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Abstract

The electronic marketplace offers great potential for the recommenda-
tion of supplies. In the so called recommender systems, it is crucial to apply
matchmaking strategies that faithfully satisfy the predicates specified in the
demand, and take into account as much as possible the user preferences.
We focus on real-life ontology-driven matchmaking scenarios and identify
a number of challenges, being inspired by such scenarios. A key challenge
is that of presenting the results to the users in an understandable and clear-
cut fashion in order to facilitate the analysis of the results. Indeed, such
scenarios evoke the opportunity to rank and group the results according to
specific criteria. A further challenge consists of presenting the results to the
user in an asynchronous fashion, i.e. the ’push’ mode, along with the ’pull’
mode, in which the user explicitly issues a query, and displays the results.
Moreover, an important issue to consider in real-life cases is the possibility
of submitting a query to multiple providers, and collecting the various re-
sults. We have designed and implemented an ontology-based matchmaking
system that suitably addresses the above challenges. We have conducted a
comprehensive experimental study, in order to investigate the usability of the
system, the performance and the effectiveness of the matchmaking strategies
with real ontological datasets.
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1 Introduction

The amount of information available on the Internet is enormously increasing and
the need of fully leveraging such information to satisfy the users needs is becoming
crucial. Recommender systems [1] have gained a lot of popularity as effective
means to improve navigability of web sites and to help users and customers to
quickly locate items of interest. Past works have been devoted to design effective
matchmaking algorithms [9, 4], capable of yielding recommendations that best suit
the users demands. Other recent recommendation tools, such as Yahoo! Vibes [12],
aim at deploying a variety of recommendation models, applicable to a broad variety
of domains and to large-scale networks, such as the Grid. Lately, [2, 8] have
focused on the problem of making appropriate recommendation in social-tagging
web sites and of designing recommendation workflows, respectively.

However, despite the rich literature of recommendation algorithms and tools, a
few challenges still remain unaddressed. Such challenges arise in real-life Web 2.0
scenarios, in which more semantics is necessary to assist the user in the process of
choosing the items that are likely to be of their interest. The limitations of previous
solutions are indeed the fact that they are customized to a particular domain and/or
hard-wired. In this paper, we present an ontology-driven recommender system,
that is generic in nature and readily deployable in a Semantic Web environment.
The key motivation behind our work is that recommender systems have to cope
with real items distributed over the Web. The reasons for such belief are indeed
numerous. First of all, it is more and more common to find ontology-based man-
agement systems (OntologyBMSs), that describe the properties of goods or ser-
vices. OntologyBMSs are easy to set up by organizations that expose their items
to the Internet, and may also be used internally by these organizations to facilitate
search and storage. An OntologyBMS is a system that stores ontology schemas
(TBox) and ontology instances (ABox) in a given data format. We have studied
and implemented a recommendation platform, in which such OntologyBMSs are
easily pluggable, by simply exporting a reference to their ontologies to an external
registry. Another reason why ontologies are crucial in the matchmaking process, is
due to the fact that they let exploit computer-usable definition of basic concepts in
the domain and their relationships. As such, the ontologies are extremely useful in
a distributed and heterogeneous scenarios in which different providers may offer
the same goods with different (but equivalent) descriptions. In such scenarios, on-
tologies are essential to facilitate the processes of sharing, reusing and integrating
information. OWL [14] has become the de facto standard for ontology develop-
ment in diverse fields. Many OWL ontologies are available on the Web, identified
by an URI, and there are also several well-known ontology libraries and ontology
search engines (among which, SWOOGLE [16], Sindice [15] and Watson [17]).
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However, applications are still built around a predetermined set of ontologies, that
are well-understood [6]. We believe that a recommender system should be able to
exploit the diversity of the ontology domains, by means of a flexible and generic
architecture.

In the following, we conclude by summarizing the main contributions of our
work.

1.1 Summary of contributions

We have designed and implemented an ontology-based matchmaking system, that
leverages the semantics of OWL to yield recommendations to the users and satisfy
their demands. The main contributions of our work can be summarized as follows:

• our system leverages the ontology axioms to build adequate matchmaking
results and satisfy the user needs; moreover, the same semantic constructs
are used to automatically deliver preferred results to the user by leveraging
user profiles;

• we have designed and implemented a centralized architecture and a dis-
tributed architecture. The distributed version of our system exploits the Web
services technology and the SOAP/XML protocol;

• the matchmaking algorithm that is the bulk of our system, inspired by [4], has
been substantially extended and enhanced with knowledge elicitation. The
extension takes into account the OWL constructs and turns to be extremely
useful for result visualization in real-life Web 2.0 scenarios.

We have conducted an experimental study in which we investigate the effec-
tiveness of the matchmaking and recommendation; the performance of the match-
making algorithm with knowledge elicitation; and, finally, the efficiency of the
distributed matchmaking, if compared with network latency time.

The paper is organized as follows. Section 2 discusses a motivating exam-
ple, along with the centralized and the distributed architectures of our system, by
highlighting the differences between the two. Section 3 discusses the matchmak-
ing process, which constitutes the core of both architectures. Section 4 discusses
the visualization and presentation enhancements on the results of the matchmaking
process, and their usefulness. Section 5 presents an experimental study, show-
ing both the effectiveness of the matchmaking processes, and the performance of
the centralized and distributed architectures. Section 6 discusses the related ap-
proaches and techniques for recommender systems, and matchmaking systems.
Finally, Section 7 concludes our work and presents future directions of investiga-
tion.
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2 Overview of an Ontology-based Recommender System

In Section 2.1, we first present a motivating example, that shows the features and
capabilities of our ontology-based recommender system at work. Then, in Sec-
tion 2.2, we illustrate the characteristics of the architectures we have designed for
our system.

2.1 A typical Purchase Use Case

Let us assume that a user is looking for a white-coloured laptop with at least 2-years
warranty. While the user is posing the query through the browser, by filling a form,
that presents other features, such as the cost and the operating system. However,
the user may not be acquainted with the possible values of operating system or he
may be not interested to a specific operating system. Similarly, he may not want
to specify a constraint on the laptop cost at his first search. This may be due to the
fact that the user is not yet clear on whether to buy a cheap or expensive laptop,
until he can actually see the available laptop models.

These considerations brought us to design a matchmaking system, that is fully
exploiting the semantics of ontologies to guide the user through the purchase pro-
cess. In particular, our system can cover the main ontology axioms [6], including
equivalent classes, subclasses, object properties, datatype properties, functional
properties and inverses, as shown in the following OWL snippet capturing an on-
tology for the laptop purchase use case.

Class: Laptop
EquivalentTo: {PortableComputer, MobileComputer}

DatatypeProperty: model
DatatypeProperty: warrantyYears
DatatypeProperty: colour
DatatypeProperty: cost
DatatypeProperty: operatingSystem

SubClassOf: hasColour max 1
ObjectProperty: hasSerialNumber

Inverses: isSerialNumberof

By inspecting the above snippet, the reader can notice that the functional prop-
erties model, warrantyYears, colour, cost, operatingSystem may have values the
user is not aware of. If the user does not specify a value for such properties, they
are still considered in the matchmaking process as if their value were arbitrary.
Thus, for instance, the result of a search for a white-coloured laptop with at least
2-years warranty may include the following results:
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Laptop#1 M: Sony Vaio W: 2-year Col: white C: 1500$
OS: ArchLinux 2009.02 SN: 65TG7890

Laptop#2 M: HP TX W: 2-year Col: white C: 1800$
OS: MacOS SN: 88TY8906

Laptop#3 M: Toshiba W: 3-year Col: white C: 1100$
OS: ArchLinux 2009.02

Laptop#4 M: Toshiba W: 2-year Col: white C: 1000$
OS: ArchLinux 2009.02

It can be noticed that the results above can be organized in different ways.
They can be included in a flat list, as just shown above, or can be visualized in
groups and ordered by the additional properties, that they have in their ontology
representation, and that have not be used in the search. This second option leads to
show the above results as follows:

Group#1 (Cost, Model, OS, SN)
-----------------------------
Laptop#1 M: Sony Vaio W: 2-year Col: white C: 1500$

OS: ArchLinux 2009.02 SN: 65TG7890
Laptop#2 M: HP TX W: 2-year Col: white C: 1800$

OS: MacOS SN: 88TY8906

Group#2 by (Cost, Model, OS)
----------------------------
Laptop#3 M: Toshiba W: 3-year Col: white C: 1100$

OS: ArchLinux 2009.02
Laptop#4 M: Toshiba W: 2-year Col: white C: 1000$

OS: ArchLinux 2009.02

The grouping criteria can be numerous and allow the users to learn the values
of the unspecified properties. The grouping used here is by the number and type of
additional properties, but other criteria can be adopted. The user may have learnt
by simply expanding the first group of results that he was interested in OS Linux
laptops only, without further exploring the remaining groups. Thus, he could refine
the search by repeating the same query by adding the OS value.

The same structure may characterize several ontologies actually available on
Web libraries, having different URIs, such as http://shopping.yahoo.com/computer.owl
and http://shopping.ebay.com/mobiledevices.owl. The user may choose to run the
same query on different ontologies and to check the results by different providers.
This means that in the visualization of results the provenance of laptops may also
be highlighted, as shown in the following snippet, which is output by the distributed
version of our matchmaking system.
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Provider#1 at http://shopping.yahoo.com/computer.owl
-----------------------------
Laptop#1 M: Sony Vaio W: 2-year Col: white C: 1500$

OS: ArchLinux 2009.02 SN: 65TG7890

Provider#2 at http://shopping.ebay.com/mobiledevices.owl
----------------------------
Laptop#2 M: HP TX W: 2-year Col: white C: 1800$

OS: MacOS SN: 88TY8906
Laptop#3 M: Toshiba W: 3-year Col: white C: 1100$

OS: ArchLinux 2009.02
Laptop#4 M: Toshiba W: 2-year Col: white C: 1000$

OS: ArchLinux 2009.02

2.2 Architecture of the Recommender System

Before delving into the details of the matchmaking process, we outline the main
modules of the recommender system, which embeds the matchmaker. We first
present a centralized version of our system, in which the matchmaking capabilities
are entrusted to a single machine, and then show the distributed architecture, in
which the matchmaking function is seamlessly distributed among the peers.

We recall that an electronic marketplace consists of a common vending space,
in which a set of providers Pi publish advertisements of their own resources, and a
set of potential clients Cj issue queries demanding a particular good, item or ser-
vice, and expect recommendations. Thus, the common vending space, as shown in
Figure 1, is the core of the marketplace in which the matchmaking activity takes
place and the matchmaking algorithms are applied in order to output the best rec-
ommendations.

While adopting the general architecture above, we have devised a set of mod-
ules that collaborate and cooperate to realize the marketplace. Figure 2 shows how
the architecture of the marketplace is detailed in our system. We start by highlight-
ing the main modules of the marketplace, which are the following:

• Ontology Base Manager: it stores the ontologies used by the Provider to
publish its own resources and by the Client interface to formulate queries; in
order to guarantee safe operations on such OntologyBMS, an Administrator
is responsible of insertions of new ontologies and deletions of existing ones;

• Resource Base Manager: it contains the instances of the ontologies stored
in the OntologyBMS, that represents the advertisements published by the
Provider; the Matchmaker module uses such advertisements to match the
user queries;
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Figure 1: General Architecture of a MarketPlace

• User Profile Handler: it is responsible of creating a user profile, by ana-
lyzing the past user queries and the user behavior; thus, the queries used in
the past can be stored in the user profile base, with a validity field, and can
be periodically issued until validity expires; it is responsible of handling a
profiler ontology that describes the user preferences;

• Event Base Handler: this module allows to capture possible events on the
marketplace, such as the publication of new resources that satisfies the user
needs, or just a new resource that was not available before;

• Rule Manager and Rule Engine: this module and engine are responsible
of handling rules in a logical formalism, in order to classify the users into
categories and construct suitable user profiles.

• Matchmaker Module: it is the core of the system, and is responsible for the
matching of the incoming user queries with the advertisements provided by
the vendors; it also interacts with the Rule Manager to transmit past queries
and build the user profile. It can also capture events raised by the changes
on ontologies in order to satisfy the user needs. The matchmaking algorithm
that is behind this module will be described in detail in the next section,
whereas in the following we focus on the matchmaking strategies that are
supported by our system.
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Figure 2: Architecture of a Centralized Recommender System

2.3 Matchmaking Options

We have devised two main modalities that drive the matchmaking task, that we
have called PULL and PUSH, respectively. The PULL modality is adopted when-
ever the user explicitly issues a query, by formulating a request for a resource or a
set of resources. The client prepares this query through the Query Profiler interface,
and receives a response through the receiver. The issued query may be saved in the
system for later use, i.e. when new resources are added. This is done by means
of the Profile Manager. The queries saved can be used in the second matchmak-
ing option, in which the PUSH modality is applied. During the application of such
modality, the user just needs to login and a set of results will be prompted, based on
past queries and user profile. In such a case, the saved queries may have been fired
by possible changes in the ontology. Similarly, by leveraging a profiler ontology,
in which the user preferences have been registered, possible recommendations are
prompted to the user. In more details, the user profile consists of two components:
a set of queries the user saves and an instance of a ‘profile’ concept belonging to
the profiler ontology. Such an ontology is coupled with a set of inference rules
which are handled by the Rule Engine module at the client side and are fired by
the user login event. By running these rules, i.e. checking some conditions on the
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profile elements, the system infers what categories the user belongs to; in such a
way, we can recommend resources that have been created and formerly classified
according to these categories. Obviously, the inferred categories change if the user
changes his/her profile. Nevertheless, the categories may change dynamically if
some conditions have been evolving (e.g. a condition on the age of the user).

2.4 Clients and providers at a glance

While being compliant to the general architecture of the marketplace, depicted in
Figure 1, the providers and clients themselves are further decomposed into modules
(for simplicity, only one provider and one client are reported in Figure 2).

Each client consists of a Query Profiler that is the user interface to formulate the
query using the ontology constructs. Moreover, it has an Ontology Manager that
retrieves the corresponding ontologies from the OntologyBMS and uses them to
prepare the Query Profiler. It also includes a Profile Manager that allows the user
to explicitly modify its profile, or implicitly applies changes based on the actual
preferences of the user on the latest recommendations. Finally, it has a Recommen-
dation Receiver that receives the recommendations issued by the Matchmaker and
displays them to the user.

Conversely, each provider consists of a Resource Profiler that is the user inter-
face to actually fill the resource features as they are imposed by the corresponding
ontology. To this purpose, it interacts with the OntologyBMS by means of an
Ontology Manager that retrieves the corresponding ontologies and uses them to
prepare the Resource Profiler.

Besides the providers and clients, a superuser called Administrator is respon-
sible of updating the ontologies in the OntologyBMS and handling the rules in the
Rule Engine.

2.5 Distributing the matchmaking task

Figure 3 shows the distributed version of our system. In our description, we focus
on the intrinsic properties of this architecture and highlight the differences with
respect to the centralized version. In Section 5, we will show both architectures at
work, by properly tweaking their matchmaking effectiveness and performance.

Figure 3 shows a simplified architecture in which the internal repositories of
the event base, resource base, user profile base and rule base have been omitted.
We discuss the role and the location of these various repositories at the end of this
paragraph. The main advantage of this architecture is the fact that the matchmaking
service (and the consequent load) is distributed among the peers. The matchmaker
module in such a scenario is a thin module which is easy to deploy on any Ontol-
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ogyBMS. It is implemented as a Web service, using the SOAP protocol. What is
needed on each knowledge base is a WSDL description of the web service, after
the provided ontologies have been registered within a common OntologyRegistry.
The OntologyRegistry module receives requests for adding and deleting ontologies
by the providers and stores values of these ontologies in a dedicated repository.
These values consists of a set of keywords, extracted from the ontologies, along
with the URI of the corresponding ontologies. The keywords are useful to facili-
tate the search of the ontologies the user is interested in, in order to formulate his
demands. This choice is done through the client interface, through which the user
can actually visualize the ontologies present in the OntologyRegistry, and possibly
filter them according to the preferred keywords. Once the user has completed his
choice, he can formulate his query based on the selected ontology. Later, he can
issue this query on this ontology located on the corresponding provider, or, alter-
natively, on a set of similar ontologies, sharing the same keywords, and located on
different providers. In such a case, the user can formulate a single query detailed
with respect to a target ontology and then forward it to different providers which
share the same terminological structure (TBox) with respect to the target ontology.
For the time being, we have restricted to the scenarios in which the providers pub-
lish ontologies sharing the same TBox. The latter case turns to be non trivial and
poses several challenges. We also observe that more generic scenarios in which the
providers publish ontologies with similar, but not identical TBox require to solve
the alignment problem between them [5], and is far beyond the scope of our work.

We conclude the discussion about the distributed architecture, by discussing
the locations of the event base, resource base, user profile base and rule base in
the new architecture. The event base handles the events raised by the changes on
the ontologies stored in the OntologyBMS. Thus, this component must be jointly
located with each OntologyBMS, and should also capture the user logging events
on the client interface in order to enact the PUSH mode. The resource base should
also reside on each OntologyBMS, in order to collect the resources of the ontolo-
gies. Conversely, the user profile base component is stored on the client side, and
is responsible for the management of user profiles that are built according to the
profiler ontology, that is also saved in the OntologyBMS. The profiler ontology
has here the same role, as in the centralized architecture, i.e. to classify the users
interested in its resources. Based on the profiler ontologies, the rule base is capable
of running rules that decide the categories to which a user belongs. Since the user
profile base also allows to save the queries issued by the user, these can also be
exploited in the classification of users by rule inference. As a consequence, the
rule base component is also within the OntologyBMS.

To conclude the discussion about the differences between the centralized and
distributed architectures of our system, we can observe that while in the central-
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Figure 3: Architecture of a Distributed Recommender System

ized case, the matchmaker and the various repositories are centralized, in the dis-
tributed case, they are located on each peer, thus sharing their tasks among several
machines. Since the computation is done by several peers at a time, this compu-
tation can actually take place in parallel, thus bringing to an improvement of the
performance, as we prove in the experimental section.

2.6 Comparison with previous architectures

We would like to highlight in this section the differences between our architectures
and previous matchmaking prototypes, such as [13, 9]. The latter ones are both
agent-based matchmaking systems, that were designed before OWL officially be-
came a standard. [9] represents the first matchmaking prototype that uses a DAML-
S ontology and a Description Logics reasoner to compare ontology-based service
descriptions. The usage of a DL reasoner implies that the query and advertisement
must actually be identical and are subsumed in the specific case by the concept
ServiceProfile, which is defined in a shared ontology. Although [9] was
based on Semantic Web technology, the deployment has been quite different in our
case, as we do not assume a mediated ontology in the centralized case, but any on-
tology base can be plugged in. InfoSleuth [13] is also based on broker agents that
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a share common vocabulary based on a single domain-specific ontology. Ontolo-
gies are not expressed in the standard ontology language, but in a logical deduc-
tive language, called LDL++. To the best of our knowledge, none of the previous
matchmaking systems exploited could support a distributed matchmaking service.

3 The Matchmaking Process

To implement the matchmaking module in both architectures, we have adapted the
matchmaking algorithm in [4], with some enhancements. We first describe the
matchmaking procedure in [4], which consists of two separate steps, RankPartial
and RankPotential, both targeted to an ontology language with limited expressive
power. In these steps, demands and supplies are indeed provided as input logical
formulas. These formulas are preprocessed and partitioned into concept names,
and constraints. RankPartial applies an initial hard-pruning to the demands that
may potentially be satisfied by verifying that they are not disjoint with respect to
the supplies. In doing so, RankPartial checks the disjointness of the concepts,
and the disjointness of the constraints. Finally, the procedure yields as output a
ranking value npar for each pair given by a resource in the supplies and the de-
mand. RankPartial provides a pre-processing step before applying RankPotential
that actually computes the matchmaking between demands and supplies, by only
considering those that are not disjoint. Similarly to RankPartial, RankPotential
inspects the concepts and better ranks those concepts (constraints, resp.) in the
supply that are strictly contained or coincide with the demand. RankPotential also
outputs a ranking value npot for each pair given by a resource in the supplies and
the demand, by taking into account the number of overlapping concepts between
demand and supply.

We thought that the above algorithm as in [4] was appropriate for a matchmak-
ing analysis between ontology-based resources. Indeed, other algorithms, such as
the one in [9], lacked the concrete datatypes and only considered demands and
supplies in a common shared representation.

However, we needed to extend the algorithm in [4] to cover a broader number
of OWL constructs, and to guarantee that the matchmaking between a demand
and a large number of supplies is meaningful and the results are optimally ranked.
Other changes were actually performed in order to apply useful optimization steps.
We summarize the applied changes in the following list and refer the reader to the
complete pseudocode in Fig. 4:

• extension for OWL classes and properties: we have customized the match-
making algorithm to work with the ontology-language standard, i.e. OWL,
a prerequisite for the development of the Semantic Web. OWL is based on
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a very expressive DL called SHOIN(D) [7], that includes classes, properties,
class constructors and hierarchies of classes and properties, which we are
able to cover in our framework;

• lower number of comparisons: Steps 2 and 3 of the Algorithm are devoted
to compute the values of npar, npot and nadd for the resources in the sup-
ply set S, and their values for the constraints. This computation requires a
number of comparisons equal to |D| ∗ |S|, where D is the set of demands;
however, in many cases, the number of comparisons can be reduced, as we
discuss in Section 3.1;

• knowledge elicitation: the ranking values npar and npot were not sufficient
in all the scenarios, in which the user has to be guided in the list of matched
results by additional properties of resources; for instance, we have enhanced
the algorithm by adding a third ranking value, called nadd, representing the
number of additional concepts a resource has in the supply, that have not
been specified in the demand; this allows to enhance the knowledge elicita-
tion and better compute a unified ranking value as done in Step 4.

3.1 Comparing demand and supply

Steps 2 and 3 of the Algorithm perform a double inspection of the concepts in the
demand and of the concepts in the supply. We realized that the number of com-
parisons could be further reduced by applying some pre-processing. Moreover, the
double inspection of concepts in Step 2 and of constraints in Step 3 can actually
be done in parallel. Indeed, the disjoint relationship between each concept in the
supply S and the concepts in the demand D corresponds to a total number of com-
parisons, given by |S| ∗ |D|. The not among relationship actually does the same
number of comparisons, albeit in a reverse order. In order to avoid making a large
number of comparisons, some optimizations can take place. Figure 5 shows a sup-
ply consisting of two concepts {D,E} and a demand consisting of three concepts
{A,B,C}. First of all, the disjointness condition between each concept in {D,E}
and each concept in {A,B,C} implies that each pair of concepts must be disjoint.
If concept D and concept A are disjoint, then the opposite holds. This leads to
observe that the disjoint relationship is indeed symmetric. The not among relation-
ship has to be applied to two sets of concepts (e.g. {A,B,C} and {D,E} in the
example), and aims at checking that the concepts in the first set do not belong to
the second set. For instance, in Figure 5, the concepts in {A,B,C} are not among
the concepts {D,E}. Whereas the disjoint condition can be computed by intersec-
tion (i.e. by checking the emptiness of the intersection), the not among condition
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Algorithm SemanticMatchmakingAndRanking.
Input: ontology concepts in demand D and supply S.
Output: supply S with ranking function rank.
1. Let npar be the number of concepts in S disjoint from the concepts in D;

npot be the number of concepts in S not among the concepts in D;
nadd the number of additional concepts in S w.r.t. D
Snames the concept names in supply S;
Dnames the concept names in demand D;

For each supply si ∈ Snames

npar := 0, npot := 0, nadd := 0
2. For each supply si ∈ Snames

For each concept ci ∈ si, having weight ciw :
if ci is disjoint from the concepts in Dnames

npar := npar + ciw
Add to npot the number of concepts in D that are not among those in si

npot := npot + |Dnames − Snames|
For each concept cj ∈ si

nadd := nadd + numberAdditionalConcepts(cj , Dnames)
3. For each constraint nci of concept ci ∈ Snames, having weight ciw

if nci is in conflict with a constraint in Dnames

npar := npar + ciw
For each constraint ndi

of concept di ∈ Dnames;
if ndi

is not implied by any constraints in Cnames

npot := npot + 1
4. Let rankpar := 0 be the ranking based on npar;

rankpot := 0 be the ranking based on npot;
rankadd := 0 be the ranking based on nadd;
max(npar) the maximum value of npar for supplies ∈ Snames;
max(npot) the maximum value of npot for supplies ∈ Snames;
max(nadd) the maximum value of nadd for supplies ∈ Snames;

For each supply si ∈ Snames

if max(npar) 6= 0
rankpar := normalize npar wrt. max(npar)

if max(npot) 6= 0
rankpot := normalize npot wrt. max(npot)

if max(nadd) 6= 0
rankadd := normalize nadd wrt. max(nadd)

Output rank = StdMean(rankpar, rankpot, rankadd)

Figure 4: Matchmaking Algorithm with Knowledge Elicitation
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can be computed by difference of the two sets and it holds true if the result of the
difference coincides with the first set.

We have introduced a pre-processing phase in the algorithm that takes into
account the commonalities in the algorithm steps and avoids redoing the same
comparisons. The total number of comparisons is thus reduced by an half (i.e.
is |S| ∗ |D| at most). In particular, the disjoint condition can be computed by
difference as well, by exploiting the equivalence A ∩ D = A − (A − D), and
once computed the disjoint condition, these can be also be exploited in the com-
putation of the not among condition, as follows. In the example, the concepts in
{A,B,C} are not among the concepts {D,E} iff each concept in {D,E} is dis-
joint from each concept in {A,B,C}. The figure shows that the computation of the
not among relationship just exploits the comparisons already done for the disjoint
relationship.

disjoint
not among

D

A
DEMAND

SUPPLY

E

B C

Figure 5: Comparing Demand and Supply

4 Ontology-driven Result Visualization

Besides enabling the matchmaking function, a recommender system should also
be able to visualize the results to the users in an understandable fashion, and rank
them according to some criteria.

Our system allows the user to specify a confidence value in their demands, for
instance on properties. In our running example, the request for a white-coloured
laptop, can be formulated by specifying a confidence value from 1 to 10, which
actually tells how compulsory has to be a predicate. In such a case, a confidence
value equal to 3 means that the user is interested to this condition for 30%, and he
can give up this restriction for 70%.

If no confidence value is specified, a default value equal to 10 is used, meaning
that a condition is mandatory for the user. Nevertheless, the matchmaking algo-
rithm is able to compute a ranking value for each resource, based on the number
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of additional properties, nadd, of resources and the usage of partial and potential
ranking values, npar and npot, as explained in the previous section.

Besides ranking, the system lets exploit two possible strategies for the visual-
ization of results. The first strategy, which we call Naive, allows to visualize the
results in a flat list, by putting on the top of the list the results that more closely
satisfy the user demand (included the confidence value, if this has been specified).
This flat list assumes the ranking values as computed by the matchmaking algo-
rithm.

By expanding the items of the list, the other properties of a resource can be
visualized, i.e. those that have not been specified in the demand, but are part of
the ontology representation of that resource in the knowledge base. However, we
realized that this strategy poorly helps the user in the process of result visualization,
as he/she has to browse the entire list to learn the possible additional properties of
a resource, and the possible values of this property.

Given the limitations of the naive strategy, we devised a second strategy, called
Grouping, that guides the user during the inspection of the results. Here, we allow
the organization of the output results into ‘groups’. Each group is built on the
number and type of properties not specified in the demand in order to improve
the expressiveness of the user queries, as shown in the use case in Section 2.1.
These properties are the same used by the algorithm in the nadd parameter, thus
have been already considered in the computation of the ranking value. In this
strategy, they are used for visualization purposes. By using the Grouping strategy,
the results are split into groups, each group having one, two and, accordingly, an
arbitrary number of unspecified properties. The user can now expand the group(s)
that he likes and possibly use them to refine his query. For instance, by using our
running example, a user may have issued a first demand on a black wide-screen
PDA. He does not know what would be the possible values of other features, such
as operating system, CPU size, RAM etc., that are for the time being left blank in
formulating the demand. By using the Naive strategy, the system would output the
results in a flat list, with a specified ranking order. However, the results may be
too numerous to be inspected by the user. By repeating the same query with the
Grouping Strategy, the results would be organized in a convenient way. This result
visualization allows to group the output resources according to their additional
properties, and lets the user browse within these groups in order to find the best
resources at all. In the example discussed in Section 2.1, the first group shows the
supplies that only have the properties that have been specified in the demand ‘black
wide-screen PDA’, thus with zero additional properties, whereas the second group
shows the supplies having one additional property (for instance, OS or CPU size),
the third group shows the supplies with two further additional properties and so on.
The user may thus decide to expand the groups in order to learn the values for the
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additional properties of the requested object. As an example, the user learns that
the available PDAs may have a Windows or Linux OS.

As part of the user study, we have performed a user evaluation of these two
strategies and their usefulness in the matchmaking process. This will be illustrated
in the next section.

5 Experimental Study

We have conducted an experimental study on both the centralized version and the
distributed version of our prototype. The experiments aimed at investigating the
suitability of both architectures with real-life ontologies and matchmaking cases.
Such investigation was twofold, as it was expected to measure the performance of
the matchmaking prototype, and the effectiveness of the matched results. We thus
first arranged a user study, by letting a group of users working on the prototype
and asking them to issue their demands and filling a questionnaire, based on the
results of the matchmaking process. Finally, we measured the execution times of
the matchmaking algorithm in the centralized case, and that of the matchmaking
algorithm in the distributed case.

We have implemented both architectures in Java 6.0, by using PostgreSQL 8.2
as the back-end for the ontology management (OntologyBMS) and MySQL as the
back-end for the ontologyRegistry, Jena2 as the knowledge base, the rule base and
the user profile base (including user’s queries). Jena2 Semantic Framework stores
ontologies as RDF triples by providing a layer on top of a relational back-end.
Querying the ontologies is done by means of a SPARQL engine. Finally, Apache
Tomcat 6 has been used as Server Container while Axis2 as a module to enable
the SOAP/XML interaction with the OntologyRegistry, and to wrap requests and
responses.

5.1 Experimental Setting

Throughout the experiments, we have used a set of ontologies, that represents real
purchases of goods or services, such as Computer.owl, and Book.owl for goods,
and Doc − EGov.owl for public administration services. Moreover, we have put
our system at work on a standard ontology, Wine.owl 1, as provided by the World
Wide Web Consortium.

Table 1 shows for each ontology its main characteristics in terms of number of
concepts and number of properties used in formulating the demands.

1The Wine.owl ontology is publicly available at the following url:
http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf.
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Ontology # concepts # objectProperty # datatypeProperty
Computer.owl 13 6 0

Books.owl 9 2 13
Doc-EGov.owl 22 10 67

Wine.owl 80 12 9

Table 1: Ontologies used in the experiments and their main features.

The experiments on the centralized architecture have been executed on a Win-
dows XP Laptop with 2.00 GHz, and 1GB memory. The experiments on the dis-
tributed architecture have been executed on Windows XP Pro Laptops with mem-
ory ranging from 512MB to 4GB. The ontologies have been replicated on each
machine, and the results have been collected by one of the machines, acting as a
client and as an OntologyBMS at the same time.

5.2 A User Study for Assessing the Effectiveness of the Matchmaking
Algorithm

We have asked a group of 16 users to utilize our system, and fill in a questionnaire
with a set of questions, in order to measure the user satisfaction in the various
matchmaking cases. While choosing the demands that the users used in the study,
we opted for real-life demands of goods and services. Our user study aimed at
actually demonstrating the usefulness of the PUSH and PULL modality of our
system, and the adequacy of the grouping strategies.

We conducted our study as follows. We employed two of the ontologies shown
in Table 1, precisely Doc − EGov.owl and Computer.owl. The reason why we
chose these two ontologies is due to the fact that our users were chosen among the
students enrolled in the Computer Science Program at University of Basilicata, thus
representing a sample of users more acquainted with computers and less acquainted
with public administration services. We will later observe that this choice actually
confirms that the familiarity of such users with computer goods did not bias the
user study study results and confirmed the usefulness of the two matchmaking
strategies.

For each ontology, the users were asked to use the system by issuing a query.
We employed two queries for Doc − EGov.owl ontology and three queries for
Computer.owl ontology. The first two queries on Doc − EGov.owl ontology
were on tax payments on behalf of the administrative staff of the Italian Internal
Revenue Service. The first two queries on Computer.owl ontology were on com-
puter purchases with different properties, whereas the latter query was a query on
the number of laptops, satisfying a particular condition, for instance done for sta-
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Ontology Query Query Description
Computer.owl QC1 The user is interested to buy and retrieve the laptops with price

less than 1000 euros and with 2 years-warranty or more
Computer.owl QC2 The same as above, but with a confidence value for

the second predicate
Computer.owl QC3 The user wants to build a statistic on the number

and type of grey-coloured laptops, with price equal
or greater than 1000 euros

Doc-EGov.owl QD1 An IRS employee retrieves the data about citizens with Debit
Payment greater than 25 euros.

Doc-EGov.owl QD2 A bank officer retrieves the tax payments due on
02/27/2009, with amount greater than 150 euros

Table 2: Queries of the user study.

tistical purposes. A description of each query is shown in Table 2.
Based on these queries and ontologies, we asked the user to fill a questionnaire,

by answering a set of questions, divided into boolean questions and questions with
a numeric range, representing the level of satisfaction from 1 (low) to 3 (high). The
results of the user study are reported as the following measures:

• the average value of user satisfaction %US, indicating the average of pos-
itive answers for boolean queries and the average of high-rated answer for
range queries, respectively;

• the standard deviation of user satisfaction %SD, indicating the spread out of
values.

The first step in our user study was to actually probe the effectiveness of the
PUSH mode. We recall that in the PUSH mode, the user is asynchronously pro-
vided with a set of resources, that are his/her preferred ones. The user profile is
employed in this mode, along with the past queries issued by the user. We have
asked the users to fill in their user profile and to enter a set of queries. Later on,
the next time the users logged in, they were prompted with their preferred sets of
resources, that were newly added to the knowledge bases. We asked the users the
following questions, as shown in Table 3, in which we also show the average %US
of satisfaction and the standard deviation %SD.

The experiment was carried out on Doc−EGov.owl, which contains services
of the public administration. As shown in Table 3, the conclusion of the user study
on the PUSH mode was that the user satisfaction is quite high, with a fairly low
spread out of values.
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Question %US %SD

Do you deem useful the PUSH mode? 74,4 19,2
Are you satisfied with the (PUSHed) resources? 76,9 24,1

Are the (PUSHed) resources compliant with your profile? 92,3 26,6

Table 3: Summary of Results of the User Study (PUSH mode) on Doc− EGov.owl.

Question Acr. Strat1 Strat2
Do you deem useful the Provided Ranking? UPR A A

Are the most significant results in Top-3 position? STK A A
Do you deem useful the Ranking wrt. Additional Properties? RAP NA A
Do you deem useful the Grouping wrt. Additional Properties? GAP NA A

Table 4: Most Significant Questions of the User Study (PULL mode), their acronym and
their applicability to the two Strategies.

The user study then proceeded to analyze the PULL mode. In such a case, we
asked the users a number of questions on their satisfaction in the various cases,
when they explicitly type a set of demands. In particular, in order to collect the
users opinion on the Naive and Grouping strategies, we asked them to repeat the
same query under two possible anonymous strategies (Strat1 and Strat2, standing
for Naive and Grouping, respectively) and write down their rating in both cases.
We preferred to not tell the user the name and details of the strategies to avoid
biasing the study. The user study for the PULL mode consisted of a series of
questions in a questionnaire. For the sake of presentation, we have summarized the
questions into a number of four most significant questions we posed to the users,
and which we report in Table 4. For each question, we present its description, an
acronym that we will use in the remainder of this paragraph, and its applicability
to the two strategies. Whereas the first two questions focus on the ranking, thus
are applicable to both strategies, the latter two questions concerns the usefulness
of additional properties (nadd), thus are only appropriate for the second strategy.

Table 5 shows the results of the user satisfaction and the standard deviation for
the questions above, these results being grouped by the corresponding strategy. It
can be noticed that in all queries, as shown by the answer to question UPR, the av-
erage of user satisfaction %US is greater for the second strategy than for the first.
This shows that the ranking provided by the second strategy, by highlighting the
number of additional unspecified properties, is deemed more useful from the users’
point of view that a simple ranking without grouping. This is also confirmed by the
high percentage of %US for the answers to questions RAP and GAP . The only
exception is represented by query QC3 on Computer.owl (cfr. Table 2), which
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Query Question %US(Strat1) %US(Strat2) %SD(Strat1) %SD(Strat2)
QC1 UPR 66,7 69,2 26,1 30,6
QC1 STK 82,1 72,2 24,9 29,9
QC1 RAP - 88,9 - 22,2
QC1 GAP - 83,3 - 37,3
QC2 UPR 61,5 69,2 22,1 20,5
QC2 STK 69,2 66,7 24,3 26,1
QC2 RAP - 87,5 - 23,2
QC2 GAP - 83,3 - 37,3
QC3 UPR 69,4 77,8 28,7 28,3
QC3 STK 72,2 86,1 29,9 25,3
QC3 RAP - 87,5 - 16,1
QC3 GAP - 27,8 - 12,4
QD1 UPR 52,1 68,8 20,3 24,9
QD1 STK 64,6 68,8 18,5 27,6
QD1 RAP - 76,7 - 21,3
QD1 GAP - 81,3 - 39,0
QD2 UPR 53,3 64,4 20,4 25,7
QD2 STK 62,2 64,4 23,9 25,7
QD2 RAP - 70,0 - 31,4
QD2 GAP - 66,7 - 47,1

Table 5: Summary of Results of the User Study (PULL mode).

was aimed at building a statistics. In such a context, the question GAP shows
that, whereas the ranking is deemed useful (cfr. RAP for QC3), the grouping is
fairly not helpful, and confirmed our assumption that the grouping really helps the
user when he is interested to buy a good or service (i.e. for all queries other than
QC3), and is not familiar with its various unspecified properties. If we look at the
results for question STK, we can observe that the first strategy is deemed better
than the second strategy as a means to show the Top-3 positions of the results list
for queries QC1 and QC2. The results are reverted for the following query QC3,
QD1 and QD2, where the second strategy turns out to be better than the first one.
The conclusion is that this was somehow expected, since the users, being com-
puter scientists, feel more confident with the first two queries, that are purchases of
computers, whereas they are not much confident with the remaining ones, and, in
the latter cases, Strat2 with grouping was deemed more helpful to identify the best
Top-3 results.
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5.3 Performance Analysis

We have analyzed the performance of our system, by utilizing the centralized ver-
sion and the distributed version. Figure 6 reports the execution times of a set of
demands that were run on each ontology in the centralized architecture. For the
sake of comparison, we have filled each knowledge base with the same number of
instances and run various kinds of queries, by incrementally varying the number
of concepts and properties used in the demands. The queries used in the tests are
reported on the X axis of the plot in Figure 6, along with the number of prop-
erties specified in each query. For instance, queries Q1-1 and Q1-2 indicates the
same query Q1 with one property specified in the first case, and two properties in
the second case. We have used an incremental number of properties in the various
queries, whereas each query has been built around a single concept of the ontology.

Each result shown in Figure 6 has been averaged on three hot runs of the match-
making engine. We can notice that for all the ontologies, the execution times are
reasonably low. In particular, for Book.owl, Computer.owl and Wine.owl, the
execution times for matchmaking are below 1.4, 1.2 and 2.5 ms, and scales linearly
with the number of properties used in the queries. Indeed, the total number of prop-
erties for such ontologies, as shown in Table 1 is not high, thus the inspection of
additional properties does not impact the times. If, instead, we observe the results
for Doc − EGov.owl, we can notice that the execution times blow up (till 7 ms).
This is due to the fact that this ontology has a greater number of properties. Despite
this, the linear scale is preserved for all the queries of this ontology, similarly to
the previous ontologies.

Figure 7 shows the results on our distributed architecture. In Figure 7 (LHS),
we show the time composition into network latency time and matchmaking time
for a set of queries. Besides the number of properties, we also indicate the number
of machines employed in the experiment, to name the queries (e.g. query Q1-2-2
is a query with 2 properties, executed on 2 machines). In Figure 7 (RHS), we show
for each experiment the total number of resources matched by the algorithm, that
is obtained by summing up the resources matched on each machine. We employed
a total of 7 queries in this experiment, where the first three queries are formulated
on Doc − EGov.owl ontology, and the remaining ones on Computer.owl. We
executed two hot runs of each experiment, and averaged the results. If we observe
the LHS plot, the execution times of the first three queries on Doc − EGov.owl
(in blue) shows a linear scale with respect to the number of properties in the query
and the number of machines employed in the distributed setting. The higher is the
number of properties and the number of peers, the bigger is the execution time of
the matchmaking algorithm. The network latency time is influenced by the num-
ber of machines, and by the number of resources (RHS plot), rather than by the
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Figure 6: Matchmaking execution times (in ms) in the centralized case.
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number of properties specified in the query. Indeed, the highest latency occurs
with queries Q2-1-2 and Q3-3-2, that handle an higher number of resources with
respect to Q1-2-2. If we look at the last four queries on Computer.owl, we can
observe a similar trend. The queries Q4-3-2 and Q5-1-2 have been executed on
two machines, whereas Q4-3-3 and Q6-3-3 have been executed on a total of three
machines. The first two queries, Q4-3-2 and Q5-1-2, show execution times of the
matchmaking algorithm, which only depend on the number of properties, whereas
the network latency time is affected by the number of resources that have been
shipped around the network, and by the number of machines. The last two queries,
Q4-3-3 and Q6-3-3, have both three properties, and have been executed by using a
similar number of resources, and the same number of machines. It can be noticed
that the matchmaking execution times and latency times are roughly comparable.
If we compare the times of query Q4-3-3 with its previous formulation Q4-3-2, we
can confirm the previous observation that the matchmaking times are only depen-
dent on the number of properties, and not on the number of resources, while the
opposite holds for latency network time.
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Figure 7: Matchmaking execution times vs. latency network times in
the distributed case wrt. #properties,#peers (LHS) and #resources wrt.
#properties,#peers (RHS), resp.

In order to improve the total execution time across several machines, we have
built an alternative implementation of the matchmaking web service in an asyn-
chronous fashion. While in the synchronous modality, the results coming from
each machine are pipelined and gathered on a single machine, in the asynchronous
mode, the results are collected in parallel, by exploring multi-thread programming.
Thus, in the synchronous mode, the total execution time is obtained by summing
up the local times of the machines (i.e. the matchmaking time and latency net-
work time), whereas in the asynchronous mode, the execution is parallelized and
the total execution time roughly amounts to the maximum among the local times
of the machines. We have thus performed an additional experiment that measures
the scalability of the matchmaking service in both modes.
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Figure 8 (LHS) shows the total execution time for query Q4 in both the syn-
chronous and asyncronous mode by varying the number of machines from 7 down
to 3. Figure 8 (RHS) shows the # of resources matched in the various cases. We
can notice that the total execution time of the Asynchronous mode (AS) is much
lower than that of the Synchronous mode (S) in all cases. Moreover, while in the
Synchronous mode (S) the total execution time heavily depends on the number of
peers, it is not varying for a number of machines greater than 4 in the Asynchronous
mode (AS).
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Figure 8: Total execution time in the distributed case wrt. #peers (LHS) and #
resources wrt. #peers (RHS).

6 Related Work

We have highlighted in the previous sections the differences between our work and
the existing matchmaking systems [13, 9, 4]. Although recommender systems are
fairly orthogonal to our work, we briefly discuss them in the following. The use
of ontologies for user profiling in recommender systems has been studied in [11],
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which presents an hybrid recommendation approach, both content-based and col-
laborative. Two recommender systems, Quickstep and Foxtrot, are built for user
profiling in the computer science community. In the latter system, ontologies are
visualized to allow elicitation of user profile feedback. While the above work fo-
cuses on the use of ontologies for user profiling, our focus is on adopting such use
all along the matchmaking process.

Yahoo! Vibes [12] is a platform for building recommender systems for large-
scale datasets. Contrarily to previous approaches that were customized to a few
domains and were not scalable, Vibes is used to power recommendations across
a wide range of Yahoo! properties, such as Shopping, Travel, Real Estate etc. It
plugs in several recommendation models based on affinity, attribute-similarity and
collaborative filtering, and can be extensible to other models. Similarly to our dis-
tributed multi-module architecture, it is also based on Web services, to ensure the
portability and independence from the language and operating systems. However,
Vibes does not rely on ontologies as a powerful means to extract semantics from
the items. Instead, it exploits the item-to-item affinity and user historical behavior
on Yahoo to build the recommendations. Another limitations is that it can only be
deployed for Yahoo items and is not applicable to a wide range of domains.

Amazon [10] and Google News [3] also make use of collaborative filtering,
that aims at learning user preferences and making recommendations based on user
and community data. Quality of recommendations notwithstanding, they focus on
scalability of the recommender system with several million users. Google News
also addresses the problem of item churn, i.e. the frequent insertions and deletions
of items.

All the above algorithms assume a history of user past clicks that are captured
by the collaborative filtering models. Our system does not rely on this assumption,
thus being more a content-based (or keyword-based) approach [1] in a loosely fash-
ion. The content we can handle is given by the knowledge and semantics present in
ontologies, that are the core of Web 2.0. Thus, the above approaches are orthogonal
to ours.

CourseRank [8] focuses on the definition of recommendation workflows, in
which recommendations can be customized through a recommend operator and
a blend operator is used to unify recommendations provided by different paths.
Such operators, together with select, project, join operators allow to build flexible
recommendation workflows.

X.QUI.SITE (Yahoo!) [2] is a recommendation platform, built upon a social
tagging web site, Yahoo! del.icio.us, through which the users tags the URLs of
interest and receives recommendations on hot topics and interesting people. User-
centered recommendation is pursued in this system, that aims at presenting the
right information to the user. Our system does not assume that the user explicitly
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tags the information, and we build upon the fact that the users declaratively feed
their user profile, while using the latter in the PUSH mode. However, we believe
that our system is flexible enough to be extended to social tagging web sites. We
also think that the use of ontologies in this context is largely unexplored, and may
bring interesting challenges.

7 Conclusions and Future Work

We have presented a full-fledged matchmaking system leveraging the use of ontolo-
gies to yield and rank the recommendations, and help the users to better reformulate
their queries. We have deployed two architectures of our system, a centralized one
and a distributed one. We have performed an extensive evaluation, aiming at col-
lecting the user feedback on the various features, and analysing the performance in
both architectures.

As future work, we would like to extend our system to utilize community data
and collaborative work, for instance to enhance the user profiling (PUSH mode),
in the spirit of [11].

Moreover, we would like to investigate the case in which the target ontology
that is used by the providers in the distributed architecture, is not unique. Such a
scenario would lead to study the complex problems of mapping and alignment of
ontologies, that is the subject of a recent book [5].

Moreover, we would like to explore the direction of using our distributed match-
making services in large-scale loosely coupled architectures, such as in P2P net-
works.
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