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Abstract. This paper presents our ongoing effort on developing a principled 
methodology for automatic ontology mapping based on BayesOWL, a probabil-
istic framework we developed for modeling uncertainty in semantic web. In 
this approach, the source and target ontologies are first translated into Bayesian 
networks (BN); the concept mapping between the two ontologies are treated as 
evidential reasoning between the two translated BNs. Probabilities needed for 
constructing conditional probability tables (CPT) during translation and for 
measuring semantic similarity during mapping are learned using text classifica-
tion techniques where each concept in an ontology is associated with a set of 
semantically relevant text documents, which are obtained by ontology guided 
web mining. The basic ideas of this approach are validated by positive results 
from computer experiments on two small real-world ontologies.  

1   Introduction 

Uncertainty concerns every aspect of semantic web ontologies. In many applications, 
overlapping between concepts/classes cannot be represented logically by OWL con-
structs. Even if they can, the degree of overlapping is not represented (e.g., how close 
a class A is to its super class B?). A description about an unknown concept or object 
input to an OWL reasoner may be uncertain (e.g., x is an instance of class A and is 
moderately likely to have property p related with class B). In a previous work, we 
have developed a Bayesian network based framework BayesOWL, to address repre-
sentation and reasoning with uncertainty within a single ontology ([5], [6]).  
 Uncertainty becomes more prevalent in concept mapping between two ontologies 
where it is often the case that a concept defined in one ontology can only find partial 
matches to one or more concepts in another ontology. Semantic similarities between 
concepts are difficult, if not impossible to be represented logically, but can easily be 
represented probabilistically. This has motivated recent development of ontology 
mapping taking probabilistic approaches (GLUE [7], CAIMAN [11], OntoMapper 
[19], and OMEN [13]) (See [14] for a survey of existing approaches to ontology 
mapping, including those based on logical translation, syntactical and linguistic 
analysis). However, these existing approaches fail to completely address uncertainty 
in mapping. For example, GLUE captures similarity between two concepts onto1:A 
and onto2:B by joint probability distribution P(A, B) obtained by text classification of 



exemplars (semantically relevant text documents) to each concept. Then onto1:A is 
mapped to onto2:C whose similarity to onto1:A, measured by, say their Jaccard coef-
ficients [21] (computed from the joint distribution), passes a threshold and is highest 
among all concepts in onto2. Here, onto1:A is taken as (semantically) equivalent to 
onto2:C, the degree of similarity between them will not be considered in future rea-
soning (e.g., subsumption within onto2). Also ignored are the other concepts that are 
also similar to onto1:A (albeit at smaller degree).  
 The work reported in this paper extends BayesOWL in a number of significant 
ways so that uncertainty in ontology mapping can be dealt with properly. As depicted 
in Figure 1 below, this new framework consists of three components: 1) a text classi-
fication based learner to learn from web data the probabilistic ontological informa-
tion within individual ontologies and between concepts in two different ontologies; 2) 
a BayesOWL  module to translate given ontologies (together with the learned uncer-
tain information) into BNs; and 3) a concept mapping module which takes a set of 
learned raw similarities as input and finds mappings between concepts from two 
different ontologies based on evidential reasoning across two BNs.  
 

 
Fig. 1. The framework 

Before describing the BN Mapping module and the learner in detail (Sections 3 
and 4), we first provide some background information in Section 2. This includes a 
brief summary of BayesOWL, and introductions to Jeffrey’s rule and iterative propor-
tional fitting procedure (IPFP), two techniques used in this work. Methods and results 
of computer experiments with two small ontologies are given in Section 5. The paper 
concludes with discussions and directions of future research in Section 6.  

2   Background 

As background, we briefly introduce Jeffrey’s rule, IPFP, and BayesOWL here. 



2.1 Techniques for Updating Probability Distributions  

Two techniques for updating a probability distribution by another distribution used in 
this work are briefly described below.  

Jeffrey's rule, also known as rule of probability kinematics or J-conditioning, was 
proposed by Richard Jeffrey [9] to revise a probability measure (e.g., a joint distribu-
tion )(xP ) by another probability function (e.g., a prior )( ixQ  in another distribution).  
The rule can be written as follows in this context: if )( ixP , our belief on XX i ∈  is 
changed to )( ixQ , then the beliefs of other variables XX ij ∈≠   shall be changed to 
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if )|( ij xxP  is invariant with respect to )( ixQ .  
Jeffrey’s rule can be used as a mechanism to update a distribution by soft evidence, 

represented as a distribution such as )( ixQ . The rule then can be written as 
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(2.3) 

Pearl ([16], [17]) has shown that the virtual evidence, a method widely adopted in 
Bayesian network (BN) inference, can be viewed as formally equivalent to the likeli-
hood ratio version of Jeffrey’s rule. This is done by adding a virtual node ive  which 
has iX  as its only parent in the BN, related by likelihood ratio： 
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when iX  is binary. Soft evidence update (eqs. 2.2 and 2.3) can be realized by BN 
belief update with ive  instantiated to true. It can be shown that )( iXL  for multi-
valued variables can also be calculated from )( ixP  and )( ixQ  [17].  

As will be seen shortly, we use Jeffrey’s rule to propagate probabilistically beliefs 
on variables between two BNs that are translated from two ontologies during map-
ping. 

IPFP (Iterative Proportional Fitting Procedure) is a computational procedure that 
updates a given distribution )(0 xQ  to satisfy a set of probability constraints 
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i yR is a distribution over XY i ⊆  [10]. Roughly speaking, 
IPFP iterates over constraints in )}({ i

i yR  in cycle, at each iteration, the current dis-
tribution is updated by one constraint according to   
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It has been proved based on I-divergence geometry  ([4], [22]) that IPFP converges 
to an unique distribution )(* xQ , which 1) satisfies all )( i

i yR  in R, i.e., )(* iyQ  = 
)( i

i yR  for RRi ∈ , and 2) has the smallest Kullback-Leibler distance (or I-divergence) 
to )(0 xQ  among all distributions )(xQ  that satisfy all constraints in R, i.e.,  
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is minimized. )(* xQ  is called I1-projection of )(0 xQ  on R. Bock [1] and Cramer [2] 
extended IPFP to conditional IPFP (CIPFP) to allow constraints with the form of 
conditional probability distributions and proved its convergence. 

If we consider )( iyQ  as soft evidence on a collection of variables iY , then IPFP 
can be considered as another mechanism of processing soft evidence [20]. The differ-
ence between Jeffrey’s rule and IPFP in this regard is that the former requires the 
invariance of domain knowledge (i.e., )|( ij xxP  remains unchanged in )(xQ ) while 
the latter requires minimizing I-divergence which in general destroys the invariance 
in the updated )(* xQ . How to combine these two techniques together when used in 
ontology to BN translation and in concept mapping will be given in Subsection 2.2 
and Section 3.  

2.2 BayesOWL  

BayesOWL ([5], [6]) is a framework which augments and supplements OWL for 
representing and reasoning with uncertainty based on Bayesian networks. This 
framework provides a set of rules and procedures for direct translation of an OWL 
ontology into a BN structure (a directed acyclic graph or DAG) and a method based 
on IPFP that utilizes available probability constraints about classes and interclass 
relations in  constructing the conditional probability tables (CPTs) of the BN. The 
translated BN, which preserves the semantics of the original ontology and is consis-
tent with the probabilistic constraints, can support ontology reasoning, both within 
and across ontologies, as Bayesian inferences.  

Structural translation The general principle underlying the structural translation 
rules is that all classes (specified as “subjects” and “objects” in RDF triples of the 
OWL file) are translated into nodes in BN, and an arc is drawn between two nodes in 
BN if the corresponding two classes are related by a “predicate” in the OWL file, 
with the direction from the superclass to the subclass.  
 The model-theoretic semantics of OWL treats the domain as a non-empty collec-
tion of individuals. If class A  represents a concept, the node it is translated to is 
treated as a binary random variable of two states a  and a , and we interpret )( aAP =  
as the prior probability or one’s belief that an arbitrary individual belongs to class A , 
and )|( baP  as the conditional probability that an individual of class B  also belongs 
to class A . Similarly, for )(aP , )|( baP , )|( baP , and )|( baP , we interpret the 
negation as “not belonging to”.  



 Control nodes are created during the translation to facilitate modeling relations 
among class nodes that are specified by OWL logical operators, and there is a con-
verging connection from each of the concept nodes involved in this logical relation to 
its specific control node. There are five types of control nodes in total corresponding 
to the five types of logical relations: “and” (owl:intersectionOf), “or” (owl:unionOf), 
“not” (owl:complementOf), “disjoint” (owl:disjointWith), and “same as” 
(owl:equivalentClass). 

Constructing CPTs The nodes in the DAG obtained from the structural translation 
step can be divided into two disjoint groups: XR, regular nodes representing concepts 
in ontology, and XC, control nodes for bridging logical relations. The CPT for a con-
trol node in XC can be determined by the logical relation it represents so that when its 
state is “True”, the corresponding logical relation holds among its parent nodes. 
When all the control nodes’ states are set to “True” (denote this situation as CT), all 
the logical relations defined in the original ontology are held in the translated BN. 
The remaining issue is then to construct the CPTs for node in XR so that P(XR|CT), 
the joint distribution of all regular nodes in the subspace of CT, is consistent with all 
the given probabilistic constraints about classes and relations between classes. These 
constraints include, most likely, priors for classes P(C), conditionals P(C|D) for rela-
tions between classes C and D. Several suggestions have been made to encode prob-
ability constraints in semantic web languages (e.g., [6] with OWL, and [8] with RDF). 
These constraints can be obtained from the ontology designers or learned from data 
(an approach that learns these constraints from web is described in Section 4).  
 In principle, IPFP can be applied to construct CPTs to satisfy all the given prob-
abilistic constraints. Two difficulties exist. First, as we mentioned earlier, direct ap-
plication of IPFP may destroy the existing interdependencies between variables (i.e., 
the given DAG becomes invalid). Secondly, IPFP is computationally very expensive 
since every entry in the joint distribution of the BN must be updated at each iteration. 
To overcome these difficulties, we developed an algorithm named D-IPFP that de-
composes IPFP so that each iteration only updates a small portion of the BN that are 
directly involved with the chosen constraint, and the update is done only to CPTs 
while keeping the DAG of the network intact [18]. In particular, when each of the 
given constraints involves only one variable iC  and a set of zero or more of its par-
ents iL , (2.5) of IPFP becomes [5] 
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 The BayesOWL framework can support common ontology reasoning tasks as prob-
abilistic inferences in the translated BN. For example, given a concept description e, 
it can answer queries about concept satisfiability (whether P(e|CT) = 0), about con-
cept overlapping (how close e is to a concept C as P(e|C,CT)), and about concept 
subsumption (find the concept which is most similar to e) by defining some similarity 
measures such as Jaccard coefficient [21]. 



3   Concept Mapping Between Ontologies Using BN Mapping 

It is often the case when attempting to map concept A defined in Ontology 1 to On-
tology 2, there is no concept in Ontology 2 that is semantically identical to A. Instead, 
A is similar to several concepts in Ontology 2 with different degree of similarity. A 
solution to this so-called one-to-many problem, as suggested by [19] and [7], is to 
map A to the target concept B which is most similar to A by some measure. This sim-
ple approach would not work well because 1) the degree of similarity between A and 
B is not reflected in B and thus will not be considered in reasoning after the mapping; 
2) potential information loss because other similar concepts are ignored in the map-
ping; 3) it cannot handle the situation where A itself is uncertain; and 4) it does not 
work well when more than one concepts need to be mapped. To see the last point, 
consider a situation where concept x defined as intersection of A and B in onto1 is to 
be mapped to onto2. Suppose the most similar concepts to A in onto2 are C and D, 
and those to are B are E and D, it would be difficult to determine which of the three 
(C, D, and E) x should be mapped to.  
 These difficulties in ontology mapping can be dealt with properly in our frame-
work. We assume that pair-wise similarity measures are available between any con-
cepts in two ontologies onto1 and onto2 (or between variables in BN1 and BN2, 
respectively). We take mapping as update on probability distribution of variables in 
BN2 by distributions of variables in BN1 in accordance to the similarity measures 
between these variables. Further inferences (e.g., finding the most probable subsumer 
in onto2 for a concept defined in onto1) can be drawn by Bayesian inference with the 
updated distribution of BN2. We present our approach starting with the basis: 1) a 
notion of probabilistic semantic linkage between a pair of concepts/variables; 2) the  
“1 to n” mapping (one variable in BN1 mapped to multiple similar ones in BN2); and 
3) the “m to n” mappings where multiple variables in BN1 need to be mapped.  

3.1 Pair-wise Probabilistic Semantic Linkage 

We assume the similarity information between variable A in BN1 and B in BN2 is 
captured by the joint distribution P(A, B). This distribution is in a probability space, 
denoted as 2,1PS , which is related but different from the spaces for  A  and B, denoted 
as 1PS  and 2PS , respectively. Moreover, since this measure is based on the semantic 
similarity intrinsic to the meanings of these two variables, P(A, B) is assumed invari-
ant with respect to changes in 1PS  and 2PS . That is, beliefs on variables in A and B 
may change when evidence is presented but not that of P(A, B) in 2,1PS . 

Probabilistic semantic linkage between A and B, which serves as a basis mapping 
mechanism between similar variables, is defined as  

2,1
,BASL  = < 1PS , 2PS , A,  B, P(A, B)>, 

where A ∈  1PS , and B ∈  2PS , and P(A, B) measures the semantic similarity be-
tween A  and B. Then the influence to B by A via the single linkage 2,1

,BASL  changes 
P(B) to Q(B) by P(A). This update can be viewed as twice applications of Jeffrey’s 



rule across these three spaces, first from 1PS  to 2,1PS , then 2,1PS  to 2PS , as depicted 
in Figure 2 below.  Since A in 1PS  is identical to A in 2,1PS , P(A) in 1PS  becomes soft 
evidence Q(A)  to 2,1PS  by (2.2), the distribution of B in 2,1PS   is updated by (2.3) to   

∑= A AQABPBQ )()|()( , (3.1) 

Q(B) is then applied as soft evidence from 2,1PS  to node B in 2PS , updating distribu-
tion of other variables C in 2PS  by (2.3) as 

)()|()|()()|()( APABPBCPBQBCPCQ ABB ∑∑=∑= . (3.2) 

 

Fig. 2. Mapping concept A to B via semantic linkage 2,1
,BASL  

3.2 Multiple Semantic Linkages 

Usually, A in onto1 may be semantically similar to more than one concept in onto2. 
For, example, if A is fairly similar to B in onto2, it would also be similar to all super 
concepts and also some sub-concepts of B, possibly with different similarity measures. 
In other words, mapping A to BN2 amounts mapping it through all semantic linkages 
that initiate from A and end at each similar concept BJ in BN2. Probabilistically, BN2 
can be seen as receiving n soft evidences, one for a linkage from A to BJ for each 
concept BJ in BN2. This requires 1) all similarity measures P(A, BJ) remain invariant, 
and 2) conditional dependencies among variables in BN2 also remain invariant. This 
“1 to n” mapping can be carried out by a process that combines both Jeffrey’s rule 
and IPFP. Like IPFP, this process is iterative over these linkages in a cycle until con-
vergence.  

This process can be realized by generalizing Pearl’s virtual evidence approach for 
soft evidence update [15]. In this method of ours, each node BJ is attached a virtual 
evidence node. At iteration step k, if linkage from A to BJ is chosen, then we first 
calculate likelihood )( J

K BL  for virtual evidence node Jve  that will be used to simu-
late soft evidence )( JBQ  by  

)()(
)()()(

1

1
J

K
J

JJ
KJ

K BQBQ
BQBQBL

−

−= , (3.3) 

and then apply Jeffrey’s rule of (3.1) and (3.2) with the modified likelihood to update 
variable beliefs in BN2. Note that (3.3) is the same as (2.4) except for )(1

J
k BQ − , the 

new distribution obtained at step k-1 is used rather than the initial )( JBP . Also note 
that this process does not explicitly modify the joint distribution of BN2 as the stan-
dard IPFP would do, instead, it modifies the likelihood associated with each virtual 
evidence node Jve  while keep the joint distributions P(A, BJ) and CPT’s in BN2 



unchanged. It can be shown that when the process converges, beliefs on variables in 
BN2 are consistent with all similarity measures P(A, BJ) and P(A), the belief of A in 
BN1. 

Mapping Reduction Using all n linkages in “1 to n” type of mapping, as described 
above, is computationally very expensive because the IPFP process takes a number of 
iterations to converge, and each iteration involves belief update of BN2, which itself 
is exponential to the size of BN2. The problem gets worse for “m to n” type of map-
ping where what needs to be mapped is a composite concept that is defined as a con-
junction (intersection) of several variables or their negations in BN1.  
 Fortunately, satisfying a given probabilistic relation P(A, B) does not always re-
quire the use of a linkage from A to B or even know what the linkage looks like. Sev-
eral probabilistic relations may be satisfied by one linkage. Consider a simple exam-
ple in Figure 3 with variables A and B in BN1, C and D in BN2, and similarity (joint 
probabilities) between every pair as below:  

⎟
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Fig. 3. Mapping Reduction Example 

However, we do not need to set up linkages for all these relations. As Figure 3 de-
picts, when we have a linkage from A to C, all these relations are satisfied (the other 
three linkages are thus redundant). This is because not only beliefs on C, but also 
beliefs on D are properly updated by the mapping A to C. 

Several experiments with large BNs have shown that only a very small portion of 
all 21 nn ⋅  linkages are needed in satisfying all probability constraints. This, we sus-
pect, is due to the fact that some of these constraints can be derived from others based 
on the probabilistic interdependencies among variables in the two BNs. We are cur-
rently actively working on developing a set of rules that examine the BN structures 
and CPTs so that redundant linkages can be identified and removed.  

4   Learning Probabilities from Web Data 

In this work, we use prior probability distributions P(C) to capture the uncertainty 
about concepts (i.e., how likely an arbitrary individual belongs to class C), condi-



tional distributions P(C|D) for relations between C and D in the same ontology (e.g., 
how likely an arbitrary individual in class D is also in D’s subclass C), and joint prob-
ability distributions P(A,B) for semantic similarity between concepts C and D from 
different ontologies. Often these kinds of probabilistic information are not available 
and are difficult to obtain from domain experts. Our solution is to learn these 
probabilities using text classification technique ([3], [12]) by associating a concept 
with a group of sample text documents called exemplars. The idea is inspired by 
those machine learning based semantic integration approaches such as [7], [11], and 
[19] where the meaning of a concept is implicitly represented by a set of exemplars 
that are relevant to it. 

Learning the probabilities for semantic similarity between concepts in two ontolo-
gies is straightforward, assuming we have sufficient exemplars of good quality asso-
ciated with each concept. First, we can build a model (classifier) for each concept in 
Ontology 1 according to the statistical information in that concept’s exemplars using 
a text classifier such as Rainbow1 or Bayesian text classifier dbacl2. Then concepts in 
Ontology 2 are classified into classes of Ontology 1 by feeding their respective ex-
emplars into the models of Ontology 1 to obtain a set of probabilistic scores. These 
scores showing the inter-concept similarity in a probability form. Concepts in Ontol-
ogy 1 can be classified in the same way into classes of Ontology 2. This cross-
classification process (Figure 4) helps find a set of raw mappings between Ontology 1 
and Ontology 2. Similarly, we can obtain prior or conditional probabilities related to 
concepts in a single ontology through self-classification with the models learned for 
that ontology.  

 

 
Fig. 4. Cross-classification using Text Classifiers on Web Data 

The quality of these text classification based methods is highly dependent on the 
quality of text exemplars to each concept, which together should well capture the 
meaning of the concept. Two criteria are seen to be crucial in assessing the quality of 
exemplars: each exemplar (at least most of them) should be relevant to the meaning 
of the concept, and that these exemplars together should well cover all aspects of that 
concept. For example, articles on computer games are very relevant to the concept of 
“computer applications”, but they alone hardly cover all computer applications.  

                                                           
1 http://www-2.cs.cmu.edu/~mccallum/bow/rainbow 
2 http://www.lbreyer.com/ 



The need to find sufficiently many relevant exemplars for a large number of con-
cepts greatly reduces the attractiveness and applicability of these machine learning 
based approaches. It would be a very time-consuming task for knowledge workers to 
find high quality text exemplars manually, as apparently the case for GLUE [7]. Our 
approach is to use search engines such as Google3 to retrieve text exemplars for each 
concept node automatically from WWW, the richest information resource available 
nowadays. The goal is to search for documents in which the concept is used in its 
intended semantics. The rationale is that the meaning of a concept can be described or 
understood by the way it is used. 

To find out what documents are relevant to a term, one cannot simply use the 
words in the name of the term as keywords to query the search engine. This because a 
word may have multiple meanings (word senses) and a query using only the name of 
the term in attention may return documents related to a meaning different from the 
intended semantics of the term. For example, in an ontology for “food”, a concept 
named “apple” is a subconcept of “fruit”. If one only uses “apple” as the keyword for 
query, documents showing how to make an apple pie and how to use an iPod may 
both be returned. Clearly, the documents using “apple” for its meaning in computer 
field is irrelevant to “apple” as a fruit. Fortunately, since we are dealing with concepts 
in well defined ontologies, the semantics of a term is to a great extent specified by the 
other terms used in defining this concept in the ontology, including names of its super 
and subconcept classes and the properties of this concept and its super classes. This 
semantic information can thus be used to guide the web search with increased rele-
vancy. There are a number of ways the semantic information can be used to help 
search. The simplest one, and the one we have experimented so far is to form search 
query for one concept by combining all the terms on the path from root to that con-
cept node in the taxonomy. In the “apple” example, the query would then become 
“food fruit apple”, and documents about iPod and Apple computers would not be 
returned. 

In the experiments, for each concept A, we search the web to obtain two sets of ex-
emplars: UA+ containing exemplars that support (or positively related to) A; and UA-, 
containing exemplars that support the negation of (or negatively related to ) A. Exem-
plars in UA+ are obtained by searching the web for pages that contain A and all names 
of A’s ancestors on the taxonomy, while that for UA- are obtained by search pages that 
contain all names of A’s ancestors but not A.  

With all these documents, we can obtain joint probabilities of A and B by text clas-
sification, similar to what is done in GLUE [7]: applying the classifiers of concepts A 
and B to all text documents in U, and classify them into four categories: UA+B+, UA+B-, 
UA-B+, and UA-B-. Then the joint probabilities can be obtained by counting the items in 
each category, e.g., P(A, B)= |UA+B+| / |U|. If we only search for positive exemplars 
UA+ and UB+, then only conditional probability P(B|A) can be obtained (by applying 
B’s classifier to A’s supportive exemplars to obtain UA+B+ and compute P(B|A) =  
|UA+B+| / |U A+|). The first approach is the one that works for our purpose. 

                                                           
3 http://www.google.com 



5   Experiments 

We have performed computer experiments on two small-scale real-world ontologies. 
Our goals are to find how good the learning can be with the exemplars mined from 
the web, and how the uncertainty inference across multiple Bayesian networks could 
help ontology mapping. 

Translating Taxonomies to BNs We took the Artificial Intelligence sub-domain 
from ACM Topic Taxonomy4 and DMOZ5 (Open Directory) hierarchies and pruned 
some concepts to form two ontologies, both of which have a single root node Artifi-
cial Intelligence. All other concepts in the hierarchies are sub categories of AI. These 
two hierarchies differ in both terminologies and modeling methods. DMOZ catego-
rizes concepts by popularities of web pages to facilitate people’s easy access to these 
pages, while ACM topic hierarchy categorizes concepts from super to sub to structure 
a classification primarily for academics.  

Table 1. Statistics of the expirements 

Taxono-
mies 

# 
Nodes 

Depth Total Exemplar 
size 

Avg. Exem-
plar Size 

# Exemplar Avg. # 
Exp./node 

ACM AI 15 3 19.7 MB 698 KB 24533 1636 
DMOZ AI 25 3 29.2 MB 612 KB 35148 1406 

 
For every concept, except the root, we obtained exemplars by querying Google as 

described in the previous section. The statistics of these web pages is listed in Table 1. 
We used Bayesian text classifier dbacl to create a model for each non-root concept X 
and obtained the pair-wise conditional probability P(X | Parent(X)). The root nodes 
were assigned a prior probability as (0.5, 0.5).  

Then, using BayesOWL’s translation rules, the two ontologies were translated into 
two BNs as shown in Figure 5. 

 

                                                           
4 http://www.acm.org/class/1998/ 
5 http://dmoz.org/ 



 

Fig. 5. Bayesian network for ACM topics’ AI sub-domain and DMOZ’s AI sub-domain 

Learning uncertainty mappings Raw mappings P(A, B) were computed for each 
pair of concepts of the two BNs. The similarity between A and B were measured by 
their Jaccard coefficient, computed from the joint probability. Table 2 lists the five 
most similar concepts and five most different concepts in the learning result. The top 
three most similar concepts are actually identical concepts. However, besides these 
three, another pair of identical concepts is not measured as highly related. They are 
/Learning/Connectionism & Neural Net in ACM topic and /Machine Learning/Neural 
Network in DMOZ. Their similarity is only 0.61. We speculate this is because the 
term “connectionism” is not as popular as when ACM topic hierarchy was con-
structed, and thus is not used along with “Neural Network” in most web pages. 

Table 2. Five most similar concepts and most different concepts in the learning result. The root 
concept’s name is omitted. 

ACM topic DMOZ Similarity 
/Knowledge Representation & Formalism Method /Knowledge Representation 0.96 
/Natural Language Processing /Natural Language 0.90 
/Learning /Machine Learning 0.88 
/Learning /Knowledge Representation 0.81 
/Applications & Expert System /Knowledge Representation 0.79 

…… 
/Fuzzy /Learning/Analog 0.03 
/Learning/Induction /Learning/Game 0.02 
/Deduction & Theorem Proving /Programming Language/Declarative 0.02 
/Learning/Induction /Application 0.01 
/Learning/Analogy Agent 0.01 



Inference with BN Mappings Treating ontology mapping as Bayesian network map-
ping as described here allows us to conduct probabilistic reasoning far beyond finding 
the best concept match. We are currently actively investigating this issue and 
developing related algorithms. To illustrate our point, consider the example of finding 
a description of DMOZ’s /Knowledge Representation/Semantic Web (dmoz.sw) in 
ACM topic. There is no ACM concept that is identical to dmoz.sw, it must be de-
scribed by a composite expression involving multiple ACM concepts. The two most 
semantically similar concepts to dmoz.sw in ACM are /Knowledge Representation 
and Formalism Method/Relation System (acm.rs) and /Knowledge Representation 
and Formalism Method/Semantic Network (acm.sn) with the joint distributions  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

07.021.0
12.060.0

).,.( rsacmswdmozP  and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

04.025.0
13.058.0

).,.( snacmswdmozP , 

and respective Jaccard coefficients J(dmoz.sw, acm.rs) = 0.64, and J(dmoz.sw, acm.sn) 
= 0.61. 

From the two joint probabilities, we can see that dmoz.sw is not a subconcept of ei-
ther acm.rs or acm.sn, but had a sizable overlap with each of them. From the follow-
ing joint probabilities 

⎟
⎠
⎞⎜

⎝
⎛= 6557.00323.0

0498.02612.0).,.( snacmrsacmP , 

we can see that acm.rs and acm.sn also overlap with each other. Figure 6 illustrates 
the overlap of these three concepts. 
 

 
Fig. 6. The Venn diagram for dmoz.sw, acm.rs, and acm.sn 

This leads to a conjecture that dmoz.sw may be described in terms of acm.rs and 
acm.sn. To validate this conjecture, we need to have the conditional probability 
P(acm.rs= true, acm.sn = true| dmoz.sw = true). This can be obtained as follows. 
1. Using learned probabilities P(dmoz.sw, acm.rs) and P(dmoz.sw, acm.sn), two 

semantic linkage were created, from dmoz.sw to acm.rs and to acm.sn, respec-
tively.  

2. Instantiate dmoz.sw as true, and compute the likelihoods for the two virtual evi-
dence nodes associated with acm.rs and acm.sn. 

3. Compute P(acm.rs= true, acm.sn = true| dmoz.sw = true) by any Bayesian network 
inference algorithm with the two virtual evidence nodes set to true.  
In our experiment, this probability was computed to be 0.851. From this we could 

conclude that intersection of acm.rs and acm.sn is the highly probable subsumer of 



dmoz.sw. More detailed analysis may require having the joint distribution of the three 
concept nodes (in two ontologies/BNs) or distribution involving additional relevant 
ACM concepts (with similarity measure lower than those of acm.rs and acm.sn). 
These distributions can be computed in the similar fashion. 

6   Discussion and Future Work 

This paper describes our ongoing research on developing a probabilistic framework 
for automatic ontology mapping. In this framework, ontologies (or parts of them) are 
first translated into Bayesian networks, and then the concept mapping is realized as 
evidential reasoning between the two BNs by Jeffrey’s rule. The probabilities needed 
in both translation and mapping can be obtained by using text classification programs, 
supported by associating to individual concepts relevant text exemplars retrieved 
from the web.  
 We are currently actively working on each of these components. In searching for 
relevant exemplars, we are attempting to develop a measure of relevancy so that less 
relevant documents can be removed. We are also investigating how semantic infor-
mation can be utilized to post-process text documents mined from the web so that less 
relevant ones can be identified and excluded. We are expanding the ontology to BN 
translation from taxonomies to include properties, and develop algorithms to support 
common ontology-related reasoning tasks. As for a general BN mapping framework, 
our current focus is on linkage reduction. We are also working on the semantics of 
BN mapping and examining its scalability and applicability. Future work also in-
cludes developing methods to properly deal with inconsistent probability constraints 
in IPFP process.  
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