
Exploiting Prolog and NLP Techniques for Matching
Ontologies and for Repairing Correspondences?

Viviana Mascardi1, Angela Locoro2, and Fabrizio Larosa1

1DISI, Università degli Studi di Genova, Via Dodecaneso 35, 16146, Genova, Italy
viviana.mascardi@unige.it, 2003s140@educ.disi.unige.it

2DIBE, Università degli Studi di Genova, Via All’Opera Pia 11a, 16145 Genova, Italy,
angela.locoro@unige.it

Abstract. Providing efficient ontology matching algorithms is one of the means
for pursuing semantic interoperability. In this paper we discuss an algorithm that
exploits natural language processing techniques for matching ontologies and that
post-processes the obtained alignment in order to find semantic inconsistencies.
The algorithm has been entirely implemented in Prolog, whose usefulness was
mainly evident in the post-processing phase. A careful analysis of the recent state-
of-the art witnesses the originality of our matching algorithm which is based on
the “Adapted Lesk Algorithm” for word sense disambiguation. The experiments
we carried out, although in their early stages, are encouraging.

Keywords. Computational Logic, Semantic Interoperability, Natural Language
Processing, Ontology Matching, Correspondence Repair

1 Introduction

Semantic interoperability, namely “the ability of two or more computer systems to ex-
change information and have the meaning of that information automatically interpreted
by the receiving system accurately enough to produce useful results”1, is one of the most
relevant and lively research fields of the last fifteen years. The advent of ontologies in
computer science in the early nineties [14], the settlement of Web Services in the begin-
ning of the new millennium, the combination of both into Semantic Web Services, all
witness the fervid activity of academia and industry for finding algorithms, languages,
tools, and infrastructures aimed at realising the “semantic interoperability dream”.

The reason for the interest in this topic is easy to explain. In a recent paper [26],
Jan Walker et al. assess the value of information exchange and interoperability in the
domain of health care, and state that a fully standardised system supporting information
exchange and interoperability could yield a net value of 77.8 billion dollars per year
once implemented. Other studies [10,5] confirm these impressive economic advantages
in implementing solutions for semantic interoperability.

Since knowledge is more and more represented by means of ontologies, and dif-
ferent ontologies must be matched in order to make knowledge exchange possible, one
? Partially supported by the Italian project “Iniziativa Software CINI-FinMeccanica”.
1 Wikipedia, http://en.wikipedia.org/wiki/Semantic_interoperability,

accessed March, 15, 2009.

of the means for pursuing semantic interoperability is that of providing efficient ontol-
ogy matching algorithms. The first formalisation of the matching problem dates back
to 2000 [2]. Today, due to the ever increasing availability of many ontologies in very
different domains, ontology matching is becoming one of the most important activities
in the Semantic Web area.

This paper deals with the problem of finding semantically correct mappings be-
tween couples of ontologies. It exploits an algorithm used for word sense disambigua-
tion originally proposed by Michael Lesk [16] and adapted by Satanjeev Banerjee and
Ted Pedersen [1]. The obtained alignment is then post-processed in order to further
refine it by finding semantic inconsistencies.

The paper is organised in the following way: Section 2 provides some background
knowledge on WordNet, the Lesk algorithm, ontology matching, and alignment repair.
Section 3 discusses the algorithms that we have implemented, whereas Section 4 de-
scribes their Prolog implementation and discusses the preliminary results we have ob-
tained. Section 5 concludes and highlights future directions of our work.

2 Background

In this section we provide a short background on the topics upon which our research
roots: WordNet, the Lesk algorithm for word sense disambiguation, ontology matching,
and alignment repair.

2.1 WordNet

WordNet [9] is a large lexical database of English, developed under the direction of
George A. Miller. Nouns, verbs, adjectives and adverbs are grouped into sets of cogni-
tive synonyms (synsets), each expressing a distinct concept. A synset or synonym set
is defined as a set of one or more synonyms that are interchangeable in some context
without changing the truth value of the proposition in which they are embedded.

Most synsets are connected to other synsets via a number of semantic relations that
include:
Semantic relations between nouns. Hypernyms: Y is a hypernym of X if every X is
a (kind of) Y ; hyponyms: Y is a hyponym of X if every Y is a (kind of) X; coordinate
terms: Y is a coordinate term of X if X and Y share a hypernym; holonym: Y is a
holonym of X if X is a part of Y ; meronym: Y is a meronym of X if Y is a part of X .
Semantic relations between verbs. Hypernym: the verb Y is a hypernym of the verb
X if the activity X is a (kind of) Y ; troponym: the verb Y is a troponym of the verb X
if the activity Y is doing X in some manner; entailment: the verb Y is entailed by X
if by doing X you must be doing Y ; coordinate terms: those verbs sharing a common
hypernym.

While semantic relations apply to all members of a synset because they share a
meaning but are all mutually synonyms, words can also be connected to other words
through lexical relations, including antonyms (opposites of each other) and derivation-
ally related, as well.

2.2 Lesk Algorithm

The Lesk algorithm is an algorithm for word sense disambiguation introduced by Mi-
chael E. Lesk in 1986 [16]. It applies to short sentences and uses the number of words
common to the definitions, or glosses, of each word in the sentence as a measure rep-
resenting how much that gloss correctly defines the word. For example, if the sentence
to disambiguate contains bass and fishing, and both words are defined by one gloss that
contains fish (suppose gloss “a fish with a spiny dorsal fin, related to or resembling the
perch”2 for bass, and gloss “the sport, industry, or occupation of catching fish”3 for
fishing), then these two glosses have some chance to be the right ones for bass and fish-
ing respectively. The original Lesk algorithm uses dictionaries like Oxford Advanced
Learner’s to retrieve glosses.

In 2002, Satanjeev Banerjee and Ted Pedersen adapted Lesk algorithm by using
WordNet as the source of glosses [1]. They also adapted the algorithm in order to disam-
biguate each word in a sentence, whatever the sentence length. The algorithm operates
in the following way:

Input: a sentence s; a target word tw to disambiguate within that sentence; the
dimension 2n + 1 of the window to consider as a context for tw
Output: a gloss that provides the right definition for tw
begin
1. create the list context that contains the n words that belong to WordNet and

that come before tw in s, the n words that belong to WordNet and that come
after tw in s, and tw;

2. if tw is near the beginning or the end of the sentence, take additional WordNet
words from the other direction;

3. for each word w in context
(a) retrieve its synonyms, hypernyms, hyponyms, holonyms, meronyms, tro-

ponyms, and attributes from WordNet;
(b) if the part of speech (noun, adjective, verb, ...) p that w plays in the sentence

is known, than take into account only relations and synsets associated with
w as a p, otherwise consider all possible relations and synsets for w;

(c) retrieve glosses for each word in the list of synonyms and senses related to
w obtained in the previous step: be it g1(w), g2(w),, gn(w);

(d) the score of each gloss in the list associated with w, score(gi(w)), is ini-
tially set to 0;

4. for each pair of words wa, wb in context
(a) for each pair of glosses gj(wa) belonging to the list of synonyms of and

sensed related to wa and gk(wb) belonging to the list of synonyms of and
sensed related to wb

i. define an overlap between gj(wa) and gk(wb) as the longest sequence
of common consecutive words: this overlap results into a score stating
how much gj(wa) is the right definition for wa, and gk(wb) is the right
definition for wb;

2 AskOxford.com, http://www.askoxford.com/.
3 Msn Encarta Dictionary, http://encarta.msn.com/encnet/features/
dictionary/dictionaryhome.aspx.

ii. update score(gj(wa)) and score(gk(wb)) by adding the scores ob-
tained in the previous step;

5. to disambiguate the target word tw, select the gloss in g1(tw), g2(tw),, gm(tw)
with highest score, and return it

end

2.3 Ontology Matching

This section is based on [8] and adopts definitions similar to those used there, eventu-
ally simplified for sake of clarity.

Definition 1: Correspondence. A correspondence between an entity e belonging to
ontology o and an entity e′ belonging to ontology o′ is a 5-tuple < id, e, e′, R, conf >
where:

• id is a unique identifier of the correspondence;
• e and e′ are the entities (e.g. properties, classes, individuals) of o and o′ respec-

tively;
• R is a relation such as “equivalence”, “more general”, “disjointness”, “overlap-

ping”, holding between the entities e and e′.
• conf is a confidence measure (typically in the [0, 1] range) holding for the corre-

spondence between the entities e and e′;

In our algorithm we only consider classes as entities and equivalence as relation.

Definition 2: Alignment. An alignment a of ontologies o and o′ is a set of correspon-
dences between entities of o and o′.

Definition 3: Matching Process. A matching process can be seen as a function f which
takes two ontologies o and o′, a set of parameters p and a set of oracles and resources
r, and returns an alignment a between o and o′ (adapted from [3]).

Matching techniques. An exhaustive survey on matching approaches can be found in
[8]. Among the matching techniques, we just discuss those that fall under the “Granu-
larity / Input Interpretation” classification, based on the granularity of the matcher and
on the interpretation of the input information. In particular, we consider string-based
methods and language-based ones.

1. String-based methods. These methods measure the similarity of two entities just
looking at the strings (seen as mere sequences of characters) that label them. They in-
clude Levenshtein Distance, defined as the minimum number of insertions, deletions
and substitutions of characters required to transform one string into another [17], and
SMOA Measure which is a function of their commonalities (in terms of substrings) as
well as of their differences [24].

2. Language-based methods. Language-based methods exploit natural language
processing techniques to find the similarity between two strings seen as meaningful

pieces of text rather than sequences of characters. Some of them exploit external re-
sources like WordNet, and exploit the semantic relations that it offers to compute the
similarity. Language-based techniques include

– Tokenisation: names of entities are parsed into sequences of tokens. For example,
RedWine becomes <red, wine> [12].

– Stemming: the strings underlying tokens are morphologically analysed in order to
find all their possible basic forms. For example, goes becomes go [12].

These techniques are applied to names of entities before running string-based or lexicon-
based techniques in order to improve their results [23].

Linguistic resources, such as common knowledge or domain specific thesauri are
used in order to match words resulting from tokenisation and stemming of ontology
entities based on linguistic relations between them (e.g., synonyms, hyponyms). For
example, WordNet may be used to obtain meaning of words used in ontologies and re-
lations between ontology entities can be computed in terms of bindings between Word-
Net senses. CtxMatch [4] represents the first instantiation of a language-based approach
of this kind, discussed in [11].

Other matchers exploit the structural properties of thesauri, e.g., WordNet hierar-
chies. Hierarchy-based matchers measure the distance, for example, by counting the
number of arcs traversed, between two concepts in a given hierarchy [13]. Several other
distance measures for thesauri have been proposed in the literature [22,21].

The recent paper “A Survey of Exploiting WordNet in Ontology Matching” [18]
discusses language- and WordNet-based matching techniques in detail. According to
that paper and to many others that we have considered while analysing the state-of-the-
art, no approaches based on the Adapted Lesk algorithm for ontology matching have
been proposed so far. The algorithm we discuss in Section 3.1 is, to the best of our
knowledge, an original contribution to the ontology matching research field.

2.4 Repairing Ontology Correspondences

As we will see in Section 4.2, where experimental results will be discussed, alignment
methods may both produce wrong correspondences (the methods are not correct), and
not produce right correspondences (they are not complete). For this reason, repairing
wrong correspondences in an ontology alignment is a very pressing need. Very few
attempts to solve this problem exist [15,19,6]. Among them, the approach that inspired
our work and that we will briefly discuss here, is “Repairing Ontology Mappings” by
C. Meilicke, H. Stuckenschmidt, and A. Tamilin [19].

The approach followed there is to interpret the problem of identifying wrong cor-
respondences in an ontology alignment as a diagnosis task. Meilicke, Stuckenschmidt,
and Tamilin formalise correspondences as “bridge rules” in distributed description log-
ics and analyse the impact of each correspondence on the ontologies it connects. The
basic assumption is that a correspondence that correctly states the semantic relations
between ontologies should not cause inconsistencies in any of the ontologies. The en-
coding in distributed description logics allows the authors of [19] to detect these incon-
sistencies which are treated as symptoms caused by an incorrect correspondence. They

then compute sets of correspondences that jointly cause a symptom and repair each
symptom by removing correspondences from these sets. The set of correspondences
remaining after this process can be regarded as an approximation of the set of correct
correspondences.

For example, consider two ontologies o and o′ characterised respectively by axiom
ax and axiom ax′

ax : author v person
ax′ : person v ¬ authorization

Suppose that the alignment to repair is the following:
{ < idh, person, person, ≡, 1.00 >, < idk, author, authorization, w, 0.46 > }

The alignment is inconsistent with respect to authorization. In fact, it is possible to
derive by distributed reasoning, that authorization v person has to hold. At the same
time, authorization and person are defined as disjoint concepts in ontology o′. In par-
ticular, this makes authorization unsatisfiable with respect to the global interpretation.

3 Matching Ontologies with Lesk and WordNet, and Repairing
the Obtained Correspondences

In this section we describe our approach for generating ontology alignments by ex-
ploiting Lesk algorithm and WordNet and for repairing them in a supervised way, by
detecting inconsistencies.

3.1 Exploiting “Lesk + WordNet” Algorithm to Match Ontologies

Given two ontologies o and o′ to match, our language-based algorithm uses the adapted
Lesk algorithm described in [1] (with some simplifications that have a very limited
impact on the results it gives) to find the correct definition, or gloss, of any concept
c ∈ o and c′ ∈ o′. The glosses found in this way are then compared to decide whether
c corresponds to c′ or not. Instead of taking the words before and after the target word
to disambiguate in a given text, we take the neighboring concepts of c (those related by
any kind of relation in the ontology) in the given ontology o, and we use these concepts
as the context for disambiguating c.

The algorithm generates the | o | × | o′ |4 couples of concepts < c ∈ o, c′ ∈ o′ >
and calls the function is correct correspondence(c, c′) on each of them. We limit our-
selves at considering the equivalence relation, thus we drop it from correspondences.
Also, we drop correspondence identifiers for sake of readability. Thus, our correspon-
dences are triples made by one concept in o, one concept in o′, and a confidence in
their equivalence. For the moment, the confidence is a binary value in { 0, 1 }: 1 means
that, according to the adapted Lesk algoritm, the concepts in the couple have exactly
the same gloss; 0 means the gloss is not the same. Finer grained values may be given to
the confidence, taking some similarity measure between glosses into account, as well
as hyponymy, hypernymy, meronymy, and holonymy relations between the words they
define.
The function is correct correspondence is defined by the following algorithm:

4 | o | is the number of concepts in o.

Input: an ontology o; an ontology o′; a concept c ∈ o; a concept c′ ∈ o′; the
WordNet Thesaurus
Output: an integer in { 0, 1 }
begin
1. if at least one between c and c′, eventually after stemming, does not belong to

WordNet, then return 0; otherwise
2. find the context of c ∈ o by retrieving all the concepts related(c) ∈ o that are

related to c by any kind of relation apart from “disjoint”;
3. stem c and any related(c) found;
4. put the stemmed words (including c or its stem) that belong to WordNet into a

list l, and discard those that do not belong to WordNet;
5. disambiguate the stem of c with respect to the context l using the “Lesk +

WordNet” algorithm: be disambiguated(c) the found gloss;
6. repeat steps from 2 to 5 for c′ ∈ o′;
7. if disambiguated(c) and disambiguated(c′) are the same gloss, then return

1; otherwise
8. return 0

end

The function lesk wordnet matching just calls is correct correspondence for each
couple < c, c′ >∈ o× o′; only those correspondences for which the function returns 1
are kept in the generated alignment. The function is defined by the following algorithm:

Input: an ontology o; an ontology o′; the WordNet Thesaurus
Output: an alignment a
begin
1. a = {}
2. for each couple < c, c′ >∈ o× o′

(a) if is correct correspondence(o, o′, c, c′, WordNet)
(b) then a = a ∪ {< c, c′, 1 >}

end

3.2 Supervised Reasoning on Inheritance and Disjointness

The Lesk algorithm applied to the ontology matching process does not allow to de-
tect semantic inconsistencies like the one described in Section 2.4. For this reason, we
propose to involve the user in the process of repairing the alignment generated by the
lesk wordnet matching function (or by any other matching method), in order to re-
move those correspondences that cause inconsistencies in the hierarchies of concepts
induced by the inheritance relation. The inheritance relation is named subClass in OWL
[25]; we translated into an is a predicate, when we moved from the OWL representa-
tion of ontologies, to the Prolog one. Our repair algorithm identifies the couples of
correspondences that raise an inconsistency, but cannot decide which one is to be re-
moved. Hence, the user is asked to perform the choice of whether keeping or discarding
a “suspicious” correspondence, after providing him/her with a careful explanation on
the inconsistency raised.

Our idea is that the disjointness of concepts, that also propagates to sub-concepts,
must be respected by the alignment.

Suppose that the alignment a to be repaired contains the correspondences < ci ∈
o, c′

i ∈ o′, confi > and < cj = ancestor(ci) ∈ o, c′
j ∈ o′, confj >. This means that

ci ≡ c′
i and that cj ≡ c′

j to some extent given by confi and confj .

Suppose that there is one ancestor of c′
i ∈ o′, let’s name it ancestor(ci)′, and that

ancestor(ci)′ is disjoint with c′
j . Since c′

i is a sub-concept of ancestor(ci)′, ci must
be a sub-concept of ancestor(ci)′ too (recall that ci and c′

i are equivalent, according to
the alignment). But ci is also a sub-concept of cj = ancestor(ci), and ancestor(ci)′

is disjoint with cj = ancestor(ci). In other words, ci descends from two disjoint con-
cepts ancestor(ci)′, cj , which is not consistent. This situation is depicted in Figure
1. The symmetric situation, where disjoint concepts are in o and not in o′, must also
be considered. The inconsistency might be due to either < ci ∈ o, c′

i ∈ o′, confi > or
< cj = ancestor(ci) ∈ o, c′

j ∈ o′, confj >. Our algorithm cannot easily tell the wrong
correspondence, thus, when a couple of inconsistent correspondences is detected, the
user is prompted, and he/she can select the correspondence to remove, if any.

Fig. 1. Inconsistent correspondences.

The algorithm for reasoning about inconsistencies can be better described in Prolog than
in an imperative language. The Prolog program accesses an atom table where the repre-
sentations of the two ontologies o and o′, and of the alignment a have been previously
loaded.

Ontologies are defined by the is a(OntologyId, SubConc, SuperConc) predicate
defining inheritance relations, by the rel(OntologyId, RelName, Concept, RelatedCon-
cept) predicate defining domain-dependent relations, and by the disjointWith(OntologyId,
Concept, DisjointConcept) predicate that corresponds to the OWL owl:disjointWith el-
ement. An alignment consists of the correspondences that belong to it, represented by
map(ConceptInO1, ConceptInO2, Confidence) atoms.

Ontologies o and o′, and alignment a represented as above, are thus the input for
the algorithm.

First of all, we define disjoint as a symmetric relation:

disjoint(O, C1, C2) :-
disjointWith(O, C1, C2).

disjoint(O, C1, C2) :-
disjointWith(O, C2, C1).

Then, we define the notion of ancestor as the transitive closure of the is a predicate:

transitive closure is a(, C, C).
transitive closure is a(Onto, C, SuperC):-

is a(Onto, C, Super),
transitive closure is a(Onto, Super, SuperC).

The get inconsistencies/5 predicate unifies the variable Inconsistencies with a term that
contains the causes of the inconsistency raised by the mapping between C1 in Onto1
and C2 in Onto2 as shown in Table 1.

get inconsistencies(Onto1, Onto2, C1, C2, Inconsistencies) :-
findall(inconsistency(

transitive closure is a(Onto1, C1, SuperC1),
transitive closure is a(Onto2, C2, SuperC2),
map(SuperC1, MapSuperC1, Con),
disjoint(Onto2, MapSuperC1, SuperC2)),

(map(C1, C2, Confidence),
transitive closure is a(Onto1, C1, SuperC1),
transitive closure is a(Onto2, C2, SuperC2),
map(SuperC1, MapSuperC1, Con),
disjoint(Onto2, MapSuperC1, SuperC2)),
List1),

findall(inconsistency(
transitive closure is a(Onto1, C1, SuperC1),
transitive closure is a(Onto2, C2, SuperC2),
map(InverseMapSuperC2, SuperC2, Con),
disjoint(Onto1, InverseMapSuperC2, SuperC1)),

(map(C1, C2, Confidence),
transitive closure is a(Onto1, C1, SuperC1),
transitive closure is a(Onto2, C2, SuperC2),
map(InverseMapSuperC2, SuperC2, Con),
disjoint(Onto1, InverseMapSuperC2, SuperC1)),
List2),

append(List1, List2, Inconsistencies).

Table 1. The get inconsistencies/5 predicate.

The above Prolog predicate means that, given two ontology identifiers Onto1 and Onto2
and two concepts C1 ∈ Onto1 and C2 ∈ Onto2, the correspondence map(C1, C2, Con-
fidence) raises an inconsistency if

– ∃ SuperC1 ∈ Onto1, and SuperC1 is an ancestor of C1
– ∃ SuperC2 ∈ Onto2, and SuperC2 is an ancestor of C2
– ∃ MapSuperC1 ∈ Onto2 such that there is a correspondence map(SuperC1, Map-

SuperC1, Con) ∈ a
– MapSuperC1 and SuperC2 are disjoint in Onto2

or

– ∃ SuperC1 ∈ Onto1, and SuperC1 is an ancestor of C1
– ∃ SuperC2 ∈ Onto2, and SuperC2 is an ancestor of C2
– ∃ InverseMapSuperC2 ∈ Onto1 such that there is a correspondence

map(InverseMapSuperC2, SuperC2, Con) ∈ a
– InverseMapSuperC2 and SuperC1 are disjoint in Onto1

4 Prolog Implementation and Experimental Results

4.1 Implementation

Both the adapted Lesk algorithm and the supervised reasoning algorithm are imple-
mented in Sicstus Prolog 3.11 and can be downloaded from http://www.disi.
unige.it/person/MascardiV/Software/LeskRepairMatching.html.

Our adapted Lesk algorithm accesses the Prolog version of WordNet 3.0 available at
http://wordnet.princeton.edu/3.0/WNprolog-3.0.tar.gz. It oper-
ates as described in Section 3.1. With respect to Banerjee and Pedersen’s proposal [1],
we have added a stemming stage implemented by the recognize words(ListOfWords,
StemsOfWords) predicate that translates nouns in plural form, and verbs in a form dif-
ferent from the infinite one, into the singular and infinite form, respectively. Also, as
already explained, the context that we take into account depends on the ontology struc-
ture given by the is a and rel predicates. The get concept context(C, Onto, Context)
predicate is defined in the following way (appendall appends lists in a list, in the order
they appear):

get concept context(C, O, Context):-
findall(Conc, is a(O, C, Conc), L1), findall(Conc, is a(O, Conc, C), L2),
findall(Conc, rel(O, , C, Conc), L3), findall(Conc, rel(O, , Conc, C), L4),
appendall([L1, L2, L3, L4], Context).

In order to overcome a limitation of the 3.11 release of Sicstus Prolog, namely a
very limited atom table that fills up just after loading two or three files of WordNet
relations, we had to manually implement an “atom table cleaning” mechanism. Our
attempts to load all WordNet files in the working memory and use them failed due to
an “atom table full” error. This happened both using a Sicstus release for Windows and
for Linux, and on different machines. For this reason we had to load each WordNet file
at a time, extract all the atoms that we needed from it, according to the concepts we had
to deal with in our ontologies, unload it, and explicitly call the atom garbage collector
to make room for new atoms loaded from another WordNet file.

The goal to call in order to match ontologies O1 and O2, whose Prolog representa-
tion is stored in file OntoFile, is lesk match(O1, O2, OntoFile, MappingFile, LogFile).
MappingFile is the file where the resulting alignment will be saved, whereas LogFile is
the file where all the activities of the program will be traced.

As far as the supervised reasoning algorithm is concerned, its Prolog core has been
already described in Section 3.2. Besides it, we have implemented a textual interface
that allows the user to interact with the program.

The goal to call in order to repair the alignment stored in MappingFile is repair(O1,
O2, OntoFile, MappingFile, RepairedMappingFile, LogFile). O1 and O2 are the on-
tology identifiers, and OntoFile is the file containing the Prolog representation of both
of them. The alignment resulting after the repair process and a trace of the performed
reasoning are written to two output files.

4.2 Results

In order to evaluate the feasibility of the adapted Lesk algorithm for matching ontolo-
gies, we have applied it to the ontologies represented in Figure 2. The ontologies have
been created using Protégé, http://protege.stanford.edu/, have been ex-
ported into OWL, and have been manually translated into Prolog. The reference align-
ment between o and o′, namely the correct and complete alignment computed by a
domain expert, is

map(being, organism, 1). map(nonliving, inanimate, 1).
map(’human being’, human, 1).

We have run SMOA, Levenshtein, and WordNet-based matching algorithms de-
scribed in Section 2.3, and implemented by the Alignment API, http://alignapi.
gforge.inria.fr/, on o and o′.

Any ontology matching algorithm, be it string- or language-based, produces the
correspondence < bank, bank, 1 >. However, bank in o has not the same meaning than
bank in o′: in fact, the first one refers to “a building in which the business of banking
transacted” whereas the second one refers to a “sloping land (especially the slope be-
side a body of water)” (definitions are taken from WordNet 3.0). Since the Lesk-based
disambiguation process of bank in the context [building, banker] provided by ontology
o and bank in the context [geological formation, river] provided by ontology o′ leads
to two unrelated glosses, our algorithm classifies the correspondence as incorrect. The
same happens with bass ∈ o and bass ∈ o′, whose context in the respective ontologies
allows Lesk algorithm to understand that the first one is the professional singer, whereas
the second one is the fish.

All the ontology matching algorithms that we have run, rate the correspondence
between airplane and plane with a very high value. However, the context of plane in
o′ is [object, carpenter]. This is enough for Lesk algorithm decide that it refers to “a
carpenter’s hand tool with an adjustable blade for smoothing or shaping wood”, and
not to “an aircraft that has a fixed wing and is powered by propellers or jets”. In the
end, the output of our adapted Lesk algorithm is

rel(o, performs in, singer, theatre).
rel(o, works in, banker, bank).
rel(o, fly in, airplane, formation).

rel(o′, has habitat, bass, river).
rel(o′, performs action, bird, sing).
rel(o′, lives in, bass, ’North America’).
rel(o′, uses tool, carpenter, plane).
rel(o′, is near, bank, river).

disjointWith(o, being, nonliving).
disjointWith(o′, animate, inanimate).
disjointWith(o′, dolphin, fish).

Fig. 2. Ontologies o and o′.

map(being, organism, 1). map(nonliving, inanimate, 1).
map(’human being’, human, 1). map(formation, ’geological formation’, 1).

On the given input, the algorithm is complete, but not correct. The tricky correspon-
dences that the SMOA, Levenshtein, and WordNet-based matching algorithms find, are
correctly discarded by Lesk’s one. Instead, both formation in the context [nonliving,
airplane], and geological formation in the context [inanimate, river, bank, sea, moun-
tain], are given the same sense “(geology) the geological features of the earth”. The
intended sense of formation was, instead, “an arrangement of people or things acting
as a unit”. In this case, the context was not informative enough for disambiguating the
word properly.

Below we summarise the results obtained by our matching algorithm and by the
SMOA, Levenshtein, and WordNet-based ones in terms of precision, recall and F-
measure adapted for ontology alignment evaluation [7], obtained by exploiting the
GroupEval method offered by the Align API.

SMOA Levenstein WordNet Our algorithm
Precision 0.10 0 0.11 0.75
Recall 0.33 0 0.33 1
F-measure 0.15 Not a Number 0.17 0.86

Precision is the number of correctly found correspondences with respect to the ref-
erence alignment (true positives), divided by the total number of found correspondences
(true positives and false positives), and recall is the number of correctly found corre-
spondences (true positives) divided by the total number of expected correspondences
(true positives and false negatives). F-measure is the harmonic mean of precision and
recall.

The table shows that on the given ontologies, our adapted Lesk algorithm gives the
best results. In fact, SMOA and the WordNet-based algorithms only find the <’human
being’, human> correct correspondence, whereas Levenshtein finds no correct corre-
spondences. On the other hand, all the algorithms find many wrong correspondences.

To experiment our alignment repair algorithm, we have modified ontology o′ by
changing sing into singer. The adapted Lesk matching algorithm finds the correspon-
dence < singer, singer, 1 >. However, this would cause singer in o to descend from
both being and nonliving, which are defined as disjoint concepts. The repair algorithm
correctly detects this problem and prompts the user:

Checking the consistency of (singer in o, singer in o’) with confidence 1
Concept singer in o descends from concept being; concept singer in o’ descends from
concept inanimate; concept nonliving in o is equivalent to concept inanimate in o’
with confidence 1; concepts nonliving and being are disjoint in o; this raises an in-
consistency!
What should I do with the (singer in o, singer in o’) mapping?
What should I do with the (nonliving in o, inanimate in o’) mapping?

5 Conclusions and Future Work

In this paper, we described our algorithms for ontology matching and supervised map-
ping repair and their implementation, and we discussed the preliminary results obtained
with them.

These results are extremely encouraging but our work is open to many improve-
ments: the experiment discussed in Section 4.2 has been carried out on two artificial
ontologies, created ad hoc for containing concepts that can be found in WordNet and
whose context might help Lesk algorithm to find their correct meaning. Our matching
algorithm works well only on ontologies whose concepts belong to WordNet. This is a
strong requirement, barely satisfied by most real ontologies.

Together with the students of the Artificial Intelligence course at DISI, however, we
are currently working for overcoming this problem: the individual assignment for the
academic year 2008/2009 requires to implement an algorithm in Prolog for matching
ontology concepts to sets of WordNet words according to some well known distance

metric on strings to be chosen by the student. Students have to tokenise ontology con-
cepts first. After tokenisation, the algorithm has to find correspondences between each
concept token and one or more WordNet words. In the end, each ontology concept will
be tagged with a set of WordNet words, based just on string metrics, and these tags
will be used instead of the original ontology concepts by the Adapted Lesk algorithm,
solving the main current limitation of our approach.

Another direction that we are exploring for partly overcoming this problem is to use
the SUMO Upper Ontology [20] as a bridge between the ontology o whose concepts
must be disambiguated, and WordNet. SUMO has been entirely mapped to WordNet 3.0
by hand: mapping o (or at least, those concepts of o that cannot be found in WordNet)
to SUMO using some existing matching algorithm would give a mapping between o
and WordNet for free, allowing us to run the adapted Lesk algorithm on the WordNet
translation of o.

A significant improvement to our algorithm would be refining the confidence re-
turned by our matching algorithm by setting it to some value < 1 if the concepts are
not synonyms, but they are related by some semantic relation.

After these improvements will be implemented, we will start to test our algorithms
on real ontologies. This experimentation will provide us with hints on how making our
algorithms suitable for matching whatever ontologies, still keeping high precision and
recall values. Optimisation issues will also be taken under consideration: we expect
that performances will dramatically drop on large ontologies, and the tests’ outcomes
will help us in identifying some viable approach for balancing efficiency, precision and
recall.

References
1. S. Banerjee and T. Pedersen. An adapted lesk algorithm for word sense disambiguation using

WordNet. In A. F. Gelbukh, editor, 3rd International Conference Computational Linguistics
and Intelligent Text Processing, CICLing 2002, Proceedings, volume 2276 of Lecture Notes
in Computer Science, pages 136–145. Springer, 2002.

2. Philip A. Bernstein, Alon Y. Halevy, and Rachel Pottinger. A vision of management of
complex models. SIGMOD Record, 29(4):55–63, 2000.

3. P. Bouquet, J. Euzenat, E. Franconi, L. Serafini, G. Stamou, and S. Tessaris. Specification of a
common framework for characterizing alignment. Technical Report D2.2.1, NoE Knowledge
Web project, 2004.

4. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: A new approach and an ap-
plication. In D. Fensel, K. P. Sycara, and J. Mylopoulos, editors, 2nd International Semantic
Web Conference, ISWC 2003, Proceedings, volume 2870 of Lecture Notes in Computer Sci-
ence, pages 130–145. Springer, 2003.

5. S. B. Brunnermeier and S. A. Martin. Interoperability cost analysis of the u.s. automotive
supply chain. Technical Report NIST 99-1, U.S. Department of Commerce, National Insti-
tute of Standards and Technology, 1999.

6. H. Stuckenschmidt C. Meilicke and A. Tamilin. Reasoning support for mapping revision.
Journal of Logic and Computation, 2008.

7. H. H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations. In A. B.
Chaudhri, M. Jeckle, E. Rahm, and R. Unland, editors, Web, Web-Services, and Database
Systems, NODe 2002 Web and Database-Related Workshops, 2002, Revised Papers, volume
2593 of Lecture Notes in Computer Science, pages 221–237. Springer, 2002.

8. J. Euzenat and P. Shvaiko. Ontology Matching. Springer, 2007.
9. C. Fellbaum, editor. WordNet – An Electronic Lexical Database. The MIT Press, 1998.

10. M. P. Gallaher, A. C. O’Connor, J. L. Dettbarn Jr., and L. T. Gilday. Cost analysis of in-
adequate interoperability in the u.s. capital facilities industry. Technical Report NIST GCR
04-867, U.S. Department of Commerce, National Institute of Standards and Technology,
2004.

11. F. Giunchiglia and P. Shvaiko. Semantic matching. Knowl. Eng. Rev., 18(3):265–280, 2003.
12. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic schema matching. In Interna-

tional Conference on Cooperative Information Systems, CoopIS, Proceedings, pages 347–
365, 2005.

13. F. Giunchiglia and M. Yatskevich. Element level semantic matching. In Meaning Coordina-
tion and Negotiation Workshop at the International Semantic Web Conference ISWC 2004,
Proceedings, 2004.

14. T. R. Gruber. A translation approach to portable ontology specifications. Knowledge Acqui-
sition, 5:199–220, 1993.

15. S. H. Haeri, B. B. Hariri, and H. Abolhassani. Coincidence-based refinement of ontology
matching. In Joint 3rd International Conference on Soft Computing and Intelligent Sys-
tems and 7th International Symposium on advanced Intelligent Systems, SCIS+ISIS 2006,
Proceedings, 2006.

16. M. Lesk. Automatic sense disambiguation using machine readable dictionaries: how to tell
a pine cone from an ice cream cone. In 5th Annual International Conference on Systems
Documentation, SIGDOC ’86, Proceedings, pages 24–26. ACM, 1986.

17. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Doklady akademii nauk SSSR, 163(4):845–848, 1965. In Russian. English Translation in
Soviet Physics Doklady 10(8), 707-710, 1966.

18. F. Lin and K. Sandkuhl. A survey of exploiting wordnet in ontology matching. In M. Bramer,
editor, Artificial Intelligence in Theory and Practice II, IFIP 20th World Computer Congress,
volume 276 of IFIP, pages 341–350. Springer, 2008.

19. C. Meilicke, H. Stuckenschmidt, and A. Tamilin. Repairing ontology mappings. In 22nd
AAAI Conference on Artificial Intelligence, AAAI 2007, Proceedings, pages 1408–1413.
AAAI Press, 2007.

20. I. Niles and A. Pease. Towards a standard upper ontology. In C. Welty and B. Smith, edi-
tors, FOIS 2001, 2nd International Conference on Formal Ontology in Information Systems,
Proceedings, pages 2–9. ACM Press, 2001.

21. R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application of a metric on
semantic nets. IEEE Transactions on Systems, Man and Cybernetics, 19(1):17–30, 1989.

22. P. Resnik. Semantic similarity in a taxonomy: An information-based measure and its appli-
cation to problems of ambiguity in natural language. J. Artif. Intell. Res. (JAIR), 11:95–130,
1999.

23. P. Shvaiko. Iterative schema-based semantic matching. Technical Report DIT-06-102, DIT -
University of Trento, 2005.

24. G. Stoilos, G. B. Stamou, and S. D. Kollias. A string metric for ontology alignment. In
Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen, editors, 4th International Semantic Web
Conference, ISWC 2005, Proceedings, volume 3729 of Lecture Notes in Computer Science,
pages 624–637. Springer, 2005.

25. W3C. OWL Web Ontology Language Overview – W3C Recommendation 10 February 2004,
2004.

26. J. Walker, E. Pan, D. Johnston, J. Adler-Milstein, D. W. Bates, and B. Middleton. The
value of healthcare information exchange and interoperability. Health Affairs, 2005. Web
Exclusive, 19 January 2005.

