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ABSTRACT Many commercial data transformation systems such as Altova

Mapforcé and Stylus Studfoto name a few, as well as research

One of the main steps towards integration or exchange ofidata prototypes such as Clio [6] or HePToX [3], include mapping de

to design the mappings that describe the (often compleajioet sign tools that can be used by a human user to derive the dat tr
ships between the source schemas or formats and the d@sged t  5-mation program between a source schema and a target achem
schema. In this paper, we introduce a new operator, callggtMa o5t of these tools work in two steps. First, a visual integfés

Merge, that can be used to correlate multiple, indeperylelet used to solicit all known correspondences of elements teetulee
signed schema mappings of smaller scope into larger sch@pam 5 schemas from the mapping designer. Such corresporslence

pings. This allows a more modular construction of complema  5re ysually depicted as arrows between the attributes afcieee
pings from various types of smaller mappings such as schqma C  and target schemas. (See, for example, Figure 1(a)). Sueti
respondences produced by a schema matcher or pre-existigg m 5 schema matching module [19] is used to suggest or derive-cor
pings that were designed by either a human user or via mapping gpondences. Once the correspondences are establisheystibe
tools. In particular, the new operator also enables a newidel interprets them into an executable script, such as an XQureQL
and-merge” paradigm for mapping creation, where the design 61y \which can then transform an instance of the souroensah
divided (on purpose) into smaller components that are B&Sie  jni, an instance of the target schema. The generated tramation
create and understand, and where MapMerge is used to astomatgcyint s ysually close to the desired specification. In nuases,

ically generate a meaningful overall mapping. We descri® o qyever, portions of the script still need to be refined taibthe
MapMerge algorithm and demonstrate the feasibility of aur i desired specification.

plementation on several real and synthetic mapping saati We note that for both Clio and HePToX, the correspondences ar
our experiments, we make use of a novel similarity measure be it compiled into internaschema mapping assertions schema
tween two database instances with different schemas tiattigu 1, 505ingdn short, which are high-level, declarative, constraike|
fies the preservation of data associations. We show expetathe statements [12]. These schema mappings are then compited in
that MapMerge improves the quality of the schema mappings, b ¢ executable script. One advantage of using schema nzpgin
significantly increasing the similarity between the inpotiee in- an intermediate form is that they are more amenable to theafor
stance and the generated target instance. study of data exchange and data integration [12], as weti apti-
mization and automatic reasoning. In fact, the main tecknitat
we introduce in this paper represents a form of automat&om@ag

1. Introduction on top of schema mappings.

Schema mappings are essential building blocks for infaonat An important drawback of the previously outlined two-stepes-
integration. One of the main steps in the integration or erge ma mapping design paradigm is that it is hard to retro-fit amy p
of data is to design the mappings that describe the desilatibre existing or user-customized mappings back into the mapiaioly

ships between the various source schemas or source fomuktisea since the mapping tool is based on correspondences. Thihg, if
target schema. Once the mappings are established, theg caet mapping tool_ls restarted, it w_|II regenerate the same fixadst
either to support query answering on the (virtual) targbesea, a formation script based on the input correspondences, éamh

process that is traditionally called data integration [18]to phys- some portions of the transformation task may have alreaéy be
ically transform the source data into the target format, Gc@ss refined (customized) by the user or may already exist (asopart
referred to as data exchange [7]. In this paper, we focusedata previous transformation task, for example).

exchange aspect although our mapping generation methddsewi In this paper, we propose a radically different approachedaie-
equally applicable to derive mappings for data integration sign of schema mappings where the mapping tool can take as inp

arbitrary mapping assertions and not just correspondeiites al-
Permission to make digital or hard copies of all or part o twork for lows for .the modular (ionStruc,t,Ion of (_:omplex "."”d larger ragp
personal or classroom use is granted without fee providatidbpies are ~ [TOM various types of “smaller” mappings that include scheror-
not made or distributed for profit or commercial advantage that copies respondences but also arbitrary pre-existing or custamizeap-
bear this notice and the full citation on the first page. Toycoiherwise, to pings. An essential ingredient of this approach is a newaiper
republish, to post on servers or to redistribute to listguies prior specific on schema mappings that we cillapMergeand that can be used
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Input mappings from S, to S,:

Output of MapMerge(S,, S,, {t;, t,, t3}):

Schema S, Schema S, Intermediate Schema S, A o ' o
Em object (t,) for g in Group exists d in Dept forgin Group exists d in Dept
Group SEmEd where d.dname = g.gname where d.dname = g.gname, d.did = F[g]

~1»gno addr +— CompSci ) )
i | gname | 4 did----4-- m, did (t,) for w in Works, g in Group forw in Works, g in Group
: v | i dname satisfying w.gno = g.gno, w.addr = “NY” satisfying w.gno = g.gno, w.addr = “NY”
1 Dept | CSDept \M exists e in Emp, d in Dept exists e in Emp

E Works t did T-:IT L, did ename where e.did = d.did, where e.ename = w.ename, e.addr = w.addr,
! | ename : dheme b L. dname | ™ \pac!dress e.ename = w.ename, e.addr = w.addr, e.did = F[g]

i | addr P me lopedis d.dname = g.gname

i . ! |_» pname for w in Works, g in Group

{ | pname Proi 2 et vin'

-{-gno pname | ——( | — | £ (t,) for w in Works exists p in Proj satisfying w.gno = g.gno

s budget /’mz where p.pname = w.phame exists p in Proj

where p.pname = w.pname, p.budget = H,[w],
p.did = F[g]

(b) (c)

Figure 1: (a) A transformation flow from S; to S;. (b) Schema mappings fromS; to S». (c) Output of MapMerge.

1.1 Moativating Example and Overview

To illustrate the ideas, consider first a mapping scenarioden
the schema$: andS2 shown in the left part of Figure 1(a). The
goal is data restructuring from two source relatio@spup and
Works to three target relationEmp Dept andProj. In this ex-
ample,Group(similar toDepf) represents groups of scientists shar-
ing a common area (e.g., a database group, a CS group, et.) Th
dotted arrows represent foreign key constraints in theraelse
Independent Mappings. Assume the existence of the following
(independent) schema mappings fr&@n to S;. The first map-
ping is the constraint; in Figure 1(b), and corresponds to the
arrow t; in Figure 1(a). This constraint requires every tuple in
Group to be mapped to a tuple iDeptsuch that the group name
(gname becomes department nantname. The second mapping
is more complex and corresponds to the group of arrows Fig-
ure 1(a). This constraint involves a custom filter conditievery
pair of joining tuples ofMorksandGroupfor which theaddr value
is “NY” must be mapped into two tuples &mpandDept shar-
ing the samalid value, and with correspondingname addr and
dnamevalues. (Note thadlid is a target-specific field that must ex-
ist and plays the role of key / foreign key). Intuitively, illustrates
a pre-existing mapping that a user may have spent time inabe p
to create. Finally, the third constraint in Figure 1(b) esponds to
the arrowts and mappnamefrom Worksto Proj. This is an exam-
ple of a correspondence that is introduced by a user aftdirlga;
and the pre-existing mapping into the mapping tool.

The goal of the system is now to (re)generate a “good” overall
schema mapping fror; to S2 based on its input mappings. We
note first that the input mappings, when considered in igiatio
not generate an ideal target instance.

Indeed, consider the source instarican Figure 2. The target
instance that is obtained by minimally enforcing the caists
{t1,t2,ts} is the instance/; also shown in the figure. The first
Depttuple is obtained by applying on theGrouptuple (123, CS).
There, D1 represents somé&d value that must be associated with
CS in this tuple. Similarly, theProj tuple, with some unspecified
value B for budget and adid value of D3 is obtained vias. The
Emptuple together with the secorepttuple are obtained based
onts. As required byts, these tuples are linked via the sarie
value D2. Finally, to obtain a target instance that satisfies all the
foreign key constraints, we must also have a third tupeéptthat
includesD3 together with some unspecified department néye

Since the three mapping constraints are not correlatedhtbe
did values O1, D2, D3) are distinct. (There is no requirement
that they must be equal.) As a result, the target instahcex-
hibits the typical problems that arise when uncorrelate@pirays
are used to transform data: (dyplication of data(e.g., multiple

Target instance J,

{t b5} | __Emp _ Q Dept J§ _Proj |
ename addr did did dname _pname budget did
John NY D2 D1 CS Web B D3

CS]

N

Source instance I D2

D3

gno gname ename addr pname gno
123 CS John  NY  Web 123|

Target instance J,

| __Emp _ ]
ename addr did

[ _Dept 1 ___ Proj _ ]
did dname pname budget did
[ John NY D i

D CS Web B D

MapMerge({t,t, t3})

Figure 2: Aninstance ofS; and two instances ofS-.

Depttuples forC'S with differentdid values), and (2)oss of as-
sociationswhere tuples are not linked correctly to each other (e.g.,
we have lost the association between project n&¥& and de-
partment namé&'S that existed in the source).
Correlated Mappings via MapMerge. Consider now the schema
mappings that are shown in Figure 1(c) and that are the refult
MapMerge applied okt1, t2, t3 }. The notable difference from the
input mappings is that all mappings consistently use theesexn
pression, namely the Skolem tedftjg] whereg denotes a distinct
Grouptuple, to give values for thédid field. The first mapping is
the same a$; but makes explicit the fact thatid is F[g]. This
mapping creates a uniquepttuple for each distincGrouptuple.
The second mapping is (almost) like with the additional use of
the same Skolem tertfi[g]. Moreover, it also drops the existence
requirement foDept (since this is now implied by the first map-
ping). Finally, the third mapping differs fromy by incorporating
a join with Groupbefore it can actually use the Skolem teffy].
As an additional artifact of MapMerge, which we explain raie
also includes a Skolem teri [w] that assigns values féudget.
The target instance that is obtained by applying the redult o
MapMerge is the instancé; shown in Figure 2. The data asso-
ciations that exist in the source are now correctly preskivahe
target. For examplelVeb is linked to theC'S tuple (viaD) and
also John is linked to theC'S tuple (via the same). Further-
more, there is no duplication &fepttuples.
Flows of Mappings. Taking the idea of mapping reuse and modu-
larity one step further, an even more compelling use caskléq-
Merge in conjunction with mapping composition [8, 14, 18]the
flow-of-mappingscenario [1]. The key idea here is that to produce
a data transformation from the source to the target, one eeona-
pose the process into several simpler stages, where egehnstas
from or into some intermediate, possibly simpler schema.revo
over, the simpler mappings and schemas play the role of bkisa
components that can be applied to build other flows. Suchadbst
tion is directly motivated by the development of real-lifarge-
scale ETL flows such as those typically developed with IBMbtnf
mation Server (Datastage), Oracle Warehouse Builder dratst
Toillustrate, suppose the goal is to transform data fronstihema



S, of Figure 1(a) to a new schen#s, whereStaffand Projects Schema Mappings.A schema mapping is a triples, T, X) where
information are grouped und@ompSci The mapping or ETL de- S is a source schemd; is a target schema, aidlis a set okecond-
signer may find it easier to first construct the mapping betvie order tuple generating dependencies (SO td8s) In this paper,
and S- (it may also be that this mapping may have been derived we use the notation

in a prior design). Furthermore, the sche®ais a normalized

. : 7 in Ssatisfying B1 (%) exists § in Twhere B2 (§)and C(Z, ¥
representation of the data, whedept Empand Proj correspond for @ in Ssatisfying B1(¥) exists § in Twhere Bz (y)and C(, y)

directly to the main concepts (or types of data) that aregain- for expressing SO tgds. Examples of SO tgds in this notatierew
nipulated. Based on this schema, the designer can thengg@du  already given in Figure 1(b) and Figure 1(c). Here, it suffite
mappingmecs from Deptto a more specialized obje@SDept by say thatS represents a vector of source relation symbols (possibly
applying some customized filter condition (e.g., based emtime repeated), whilé represents the tuple variables that are bound, cor-
of the department). The next step is to create the mappiriigpm respondingly, to these relations. A similar notation agmpfior the
CSDepto the target schema. Other independent mappings are sim-¢zists clause. The conditions; (&) and B2 (i) are conjunctions
ilarly defined forEmpandProj (seem; andm). of equalities over the source and, respectively, targéabkes. The
Once these individual mappings are established, the sambe pr  condition C/(Z, ) is a conjunction of equalities that equate target
lem of correlating the mappings arises. In particular, oas to expressions (e.gy.A) with either source expressions (e.g.B)
correlatemcs o m, which is the result of applying mapping com-  or Skolem terms of the forn[z1, . . . , z;], whereF is a function
position tomcs andm, with the mappingsn, for Empandm, for symbol andr, . . ., z; are a subset of the source variables. Skolem

Proj. This correlation will ensure that all employees and prisiec  terms are used to relate target expressions across diffe@tyds.
of computer science departments will be correctly mappateun  An SO tgd without a Skolem term may also be called, simply, a
their correct departments, in the target schema. tuple-generating dependency or tgd [7].

In this example, composition itself gives another sourcenap- Note that our SO tgds do not allow equalities between or with
pings to be correlated by MapMerge. While similar with compo  skolem terms in theatisfyingclause. While such equalities may
sition in that it is an operator on schema mappings, MapM&ge  pe needed for more general purposes [8], they do not playdaol
fundamentally different in that it correlates mappingg sfare the data exchange and can be eliminated, as observed in [24].
same source schema and the same target schema. In comtnast, ¢ - Chase-Based Semantiche semantics that we adopt for a schema
position takes two sequential mappings where the targétedfitst mapping(S,T, ¥) is the standard data-exchange semantics [7] where,
mapping is the source of the second mapping. Nevertheless, t given a source instande the result of “executing” the mapping is
two operators are complementary and together they can flaya  the target instance that is obtained by chasinfwith the depen-
damental role in building data flows. dencies in:. Since the dependenciesdhare SO tgds, we actually

_— . use an extension of the chase as defined in [8].
1.2 Contributions and Outline of the Paper Intuitively, the chase provides a way of populating the ¢aig-

Our main technical contributions are as follows. We give an stanceJ in a minimal way, by adding the tuples that aeguired
algorithm for MapMerge, which takes as input arbitrary sohe by 3. For every instantiation of thier clause of a dependency in
mappings expressed as second-order tgds [8] and genemates ¢ such that thesatisfyingclause is satisfied but thexistsandwhere

related second-order tgds. As a particular important cialsg- clauses are not, the chase adds corresponding tuples targes t
Merge can also take as input a set of raw schema correspasgjenc relations. Fresh new values (also called labeled nullsyaeel to
thus, it constitutes a replacement of existing mapping igaios give values for the target attributes for which the depenyleloes
algorithms that are used in Clio [18, 10]. We introduce a hove not provide a source expression. Additionally, Skolem teare
similarity measure that is used to quantify the presermaiodata instantiated by nulls in a consistent way: a tefffxs, ..., x;] is
associations from a source database to a target databasaseWe replaced by the same null every time, ..., z; are instantiated
this measure to show experimentally that MapMerge imprtves ~ with the same source tuples. Finally, to obtain a valid taige
quality of schema mappings. In particular, we show that ingett stance, we must chase (if needed) with the target consraint

data that is produced based on the outcome of MapMerge has bet For our earlier example, the target instankeis the result of
ter quality, in terms of preservation of source associatitiman the chasing the source instandewith the tgds in Figure 1(b) and,
target data that is produced based on Clio-generated nggppin additionally, with the foreign key constraints. There, traues
Outline In the next section, we provide some preliminaries on schem®&1, D2, D3 are nulls that are generated to #iild values for which
mappings and their semantics. In Section 3 we give the mair in  the tgds do not provide a source expression. The targeniresta
ition behind MapMerge, while in Section 4 we describe thevalg s the result of chasing with the SO tgds in Figure 1(c). There,

rithm. In Section 5, we introduce the similarity measure thean- D is a null that corresponds to the Skolem teFfy] whereg is
tifies the preservation of associations. We then make uski®f t instantiated with the sole tuple Group.

measure to evaluate the performance of MapMerge on resaifl In practice, mapping tools such as Clio do not necessarity im
synthetic mapping scenarios. We discuss related work itidseg plement the chase with, but generate queries to achieve a similar
and conclude in Section 7. result [10, 18].

2. Preliminaries 3. Correlating Mappings: Key ldeas

A schema consists of a set of relation symbols, each with an How do we achieve the systematic and, moreogerrect con-
associated set of attributes. Moreover, each schema canahsat struction of correlated mappings? After all, we do not wanhii-a
of inclusion dependencies modeling foreign key constsaiithile trary correlations between mappings, but rather only toethient
we restrict our presentation to the relational case, altechniques that thenatural data associations in the source are preserved and no
are applicable and implemented in the more general caseeof th extra associations are introduced.
nested relational data model used in [18], where the schamzs There are two key ideas behind MapMerge. The first idea is to
mappings can be either relational or XML. exploit the structure and the constraints in the schemasder @o



define what natural associations are (for the purpose oflge a
rithm). Two data elements are considered associated ifaheyn
the same tuple or in two different tuples that are linked \da-c
straints. This idea has been used before in Clio [18], andiges
the first (conceptual) step towards MapMerge. For our exatipé
input mappings in Figure 1(b) is equivalent, in the presence of the
source and target constraints, to the following enrichegpiray:

t4: for w in Works, g in Groupsatisfyingw.gno =g.gno
existsp in Proj,d in Dept
wherep.pname =w.pnameand p.did =d.did
Intuitively, if we have aw tuple in Works we also have a joining
tuple g in Group, sincegno is a foreign key fromWorksto Group.
Similarly, a tuplep in Proj implies the existence of a joining tuple
in Dept, sincedid is a foreign key fronProj to Dept

Formally, the above rewriting froms to t5 is captured by the
well-known chase procedure [2, 15]. The chase is a convenien
tool to group together, syntactically, elements of the sth¢hat
are associated. The chase by itself, however, does not ehlihag
semantics of the mapping. In particular, the abtiyeoes not in-
clude any additional mapping behavior fraBnoupto Dept

The second key idea behind MapMerge is thaeofingor bor-

rowing mapping behavior from a more general mapping to a more

specific mapping. This is a heuristic that changes the sécgait
the entire schema mapping and produces an arguably beter on
with consolidated semantics.

To illustrate, consider the first mapping constraint in Feii(c).
This constraint (obtained by skolemizing the inpu} specifies a
general mapping behavior fro@roup to Dept In particular, it
specifies how to creaténame anddid from the input record. On
the other hand, the abov§ can be seen as a mospecificmap-
ping from asubsebf Group(i.e., those groups that have associated
Workstuples) to essubsebf Dept(i.e., those departments that have
associatedProj tuples). At the same timej; does not specify any
concrete mapping for théname anddid fields of Dept We can
then borrow the mapping behavior that is already specifiethby
more general mapping. Thus, can be enriched to:

th: for w in Works, g in Groupsatisfyingw.gno =g.gno
existsp in Proj, d in Dept
wherep.pname =w.pnameand p.did =d.did

andd.dname =g.gnameand d.did = F'[¢g] and p.did = F'[g]
where two of the last three equalities represent the “bagdvbe-
havior, while the last equality is obtained automaticaljytiansi-
tivity. Finally, we can drop the existence @fin Deptwith the two
conditions fordname anddid, since this is repeated behavior that
is already captured by the more general mapping faroup to
Dept The resulting constraint is identiéab the third constraint in
Figure 1(c), now correlated with the first one Vidg]. A similar
explanation applies for the second constraint in Figurg 1(c

The actual MapMerge algorithm is more complex than intalgiv

suggested above, and is described in detail in the nexbsecti

4. The MapMerge Algorithm

MapMerge takes as input a sgfS, T, %1), ..., (S, T, X,)} of
schema mappings over the same source and target schemets, whi
is equivalent to taking a single schema mappiSgT,%; U ... U
3,) as input. The algorithm is divided into four phases and the
complete pseudocode is given in the appendix. The first pliese
composes each input mapping assertion into basic compotieit
are, intuitively, easier to merge. In Phase 2, we apply theseh
algorithm to compute associations (which we ¢ableauy, from

3Modulo the absence df; [w], which will be explained separately.

the source and target schemas, as well as from the sourcarand t
get assertions of the input mappings. By pairing source argbt
tableaux, we obtain all the possildkeleton®f mappings. The ac-
tual work of constructing correlated mappings takes pladehase

3, where for each skeleton, we take the union of all the basit-c
ponents generated in Phase 1 that “match” the skeletoneRhas
simplification phase that also flags conflicts that may anekthat
need to be addressed by the user. These conflicts occur wHen mu
tiple mappings that map to the same portion of the targetrsahe
contribute with different, irreconcilable behaviors.

4.1 Phase 1: Decompose into Basic SO tgds

The first step of the algorithm decomposes each input SO tgd
into a set of simpler SO tgds, callégsic SO tgdsthat have the
samefor andsatisfyingclause as the input SO tgd but have exactly
one relation in theexistsclause. Intuitively, we break the input
mappings into atomic components that each specify mappeng b
havior for a single target relation. This decompositiorpsiéll
subsequently allow us to merge mapping behaviors even viegn t
come from different input SO tgds.

In addition to being single-relation in the target, eachidb&O
tgd gives a complete specification of all the attributes eftrget
relation. More precisely, each basic SO tgd has the form

for # in S satisfyingB ()

existsy in T WhereA ;¢ 144y ¥-A = € (@)
where the conjunction in theshere clause contains one equality
constraint foreachattribute of the record, asserted in the target
relationT. The expressior (%) is either a Skolem term or a
source expression (e.g:,B). Part of the role of the decomposition
phase is to assign a Skolem term to every target expregsfofor
which the initial mapping does not equate it to a source esgioe.

For our example, the decomposition algorithm (given in the a
pendix) obtains the following basic SO tgds from the inpupma
pingsti, t2, andts of Figure 1(b):

(b1): for g in Groupexistsd in Dept
whered.did = F[g] and d.dname =g.gname
(b2): for w in Works, g in Group
satisfyingw.gno =g.gnoandw.addr = “NY”
existse in Emp
wheree.ename =w.enameand e.addr =w.addrand e.did = G[w, g]

(b5): for w in Works, g in Group
satisfyingw.gno =g.gnoandw.addr = “NY”
existsd in Dept

whered.did = G|w, g] and d.dname =y.gname

(b3):

for w in Worksexistsp in Proj
wherep.pname =w.pnameand p.budget =H; [w] andp.did = Ha[w]

The basic SO tgd; is obtained fromt;; the main difference
is thatd.did, whose value was unspecified fy is now explicitly
assigned the Skolem terfi[g]. The only argument td" is g be-
causey is the only record variable that occurs in thee clause of
t1. Similarly, the basic SO tgb is obtained fromtz, with the dif-
ference being that.budget and.did are now explicitly assigned
the Skolem termg7; [w] and, respectivelyH[w].

In the case of,, we note that we have two existentially quanti-
fied variables, one foEmpand one foDept Hence, the decom-
position algorithm generates two basic SO tgds: the firstoaps
into Empand the second one maps idept Observe thab, and
b, are correlated and share a common Skolem téffmn, g] that
is assigned to both.did andd.did. Thus, the association between



e.did andd.did in the original schema mappirng is maintained in
the basic SO tgds, andb.

In general, the decomposition process ensures that ageosia
between target facts that are asserted by the original sthesp-
ping are not lost. The process is similar to the Skolemipapim-
cedure that transforms first order tgds with existentiallamtified
variables into second order tgds with Skolem functions (88e
After such Skolemization, all the target relations can hgasated
since they are correlated via Skolem functions. Therefibie set
of basic SO tgds that results after decomposition is eqeiatio
the input set of mappings.

4.2 Phase 2: Compute Skeletons of Schema Mappings

Next we apply the chase algorithm to compute syntactic d&soc
tions (which we caltableauy, from each of the schemas and from
the input mappings. Essentially, a schetableauis constructed
by taking each relation symbol in the schema and chasingtlit wi
all the referential constraints that apply. The result aftsahase
is a tableau that incorporates a set of relations that i=dlosder
referential constraints, together with the join condifidhat relate
those relations. For each relation symbol in the schemee thene
schema tableau. As in [10, 18], in order to guarantee tetinima
we stop the chase whenever we encounter cycles in the réédren
constraints. In our example, there are two source scheneatab
and three target schema tableaux, as follows:

Ty = {g¢€Group}

T> = {w € Works,g € Group;w.gno =g.gno}
T3 = {decDept}

Ty = {eecEmp,de Depte.did=d.did}

Ts = {pé€Proj,dec Dept;p.did=d.did }

Intuitively, schema tableaux represent the categoriesitaf that
can exist according to the schema. Gxoup record can exist in-
dependently of records in other relations (hence, the &alilg).
However, the existence of Worksrecord implies that there must
exist a correspondin@roup record with identicabno (hence, the
tableaul?).

Since the MapMerge algorithm takes as input arbitrary mappi
assertions, we also need to generate user-defined mapbpieguz,
which are obtained by chasing the source and target assexio
the input mappings with the referential constraints thategoplica-
ble from the schemas (see Appendix A). The notion of usenddfi
tableaux is similar to the notion of user associations ir.[BBour
example, there is only one new tableau based on the souree ass
tions of the input mapping.:

T, = {w € Works,g € Group;w.gno =g.gno,w.addr = “NY” }
Furthermore, we then pair every source tableau with eveggta
tableau to form akeleton Each skeleton represents the empty shell
of a candidate mapping. For our running example, the setlof al
skeletons at the end of Phase 2 {71, 13), (T1,T4), (T1,T5),

(T2, T3), (T2, Tu), (T2, Ts), (15, Ts), (T5, Tu), (T3, T5)}.

4.3 Phase 3: Match and Apply Basic SO tgds on Skeletons

In this phase, for each skeleton, we first find the set of baBic S
tgds that “match” the skeleton. Then, for each skeleton, ppdya
the basic SO tgds that were found matching, and constructgeahe
SO tgd. The resulting SO tgd is, intuitively, the “conjumcti of
all the basic SO tgds that were found matching.

Matching. We say that a basic SO tgdnatches a skeletqfT’, ")
if there is a pair(h, g) of homomorphisms that “embed? into
(T, T'). This translates into two conditions. First, ther and
satisfyingclause ofr are embedded int® via the homomorphism
h. This means thak maps the variables in ther clause ofs to

variables ofT" such that relation symbols are respected and, more-
over, thesatisfyingclause ofo (after applyingh) is implied by the
conditions ofT". Additionally, theexistsclause ofo must be em-
bedded intdl” via the homomorphism. Sinceos is a basic SO tgd
and there is only one relation in éxistsclause, the latter condition
essentially states that the target relatioarimust occur inf”.

For our running example, it is easy to see that the basic S@ tgd
matches the skeletaf¥i, 73). In fact, by matches every skeleton
from Phase 2. On the other hand, the basic SG@igdatches only
the skeleton(Ty, Tx) under the homomorphism@, h2), where
hi = {w — w,g — g} andhs = {e — e}. Altogether, we
obtain the following matching of basic SO tgds on skeletons:

(Th,T3,b1)  (T1,Tu,b1)  (T1,T5,b1) (T2,T5,b1)
(T, T4, b1) (T2, T5,b1 A b3) (T3, T5,b1 A by)
(Té,T4,bl/\b2 /\b/2) (TQI,T5,bl/\b,2/\bg)

Note that the basic SO tgds that match a given skeleton may ac-
tually come from different input mappings. For example,leat
the basic SO tgds that mat¢fy, T5) comes from a separate input
mapping (fromt¢q, t2, andts, respectively). In a sense, we aggre-
gate behaviors from multiple input mappings in a given dkele

Computing merged SO tgds. For each skeleton along with the
matching basic SO tgds, we now construct a “merged” SO tgd. Fo
our example, the following SO tgd is constructed from the eighth
triple (T3, T4, b1 A b2 A by) shown earlier.
(ss) for w in Works, g in Group
satisfyingw.gno =g.gnoandw.addr = “NY”
existse in Emp,d in Dept
wheree.did =d.did
andd.did = F'[¢g] andd.dnameg.gname
ande.ename =w.enameande.addr =w.addrande.did = G[w, g]
andd.did = Glw, ¢]
The variable bindings in the source and target tableauxadent
literally and added to théor and, respectivelyexistsclause of the
new SO tgd. The equalities if; andT are also taken literally and
added to thesatisfyingand, respectivelywhereclause of the SO
tgd. More interestingly, for every basic SO tgdhat matches the
skeleton {5, T4), we take thavhereclause ofr (after applying the
respective homomorphisms) and add it to @igereclause of the
new SO tgd. (Note that, by definition of matching, tetisfying
clause ofr is automatically implied by the conditions in the source
tableau.) The last three lines in the above SO tgd incorpaman-
ditions taken from each of the basic SO tgds that mafich 7%)
(i.e., fromby, b, andb’, respectively).
The constructed SO tgd consolidates the semantits, 6%, and
b5 under one merged mapping. Intuitively, since all threed)8€)
tgds are applicable whenever the source pattern is givery land
the target pattern is given by, the resulting SO tgd takes the
conjunction of the “behaviors” of the individual basic S@sg
Correlations. A crucial point about the above construction is that
a target expression may now be assigned multiple expresdiam
example, in the above SO tgd, the target expressidid is equated
with two expressions:F[g] via b1, and G[w, g] via b3. In other
words, the semantics of the new constraint requires theesatd
the two Skolem terms to coincide. This is actually what it neetp
correlateb; andbs. We can represent such correlation, explicitly, as
the following conditional equality (implied by the above $§dl):
for w in Works, g in Groupsatisfyingw.gno =g.gnoandw.addr = “NY”
= Fg] = Glw, g]
We use the termmesidual equality constrainfor such equality
constraint where one member in the implied equality is a &kol

term while the other is either a source expression or an&@kalem
term. Such constraints have to be enforced at runtime when we




perform data exchange with the result of MapMerge. In gdnera
Skolem functions are implemented as (independent) lockbies,
where for every different combination of the arguments |olo&up
table gives a fresh new null. However, residual constraivits
require correlation between the lookup tables. For exanthke
above constraint requires that the two lookup tables Kf@nd G)
must give the same value wheneverand g are tuples ofWorks
andGroupwith the sameyno value.
To conclude the presentation of Phase 3, we list the otheethr
merged SO tgds below that result after this phase for our pkeam
(81) from (Tl s T37 bl)I

for g in Group

existsd in Dept

whered.did = F[g] andd.dnameg.gname

(86) from (TQ,T57 b1 N bg):
for w in Works, g in Groupsatisfyingw.gno =g.gno
existsp in Proj, d in Dept
wherep.did =d.did
and d.did = F[g] andd.dnameg.gname
and p.pname =w.pnameandp.budget =H; [w] andp.did = Ha [w]

(sg) from (T4, Ts, b1 A by A b3):

for w in Works, g in Group

satisfyingw.gno =g.gnoand w.addr = “NY”

existsp in Proj, d in Dept

wherep.did =d.did
and d.did = F'[¢g] andd.dnameg.gname
and p.pname =w.pnameandp.budget =H; [w] andp.did = Ha [w]
and d.did =G[w, g]

One aspect to note is that not all skeletons generate me@ed S
tgds. Although we had six earlier skeletons, only three gere
mappings that are neithsubsumedchor implied (See also the ap-
pendix.) We use here the technique for pruning subsumed -or im
plied mappings described in [10]. For an example of a subdume
mapping, consider the tripl€l, 74, b1). We do not generate a
mapping for this, because its behavior is subsumed;hyvhich
includes the same basic componénbut maps into a more “gen-
eral” tableau, namel§¥s. Intuitively, we do not want to construct a
mapping intdl, which is a larger (more specific) tableau, without
actually using the extra part @;. Implied mappings are those that
arelogically implied by other mappings. For example, the map-
ping that would correspond td%, T3, b1) is logically implied by
se: they both have the same premigg), butss asserts facts about
a larger tableaul(s, which includesl’s) and already covers, .

Finally, for our example, we also obtain three more residual
equality constraints, arising frosa, and stating the pairwise equal-
ities of F'[g], H2[w] andG[w, g] (since they are all equal tadid
andd.did, which are also equal to each other).

Since residual equalities cause extra overhead at runtinee,
worthwhile exploring when such constraints can be elingdatith-
out changing the overall semantics. We describe such meitaxd

4.4 Phase 4: Eliminate Residual Equality Constraints

The fourth and final phase of the MapMerge algorithm attempts
to eliminate as many Skolem terms as possible from the getera
SO tgds. The key idea is that, for each residual equalitytcains,
we attempt to substitute, globally, one member of the etyuaiih
the other member. If the substitution succeeds then thereitess
residual equality constraint to enforce during runtime. rétwer,
the resulting SO tgds are syntactically simpler.

Consider our earlier residual constraint stating the eguBl[g] =
G[w, g] (under the conditions of théor and satisfyingclauses).
The two Skolem term¢[g] and G|w, g] occur globally in multi-
ple SO tgds. To avoid the explicit maintenance and coraiatif

two lookup tables (for botl#” and G), we attempt the substitution
of either F'[g] with G[w, g] or G|w, g] with F[g]. Care must be
taken since such substitution cannot be arbitrarily appliEirst,
the substitution can only be applied in SO tgds that satrefypre-
conditions of the residual equality constraint. For oumapke, we
cannot apply either substitution to the earlier SO &gdsince the
precondition requires the existenceWbrkstuple that joins with
Group. In general, we need to check for the existence of a homo-
morphism that embeds the preconditions of the residualliggua
constraint into théor andwhereclauses of the SO tgd. The second
issue is that the direction of the substitution matters. éxample,
let us substituteé”'[g] by G|w, ¢] in every SO tgd that satisfies the
preconditions. There are two such SO tgds:andso. After the
substitution, in each of these SO tgds, the equaligid = F[g]
becomesl.did = G[w, g] and can be dropped, since it is already in
thewhereclause. Note, however, that the replacemenk’@f] by
G[w, g] did not succeed globally. The SO tgeisandss still refer

to F'[g]. Hence, we still need to maintain the explicit correlatién o
the lookup tables foF' andG. On the other hand, let us substitute
G[w, g] by F[g] in every SO tgd that satisfies the preconditions.
Again, there are two such SO tgdsi and sg. The outcome is
different now: G[w, g] disappears from boths and se (in favor

of F'[g]); moreover, it did not appear iy or s¢ to start with. We
say that the substitution 6f[w, g] by F'[g] has globally succeeded.
Following this substitution, the constraisy is implied byss: they
both assert the same target tuples, and the source tdbjdau sg

is a restriction of the source tabled@ul for sg. Hence from now on
we can discard the constraisy.

Similarly, based on the other residual equality constramhad
earlier, we can apply the substitution Bk [w] by F[g]. This af-
fects onlyss and the outcome is thdf[w] has been successfully
replaced globally. The resulting SO tgds, for our exampie;, a

(s1) for g in Group
existsd in Dept
whered.did = F'[g] andd.dnameg.gname

(sg) for w in Works, g in Groupsatisfyingw.gno =g.gno
existsp in Proj, d in Dept
wherep.did = d.did
and d.did = F'[¢g] andd.dnameg.gname
and p.pname =w.pnameand p.budget =H; [w] andp.did = F[g]

(s%) for w in Works, g in Group
satisfyingw.gno =g.gnoandw.addr = “NY”
existse in Emp,d in Dept
wheree.did =d.did
andd.did = F[¢g] andd.dnameg.gname
ande.ename =w.enameande.addr =w.addrande.did = F[g]

As explained in Section 3, bot¥} andss can be simplified, by
removing the assertions abdbept, since they are implied by;.
The result is then identical to the SO tgds shown in Figurg 1(c

Our example covered only residual equalities between &kole
terms. The case of equalities between a Skolem term and eesour
expression is similar, with the difference that we form onlye
substitution (to replace the Skolem term by the source sxjor).

The exact algorithm for eliminating residual constraigisen in
the appendix, is an exhaustive algorithm that forms eachilples
substitution and attempts to apply it on the existing SO.t¢fdbe
replacement is globally successful, the residual equatitystraint
that generated the substitution can be eliminated. Thenalto-
rithm goes on to eliminate other residual constraints orrehgit-
ten SO tgds. If the replacement is not globally succesdfelatgo-
rithm tries the reverse substitution (if applicable). Imgeal, it may
be the case that neither substitution succeeds globalbudh case,



the corresponding residual constraint is kept as part obthiput

of MapMerge. Thus, the outcome of MapMerge is, in generagta s
of SO tgdstogetherwith a set of residual equality constraints. (For
our example, the latter set is empty.)

Finally, the last issue that arises is the case of conflictaap-
ping behavior. Conflicts can also be described via congt,gsim-
ilar to residual equality constraints but with the main eliéince
that both members of the equality are source expressionsn@tn
Skolem terms). To illustrate, it might be possible that agedr
SO tgd asserts that the target expresgi@mame is equal to both
g.gname (from some input mapping) and witltode (from some
other input mapping, assuming thewde is some other source
attribute). Then, we obtain conflicting semantics, with twomm-
peting source expressions for the same target expressional©
gorithm flags such conflicts, whenever they arise, and rsttire
mapping to the user to be resolved.

5. Evaluation

To evaluate the quality of the data generated based on Map-
Merge, we introduce a measure that captures the similagttyden
a source and target instance by measuring the amount of skda a
ciations that are preserved by the transformation from thece
to the target instance. We will use this similarity measureur
experiments to show that the mappings derived by MapMerge ar
better than the input mappings.

5.1 Similarity Measure

The main idea behind our measure is to capture the extent to
which the “associations” in a source instance are presemrah
transformed into a target instance of a different schema.ekoh
instance, we will compute a single relation that incorpesaall
the natural associations between data elements that extis in-
stance. There are two types of associations we considerfirEhe
type is based on the chase with referential constraints andti
urally captured by tableaux. As seen in Section 4.2, a tablea
a syntactic object that takes the “closure” of each relatioder
referential constraints. We can then materialize the joieryg that
is encoded in each tableau and select all the attributesafipasar
in the input relations (without duplicating the foreign kigkey at-
tributes). Thus, for each tableau, we obtain a single miatialled
tableau relation that conveniently materializes together data as-
sociations that span multiple relations. For example, énéetiu
relations for the source instanéen Figure 1 (for tableauf; and
T» in Section 4.2) are shown on top of Figure 3(b). We denote the
tableau relations of an instandeof schemaS as7s(I), or sim-
ply 7(I). The tableau relations(.J:) andr(Jz2) for our running
example are also shown in Figure 3.

The second type of association that we consider is basedeon th
notion offull disjunction[11, 20]. Intuitively, the full disjunction of
relationsRy, ..., Ry, denoted a§'D (R, ..., Ry ), captures in a sin-
gle relation all the associations (via natural join) thaseamong
tuples of the input relations. The reason for using full disjtion
is that tableau relations by themselves do not capture alhgso-
ciations. For example, consider the association thatekistween
John and Webin the earlier source instanc&. There,Johnis
an employee inCS andWebis a project inCS However, since
there is no directed path via foreign keys frdmhnto Weh the
two data elements appear in different tableau relations(dt)
(namely, DeptEmpand DeptPro). On the other hand, if we take
the natural join betwee®eptEmpand DeptProj the association
betweenJohnand Webwill appear in the result. Thus, to capture
all such associations, we apply an additional step whichpeoes

the full disjunctionFD(7(I)) of the tableau relations. This gener-
ates a single relation that conveniently captures all tse@ations
in an instancd of schemaS. Intuitively, each tuple in this relation
corresponds to one association that exists in the data.

Operationally, full disjunction must perform the outer fon”
of all the tuples in every input relation, together with &léttuples
that arise via all possible natural joins among the inputiehs.
To avoid redundancyninimal unionis used instead of union. This
means that in the final relation, tuples that are subsumedhsr o
tuples are pruned. A tupleis subsumedy a tuplet’ if for all
attributesA such that. A # null, itis the case that. A = t.A. We
omit here the details of implementing full disjunction, e point
out that such implementation is part of our experimentaiateon.

For our example, we shokD(7(J1)), FD(7 (1)), andED(7(J2))
at the bottom of Figure 3. There, we use the ’-’ symbol to repre
sent the SQL null value. We note tHaD(7(.J2)) connects now all
three ofJohn WebandCSin one tuple.

Now that we have all the associations in a single relatior, on
on each side (source or target), we can compare them. More pre
cisely, given a source instandeand a target instancé, we de-
fine the similarity betweed and J by defining the similarity be-
tweenFD(7(I)) andFD(7(J)). However, when we compare tu-
ples betweerFD(7(I)) and FD(r(J)), we should not compare
arbitrary pairs of attributes. Intuitively, to avoid caphg “acci-
dental” preservations, we want to compare tuples based amly
their compatibleattributes that arise from the mapping. In the fol-
lowing, we assume that all the mappings that we need to eealua
implement the same s&t of correspondences between attributes
of the source schenthiand attributes of the target schefMaThis
assumption is true for mapping generation algorithms, wktart
from a set of correspondences and generate a faithful ingslem
tation of the correspondences (without introducing newvibatte-
to-attribute mappings). It is also true for MapMerge andrifsut,
since MapMerge does not introduce any new attribute-ribate
mappings that are not already specified by the input mappings
Given a sefV of correspondences betwe8nand T, we say that
an attributeA of S is compatiblewith an attributeB of T if ei-
ther there is a direct correspondence betwéemd B in V, or (2)

A is related to an attributel’ via a foreign key constraint d8,

B is related to an attribut#’ via a foreign key constraint dT’,
and A’ is compatible withB’. For our example, the pairs of com-
patible attributes (from source to target) arfginame, dname),
(ename, ename), (addr, addr), (pname, pname).

DEFINITION1 (TUPLE SIMILARITY). Let¢; andt. be two
tuples inFD(7 (1)) and, respectivelyfD(7(J)). Thesimilarity of
t; andtz, denoted aSim(¢1,t2), is defined as:

[{A € Atts(t1) | IB € Atts(t2), AandB compatiblet;. A = to.B # null}|
[{A € Atts(t1) | 3B € Atts(t2), A and B compatiblé |

Intuitively, Sim(¢1, ¢2) captures the ratio of the number of values
that are actually exported frota to ¢» versus the number of values
that could be exported from according toV. For instance, let;

be the only tuple iF'D(r(I)) from Figure 3 and- the only tuple

in FD(7(J2)). Then,Sim(¢1,t2) is 1.0, sincet;.A = t3.B for
every pair of compatible attributesand B. Now, lett, be the first
tuple inFD(7(J1)). Since onlyt;.gname =;.dname out of four
pairs of compatible attributes, we have tBat(¢:,¢2) is 0.25.

DEFINITION 2 (INSTANCE SIMILARITY). The similarity be-
tweenFD(7(I)) andFD(r(J)) is

t1€FD(7(I))

Sim(FD(r(I)),FD(7(J))

max

Sim(tl, tz).
to€FD(7(J))



Ts,(J,) : Tableaux relations of J;

DeptEmp DeptProj
did dname did dname ename addr did dname pname budget
D1 CS D2 CS John NY D3 N Web B 123 CS 123 CS

7g,(I) : Tableaux relations of I

gno gname gno gname ename addr pname

Ts,(J,) : Tableaux relations of J,

DeptEmp DeptProj

did dname did dname ename addr did dname pname budget

D2

John NY Web D CS D GS] John NY D CS Web B’

FD(75,(J,)): Full disjunction of 7,(J;)

did dname ename addr pname budget
D1 CS

Similarity
0.75

FD(75,(I)):Full disjunction of 7,(I) Slmllarlty

gno gname ename addr pname

FD(7s,(J,)): Full disjunction of 7,(J,)

did dname ename addr pname budget

Web

B

D2 Cs
D3 N

John

NY

123 CS

(a)
Figure 3: Tableau relations of Ji, I, and .J»

Figure 3 depicts the similaritie$im(FD(7 (1)), FD(7(J1))) and
Sim(FD(7(I)),FD(7(J2))). The former similarity score is ob-
tained by comparing the only tuple #D (7 (1)) with the best match-
ing tuple (i.e., the second tuple) KD (7(J1))).

5.2 Experiments

To evaluate MapMerge, we conducted a series of experiments
on a set of synthetic mapping scenarios as well as on twdifeal-
mapping scenarios from the biological domain. We give neries
highlights of our results on the synthetic scenarios andntepe
rest in the appendix.
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Figure 4: Improvement in quality of generated data.
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Our synthetic mapping scenarios transform data from a denor
malized source schema with a single relation to a targetnsahe
containing a number of hierarchies, with each hierarchyrrpat
its top an “authority” relation, while other relations refe the au-
thority relation through foreign key constraints. The &rgchema
corresponds roughly to ontological schemas, which oftertao
top-level concepts that are referred to by many sub-concépte
synthetic scenarios were also designed to scale so thatmaea:
sure both the running time performance of MapMerge and the im
provement in target data quality as the schemas increaseein s

Figure 4 shows the improvement in the quality of the gener-
ated data that we obtain by using MapMerge versus using Clio-
generated mappings [10]. In the experiment, the Clio-gerdr
mappings are used as input to the MapMerge operator. Thes, th
experiment shows the benefit of using MapMerge on top of Clio
mappings. The parameterthat describes the complexity of the
mapping scenario in terms of schemas is shown on the x-axis. O
the y-axis, we show thdegree of similarityof the source instance
I to the target instancd that is generated (by using MapMerge
or Clio mappings). Here, the degree of similaritylofo J is com-
puted as the ratio ¢fim(FD(7 (1)), FD(7(J))) toSim(FD(7(I)),
FD(7(1))), where the latter represents the ideal case where every
tuple inFD(7 (1)) is preserved by the target instance. (Note that
the latter quantity simplifies to the expressiD (7(1))|.)

As the figure shows, the degree of similarity decreases ias
creases (for both MapMerge and Clio mappings). The reason is
that, as» becomes larger, the source relation is broken into a larger
number of uncorrelated top-level target concepts. Thus,irth
creased loss of associations from the source to the targat is
evitable. However, the relative improvement when using Map

John

(b)

NY Web % D [ John NY Web B’

(c)
of Figure 2 and their full disjunctions.

Merge on top of the Clio mappings (shown as the numbers onftop o
the bars) increases substantiallypasecomes larger. The reason is
that MapMerge is able to correctly map to an entire hiera(ftw
each top-level concept) without any loss of associatiomdg/lio
mappings have only a limited ability. Complete explanatiofithe
experiment are given in the appendix, where we also meakare t
performance of MapMerge in terms of its running time.

6. Related Work

Model management [16] has considered various operators on
schema mappings, among which Confluence is closest in &pirit
MapMerge. Confluence also operates on mappings with the same
source and target schema, and it amounts to taking the adigon
of the constraints in the input mappings. Thus, Confluenas do
not attempt any correlation of the input mappings. Our wak ¢
be seen as a step towards the high-level design and optiomZat
ETL flows [21, 22]. This can be envisioned by incorporatingoma
pings [4] into such flows, and employing operators such as-Map
Merge and composition to support modularity and reuse.

The instance similarity measure we used to evaluate Mapdlerg
draws its inspiration from the very general notion of Hauffdtis-
tance between subsets of metric spaces, and from the surmef mi
imum distances measure. We refer to [5] for a discussionesxfeh
measures. Moreover, our notion of tuple similarity is Idgdmased
on the well known Jaccard coefficient. However, the previoes-
sures are symmetric and agnostic to the transformationpttat
duces one database instance from the other. In contragtption
is tailored to measure the preservation of data assocgatiom a
source database to a target database under a schema mapping.

7. Conclusions

We have presented our MapMerge algorithm and an evaluation
of our implementation of MapMerge. Through a similarity mea
sure that computes the amount of data associations thatr@re p
served from one instance to another, our evaluation shoatsath
given source instance has higher similarity to the targstaimce
obtained through MapMerge when compared to target instance
obtained through other mapping tools. As part of our futuoeky
we intend to explore the use of the notion of information If&s
to compare between mappings generated by MapMerge witk thos
generated by other mapping tools. In addition, we would tike
further explore applications of MapMerge to flows of mapging
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APPENDIX
A. Pseudocode of MapMerge

The main algorithm for MapMerge is given below. This algo-
rithm makes calls to several subroutines, which are lisegghs
rately, in the respective subsections.

Algorithm MapMergeS§, T, X)

Input: A schema mapping.

Output: (S, T,X’) and F, whereX' is the correlated schema mapping
andF is a set of failed unifications or “residual constraints”.

Phase 1. (Decompose into basic SO tgds)
Initialize the set of basic SO tgd3 = ().
For each SO tgdr € X do
Add Decompose() to B
Phase 2. (Compute skeletons of schema mappings)
Initialize the set of skeleton&” = ()
Initialize the set of source and target table&ux. = 0, Tyg¢t = 0
Generate the schema tableaux:
For each relatio? € S
Chase{z € R} with referential constraints i, add result tals .
For each relatio) € T
Chase{y € Q} with referential constraints if", add result tdl; ¢
Generate the user-defined tableaux:
For each SO tgd € ¥ of the form
for 7 in R satisfyingB, () existsij in 7' where Bs () A C(Z, )
Chase{ € R; B (Z)} with referential constraints i§
If the result is not implied by's,.c, add it toTs,
Chase{j € T; Ba(¥)} with referential constraints i
If the result is not implied by 4¢, add it toT3 ¢
For eachl’ € T, andT’ € T4t do
Add the skeleto{T’,7") to K.
Phase 3. (Match and apply basic SO tgds on skeletons)
Initialize the list of output constraints’ = ()
For each skeleto’; € K do
Initialize the setB; = 0
For eachr € B do
Let L; = Match(o, K;)
If L; # 0, then add the paifo, L;) to B;
UpdateX’ to be>’ U ConstructSOtgtK;, B;)
Remove from>’ everyo’ such that for some’’ € ¥’
such that”’ # o', eithero”’ |= o’ or o’ subsumes”’
Phase 4. (Eliminate residual equality constraints)
Initialize the list of failed substitutiong’ = (
Repeat
Let U = FindNextSubstitutio(®’ , F')
If U is a substitution candidate (i.e., not a failure) then
If U cannot be successfully applied &1
(i-e., Substitute>’, U) fails) then
Add the failed substitutio/ to F’
Until no more substitutions can be applied
Return(X’, F') as the output of the algorithm

A.1 Pseudocode used by Phase 1

The algorithm that decomposes an input SO tgd into its set of
basic SO tgds is listed below.

Algorithm Decomposef)
Input: ¢ is aninput SO tgd
Output: X is a set of basic SO tgds resulting from the decomposition of
Initialize ¥ = ()
Assume the input SO tgdl is of the form:
for #in S satisfyingC(Z) existsy in T° whereC’ (Z, )

The target conditio’ is a conjunction of equalities between source and
target expressions, or between target expressions. Theaéties partition
the source and target expressions inuliereclause into a set E of equiv-
alence classes. Associate a fresh Skolem t&¥ifiF] to each equivalence
classE; € E.

For eachy; in T; from theexistsclause ofr



Initialize the basic SO tgd’ to be
for # in S satisfyingC(z) existsy; in T;
For each attributed of the recordy; do
If y;.A appears in an equivalence cldSs € E then
If E/; contains a source expressiop. B then
Add y;.A = x;,. B to thewhereclause ofs’
Else addy;.A = F;[Z] to thewhereclause ofo’
Else addy;.A = G[z] to thewhereclause ofo”,
whered is a fresh Skolem function name
Addo’ to X
ReturnX as the output of the algorithm

A.2 Pseudocode for Phase 3

The subroutine that determines whether a basic S©@ tgdtches
a skeleton(T, T") is presented below. ¥ matcheg(T,T"), then
the subroutine Match returns a pair of homomorphisms that “e
beds"o to (T, T"). Otherwise, an empty set is returned.

Algorithm Match(, (T, T"))
Input: o is a basic SO tgdl” andT” are tableaux.
Output: (h, g), whereh andg “embed” ¢ into (T, T").

Recall that the input basic SO tgdhas the form:
fOF.’El i_nSl,mgi_nSg, ,wnmsn
T satisfyingB(z1, . . ., Tn)
existsy in @

wAAeAtts(y) yA=ei(r1,...,Tn)
The satisfyingclause is a conjunction of equalities of the forn A; =
x;.Aj orz;. A; = c, where A; € Atts(z;), A; € Atts(z;), andc is a
constant. The setltts(y) denotes the set of attributes in the recgrdrhe
where clause contains one equality constraint for each attribfitthe y
record.

In addition, the tableal” has the form:

{u1 € R1,u2 € Ra,...,u € Rg; Cr(u1,...

s uk)}

If there exists a pair of homomorphisr¥s, g) such that
(1) for everyl < i < n, if ; € S; according tar,
thenh(z;) € R; according tdrl’,
(2) Cr(ui,...,ug) impliesB(h(z1),...,h(zn)), and
(3) g(y) € Q according tor’
Return(h, g)
Else
Return@

The algorithm that constructs a merged SO tgd by applying the

result of the previous Match algorithm on the skeletonssted
below.

Algorithm ConstructSOtgd(l’, 7”), B)

Input: (T, T") is a skeleton and is a set of pairgo, (h, g)), whereo is
a basic SO tgd, anth, g) “embeds”s into (T, 7”).
Output: A Skolemized SO tgd according (@, 7", B).

Recall thatl” andT” have the form:

T = {:ElGsl,wgESQ,...,IEPEsp;c(.’ﬂl,...,.’ﬂp)}
T = {y1€Quy2€Q2...,us € Qi; C'(y1,. .., ui)}
Initialize the SO tgdr to be:
forx1in S1,z2in Sa,...,zp N Sy
 satisfyingC(z1, . . ., xp)
existsyy in Q1, y2in Qs, ..., yx i Qg
whereC’(y1, - . ., yx)
For each(o, (h,g)) € B
Recall thato is a basic SO tgd of the form:
forz;j, in Sjy, 25, In Sjy, ... 25, In Sy,
T satisfyingB; (zj,,- .., 2j,)
existsy in Q)
whereA 4 ¢ ayps(y) ¥-A = ealajy, .-, 25,)

Add Bj(h(zj,), ..., h(z;,)) to thesatisfyingclause ofr

Add the following conjunction of equalities:

/\AEAttS(y) 9(y)-A=ealg(z;,), .-, 9(z;,))
to thewhereclause ofr

Returnt

We list below the complete set of SO tgds that are constructed

in Phase 3 of MapMerge before the actual step of eliminatieg t
subsumed or implied SO tgds.

(81) from (Tl,Tg, bl):

for g in Group

existsd in Dept

whered.did = F'[g] andd.dnameg.gname

(82) from (T1 s T4, b1 ):

for g in Group

existse in Emp,d in Dept

whered.did = F'[g] andd.dnameg.gname

(83) from (T1 s T5, bl)l

for g in Group

existsp in Proj, d in Dept

whered.did = F'[g] andd.dnameg.gname

(s4) from (T2, T3, b1):

for w in Works, g in Groupsatisfyingw.gno =g.gno
existsd in Dept

whered.did = F'[g] andd.dnameg.gname

(ss5) from (T, T4, b1):

for w in Works, g in Groupsatisfyingw.gno =g.gno
existse in Emp,d in Dept

whered.did = F'[g] andd.dnameg.gname

(se) from (T2, T5,b1 A b3):
for w in Works, g in Groupsatisfyingw.gno =g.gno
existsp in Proj, d in Dept
wherep.did =d.did
and d.did = F'[¢g] andd.dnameg.gname
and p.pname =w.pnameandp.budget =H1 [w] andp.did = Ha[w]

(s7) from (T3, T3,b1 A bSy):

for w in Works, g in Groupsatisfyingw.gno =g.gnoandw.addr = “NY”
existsd in Dept

whered.did = F'[g] andd.did = G[w, g] andd.dnameg.gname

(Sg) from (T2/,T4, b1 ANba A b,Z):
for w in Works, g in Groupsatisfyingw.gno =g.gnoandw.addr = “NY”
existse in Emp,d in Dept
wheree.did =d.did
andd.did = F'[g] andd.dnameg.gname
ande.ename =w.enameand e.addr =w.addrande.did = G[w, ¢]
andd.did = G[w, g]

(89) from (T2/,T5, b1 A b/2 A bg):
for w in Works, g in Groupsatisfyingw.gno =g.gnoandw.addr = “NY”
existsp in Proj, d in Dept
wherep.did =d.did
and d.did = F'[¢g] andd.dnameg.gname
and p.pname =w.pnameand p.budget =H1 [w] andp.did = Ha[w]
andd.did = G[w, g]

In the above list of constructed SO tgds, is subsumed by .
Similarly, ss is subsumed by;. Moreover,ss is subsumed by,
which is in turn logically implied byss. Finally, s7 is logically
implied by sg. The remaining SO tgds are, ss, ss, andsg, and
none of them is logically implied or subsumed by another. d¢en
these four SO tgds are returned by Phase 3 of the algorithm.



A.3 Pseudocode for Phase 4

The algorithm that forms substitutions to be applied dutimg
elimination of residual equality constraints is listeddvel Note
that the residual equality constraints are created as de@u¢he
form of actual substitutions) from the input SO tgds. At tmel e
of MapMerge, all the failed substitutions are returned asfithal
residual equality constraints.

Algorithm FindNextSubstitution, F)

Input: X is a set of SO tgdsl is a set of substitutions that have failed on
previous attempts.

Output: Either (1)U: a substitution candidate that has not been applied on
Y. before or, (2) failure if no substitution candidates candaenfl.

For each SO tgd € &
Recall thato has the form:

@xl inSy1,z2in So,...,xpIn Sy
satisfyingB(z1, ..., xp)
existsy1 in Q1, y2 in Q2, ...,yx N Qk

where/\; <<k Aacares(y;) ¥i-A = €ja(@i, ... xp)
Let C; be thesource contexti.e., thefor andsatisfyingclause ofo).
{z1 €81, 22 € S2,...,2p € Sp; B(z1,...,2p)}
For each target expressign. A in thewhereclause ofe
Let{FE1,..., Ex} bethe list of source expressions equated
with ;. A directly or indirectly in thewhereclause ofo.
If m > 1then
There are three cases to consider depending on the number of
source expressions in the li§E1, ..., Em }.
Case 1.There is more than one source expression of the
formzx;.A, wherel < i < p.
Return conflicting SO tgd to the user and exit.
Case 2.There is exactly one source expression of the
formzx;.A, wherel < i < p.
Wilog, let E1 denote the source expression A in the list.
LetU = (Cs, E;, E1) such thak < i < mandU ¢ F.
If such aU can be found, returty.
Otherwise, continue.
Case 3.There are no source expressions of the
formzx;.A, wherel < i < p.
LetU = (C, E;, E;) such that # j and
1<i,7<mandU ¢ F.
If such aU can be found, retury.
Otherwise, continue.
Return failure (no substitutions can be found)

The algorithm that actually applies a substitution on thet&(3
is presented below.

Algorithm Substitutef, U)
Input: X is a set of SO tgdd;/ is a substitution
Output: Success iU can be applied t&. Otherwise, return failure.

Recall thatU is of the form(C, E1, E2), whereE; and E; are source
expressions, and' has the form:
{zx1€ 851,220 € S2,...,2p € Sp; B(z1,...,2p)}
For each constraint € ©
Assumeo is of the form:

for o in S, ) in S5, ... a4, in
satisfyingB’ (!, ..., z7,)
existsyy in Q1,y2in Q2, ..., yx I Qg

MA1§jgk /\AEAtts(yj) yj-A=ejalxy,...,p)
If there is a homomorphisth : {z1,...,xp} — {2/, ..., 2}, } such that
Bl(xllv i) x"n) ImpI|ESB(h(x1)7 ey h(l‘p))
Replaceh(E1) with h(E2) in o
Else
Revert to the originak from the start of the Substitute routine
Return failure

B. Experimental Evaluation

We conducted a series of experiments on a set of synthetic and
real-life mapping scenarios to evaluate MapMerge. We fagort
on the synthetic mapping scenarios and, using the sinyilaréa-
sure presented in Section 5.1, demonstrate a clear impetem
the preservation of data associations when using MapMerge.
then present results for two interesting real-life scasrivhose
characteristics match those of our synthetic scenarios. héVe
also implemented some of our synthetic scenarios on two @mm
cial mapping systems. The comparison between the mappérgs g
erated by these systems and by MapMerge produced resuilarsim
to the previous experiments.

We implemented MapMerge in Java as a module of Clio [10].
For all our experiments we started by creating the mappings w
Clio. These mappings were then used as input to the MapMexge o
erator. To perform the data exchange, we used the queryajerer
component in Clio to obtain SQL queries that implement the-ma
pings in the input and output of MapMerge. These queries were
subsequently run on DB2 Express-C 9.7. All results wereinéth
on a Dual Intel Xeon 3.4GHz machine with 4GB of RAM.

B.1 Synthetic Mapping Scenarios

Our synthetic mapping scenarios follow the pattern of tianns-
ing data from a denormalized source schema to a target schema
containing a number of relational hierarchies, with eadrdrichy
having at its top an “authority” relation, while other rétats re-
fer to the authority relation through foreign key consttgainFor
example, Figure 5 shows a source schema that consists dfla sin
relationS. The target schema consistsdfiierarchies of relations,
rooted at relationg; andT». Each relation in a hierarchy refers
to the root via a foreign key constraint from i$ attribute to the
K attribute of the root. This type of target schema is typical i
ontologies, where a hierarchy of concepts often occurs.

Figure 5: Synthetic Experimental Scenario

The synthetic scenarios are parameterized by the number of h
erarchies in the target schema, as well as the number oforedat
referring to the root in each hierarchy. For our experimiesed-
tings we choose these two parameters to be equal, and timair co
mon valuen defines what we call the complexity of the mapping
scenario. In Figure 5 we show an example where= 2. The
table in Figure 6 shows the sizes of the experimental saenari
terms of the number of target relations and the executioadifar
generating Clio mappings and running the MapMerge operdfer
notice that the time needed to execute MapMerge is smad {tes
2 minutes in our largest scenario) but dominates the ovexaltu-
tion time as the number of target relations grow.

The graphs in Figure 6 show the results of our experiments®n t
synthetic mapping scenarios. For each scenario, the smste@ce
contained 100 tuples populated with randomly generatéwstal-
ues. The first graph shows that the target instances gedersitey
MapMerge mappings are consistently (and considerably)lsma
than the instances generated using Clio mappings. Here @ us
the total number of atomic data values on the generatedttarge
stances as the size of the target instance (i.e., the protioatber



(n) Number | Mapping generation
Scenario| of target time (s)
IComplexity relations | Clio [ MapMerge

2 6 0.55 0.42

4 20 2.07 0.82

6 42 2.22 2.27

8 72 5.54 6.14

10 110 7.81 10.67

12 156 10.43 22.98

14 210 19.02 54.94

16 272 31.51 107.99

of tuples and relation arity, summed across target relglion

The second graph in Figure 6 shows that the source instances
have a higher degree of similarity to these smaller targgiNarge
instances. The degree of similarity of a source instdrtoea target
instanceJ is computed as a ratio &fim(FD(7(I)),FD(7(J)) to
Sim(FD(7(I)),FD(7(I))), where the latter represents the ideal
case where every tuple IRD(7(I)) is preserved by the target in-
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Figure 6: Experiments on synthetic scenarios

Mapping Size of Degree
Mapping generation target of
Scenario time (s) instance similarity (%)
Clio [MapMerge Clio [MapMerge Clio MapMerge

0.34
2.13

11557
12923

7801
11446

29.7
20.8

35.3
75.8

GeneOntolody 1.71
UniProt [ 2.36

Table 2: Results for real-life mapping scenarios

stance and this quantity simplifies to the expressiob (7(I))|.

We notice that the degree of similarity decreases as the leamp
ity of the mapping scenarioj increases. This is becauseram-
creases, more uncorrelated hierarchies are used in tlet safgema.

In turn, this means that the source relation is broken intcenoo-
correlated target hierarchies, and hence, they are ledastmthe
source. The graph shows that Clio mappings, when compared to
MapMerge mappings produce target instances that are sigmify
less similar to the source instance in all cases. Intuitiviblis is
because most of the Clio mappings will map the source data int
each root and one of its child relation. On the other hand,-Map
Merge factors out the common mappings into the root reladiwh
properly correlates the generated tuples for the childioglavith

the tuples in the root relation. The effect is that all chiédhtions

in the hierarchy are correlated by MapMerge while Clio magpi

can only correlate root-child pairs.

B.2 Real-life Scenarios

We consider two related scenarios from the biological donmai
this section. In the first scenario, we mapped Gene Ontoloty i
BioWarehous® In the second, we mapped UniProt to BioWare-
house. The BioWarehouse documentation specifies the semant
of the data transformations needed to load data from vatipus
ological databases, including Gene Ontology and UniPmothé

needed by MapMerge to process those mappings (i.e., tHexeta
cution time is the sum of the two times). Thige of target instance
columns show the total number of atomic data values on thergen
ated target BioWarehouse instance for each scenario. lrdases,
the mappings produced with MapMerge reduced the targetrinst
sizes.

Thedegree of similariticolumns present the similarity measure
from Section 5.1 for each scenario. This similarity is nolineal
as a percentage to ease comparison across scenarios aret-the p
centage is with respect to the ideal similarity that a magman
produce for the scenario. As discussed in Section B.1, tidali
similarity is the number of tuples in the tableau full disjtion of
the source, i.e|JFD(7(I))|.

On the two real-life settings, MapMerge is able to further-co
relate the mappings produced by Clio by reusing behaviordap-m
pings that span across different target tableaux and, ithpsoving
the degree of similarity. This improvement is very significa the
UniProt scenario, where the target schema has a centribredand
twelve satellite relations that point back to the centridtien (via
a key/foreign key). Here, each Clio mapping maps sourcetdata
the central and one satellite relation. MapMerge factotstlois
common part from all Clio mappings and properly correlatiés a
generated tuples to the central relation.

GeneOntology scenario, we extracted 1000 tuples for edatiare

in the source schema of the mapping, while in the UniProtaten
we extracted the first 100 entries for the human genome and con
verted them from XML to a relational format to use as a source
instance in our experiments. Table 1 shows the number ofsour
and target tables mapped, the number of correspondence$ouse
each mapping scenario, and the number of mapping exprsssion

generated by Clio for each scenario.

B.3 Commercial Systems

We implemented some of the synthetic scenarios described in
Section B.1 in two commercial mapping systems. Providedh wit
only the correspondences from source attributes to tatiyitiaes,
these systems produced mappings that scored lower thariHeoth
Clio and MapMerge mappings with respect to preservatioratd d
associations. For instance, in the synthetic scenario wipbex-
ity 2, while the MapMerge mappings had a result of 50% and the

Table 1: Characteristics of real-life mapping scenarios

Mapping Source | Target | Attribute Clio | Clio mappings 33%, the result for both commercial systems wa
Scenario | relations | relations [Correspondencdéappings only 16%. The main reason behind this result is that these sys

GeneOntology| 3 4 ° 4 tems do not automatically take advantage of any constraiatent
UniProt 13 10 23 14

on the schemas to better correlate generated data andsedtea
preservation of data associations. The mappings gendratibese
commercial systems need to be manually refined to fix thisdéck

Table 2 shows the results of applying MapMerge to the magping correlations.
generated by Clio in each scenario. Tgeneration timecolumns

show the time needed to generate the Clio mappings and tiee tim

“http://biowarehouse.ai.sri.com/



