ontology 
model they adopt. 
 
Similarities in the ontology alignment. There are many methods for aligning ontology, 
as pointed out by Euzenat et al. [23]. Semantic similarity is adopted in this context to 
figure out relations among the entities in the ontology schemas. It is used to compare 
the names of classes, attributes and relations, determining reasonable mapping 
between two distinct ontologies. However, the method proposed in this paper is 
specifically designed to assess similarity among instances belonging to the same 
ontology. Some similarities adopted for ontology alignment consider quite expressive 
ontology language (e.g., reference [22] focuses on a subset of OWL Lite), but they 
mainly focus on the comparison of the structural aspects of ontology. Due to the 
different purposes of these methods, they turn out to be unsuitable for properly 
solving the similarity among instances. 
 



Concept similarity in lexicographic databases. Different approaches to assessing 
semantic similarity among concepts represented by words within lexicographic 
databases are available. They mainly rely on edge counting-based [28] or information 
theory-based methods [29]. The edge counting-based method assigns terms that are 
subjects of the similarity assessment as edges of a tree-like taxonomy and defines the 
similarity in terms as the distance between the edges [28]. The information theory-
based method defines the similarity of two concepts in terms of the maximum 
information content of the concept that subsumes them [30,31]. Recently, new hybrid 
approaches have been proposed: Rodriguez and Egenhofer [16] take advantage of the 
above methods and add the idea of features matching introduced by Tversky [14]. 
Schwering [24] proposes a hybrid approach to assess similarity among concepts 
belonging to a semantic net. The similarity in this case is assessed by comparing 
properties of the concept as features [14] or as geometric space [32]. With respect to 
the method presented in this paper, Rada et al. [28], Resnik [30] and Lin [31] work on 
lexicographic databases where the instances are not considered. If they are adopted, as 
they were originally defined, to evaluate the similarity of the instances, they are 
doomed to fail since they ignore important information provided by the instances, 
attributes and relations. Moreover, Rodriguez and Egenhofer [16] and Schwering [24] 
use the features or even conceptual spaces, information that is not native in the 
ontology design and would have to be manually added. Instead our approach aims at 
addressing the similarity, as much as possible, by taking advantage of the information 
that has already been disseminated in the ontology. Additional information is 
considered only to tune the similarity with respect to different application contexts.  
 
Similarities that rely on ontology models with instances. Other works define similarity 
relying on ontology models closer to those adopted in the semantic web standards. 
D’Amato et al. [33] present a dissimilarity measure for description logics considering 
the expressivity of ALC, and comparing concept descriptions and 
individuals/instances. Hau et al. [26] identify similar services measuring the similarity 
between their descriptions. To define a similarity measure on semantic services 
explicitly refers to the ontology model of OWL Lite and defines the similarity among 
OWL objects (classes as well as instances) in terms of the number of common RDF 
statements that characterize the objects. Maedche and Zacharias [17] adopt a semantic 
similarity measure to cluster ontology-based metadata. The ontology model adopted 
in this similarity refers also to IS-A hierarchy, attributes, relations and instances. Even 
if these three methods consider ontology models, which are more evolved than the 
taxonomy or terminological ontology, their design ignores the need to tailor the 
semantic similarity according to specific application contexts. Thus, to assess the 
similarity investigated in this paper, two distinct ontologies need to be defined instead 
of simply defining two contexts as we do.  
 

Contextual-dependent similarity. Some studies combine the context and the 
similarity. Kashyap and Sheth [34] use the concept of semantic proximity and context 
to achieve interoperability among different databases. The context represents the 
information useful for determining the semantic relationships between entities 
belonging to different databases. However they do not define a semantic similarity in 
the sense we are addressing, and the similarity is classified as some discrete value 



(semantic equivalence, semantic relevance, semantic resemblance, etc). Rodriguez 
and Egenhofer [16] integrate the contextual information into the similarity model. 
They define as the application domain the set of classes that are subject to the user’s 
interest. Janowicz [35] proposes a context-aware similarity theory for concepts 
specified in expressive description logics such as ALCNR. As in our proposal, the 
last two works aim to make the similarity assessment parametric with respect to the 
considered context. Moreover, in contrast with our methods, they formalize the 
context ignoring the similarity criteria induced by the context (e.g. they ignore the 
need of operations) and they do not directly address the similarity among instances.  
 
This discussion of related works shows that, apart from the different definitions of 
semantic similarity proposed by different parties, these definitions are far from 
providing a complete framework as intended in our work. They often have different 
purposes, they consider a simpler ontology model, or they completely ignore the need 
to tailor the similarity assessment with respect to a specific application context. Of 
course, some of the works mentioned have been particularly important in the 
definition of our proposal. As already mentioned, both Maedche and Zacharias [17] 
and  Rodriguez and Egenhofer [16] have strongly inspired the part related to structural 
similarity. However, to successfully support our purposes, the class slots have been 
considered as distinguishing features. Furthermore, the methods proposed by 
Maedche and Zacharias [17] for Class Matching define a similarity that is symmetric, 
thus we have adapted the original in order to make it asymmetric.  
 
The similarity framework proposed in this paper contributes, along with related work, 
toward paving the way to a tool that each ontology engineer can adopt  
• to define different similarities among instances on the same ontology according to 

different application contexts; 
• to refine the similarity criteria as long as new instances are inserted or the 

obtained result does not satisfy the user domain expert. 
The explicit parameterization of the similarity assessment with respect to the 
application contexts yields a precise definition of the hints to be considered in 
similarity assessment as well as complete control of the recursive comparison needed 
to work out the similarity.  

10  Conclusions and future work 

This paper proposes a framework for assessing semantic similarity among instances 
within an ontology. It combines and extends different existing similarity methods, 
taking into account, as much as possible, the hints encoded in the ontology and 
considering the application context. A formalization of the criteria induced by the 
application is provided as a means of parameterizing the similarity assessment and to 
formulate a measurement more sensitive to the specific application needs.  
The framework is expected to bring great benefit in the analysis of the ontology 
driven metadata repository. It provides a flexible solution for tailoring the similarity 
assessments according to the different applications: the same ontology can be 



employed in different similarity assessments simply by defining distinct criteria, and 
it is not necessary to build a different ontology for each similarity assessment. The 
formalization of the application contexts in terms of explicit similarity criteria paves 
the way to an iterative and interactive process where the ontology engineer and the 
domain experts can perform fine-tuning of the resulting similarity.  
Nevertheless, some research and development issues are still open, such as human 
subject testing. Moreover, in the proposed approach the formalization of the 
application context affects only the similarity defined by the extensional comparison. 
It would be interesting to determine if the context results also in external comparison 
similarity. It would also be worthwhile to extend the similarity to ontology models 
towards OWL and to test it in more complex use cases. 
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