
Schema Mapping Using Hybrid Ripple-Down Rules

Sarawat Anam
1,2

, Yang Sok Kim
1
, Byeong Ho Kang

1
 and Qing Liu

2

1
{Sarawat.Anam, YangSok.Kim, Byeong.Kang}@utas.edu.au

School of Engineering and ICT, University of Tasmania

Sandy Bay, Hobart, Tasmania, Australia

2
Q.Liu@csiro.au

Autonomous Systems, Digital Productivity and Service Flagship,

CSIRO Computational Informatics, Hobart, Tasmania, Australia

Abstract

Schema mapping is essential to manage schema

heterogeneity among different sources. Schema mapping

can be conducted by using machine learning algorithms or

by knowledge engineering approaches. These two

approaches have advantages and disadvantages. The

machine learning approaches can learn their model using

the data, but they are static, so they cannot be modified to

reflect the domain data changes. Inversely, the knowledge

engineering approaches need domain experts, but they can

be modified by reflecting the domain data changes. In

order to exploit the advantages of both approaches and

reduce the limitations, we propose a hybrid approach,

called Hybrid-RDR, which combines a machine learning

algorithm with ripple-down rules (RDR), an incremental

knowledge engineering approach. A model is constructed

by a decision tree algorithm and then it is extended by

adding rules incrementally. This approach achieves higher

performance in terms of precision, recall and F-measure

compared to the machine learning algorithm. This

significantly reduces the effort for classifying the related

schemas one by one by manually creating rules and it is

possible to modify the knowledge base by adding rules

without creating model again if decision tree gives wrong

classifications whenever the schema data changes over

time.

Keywords: Machine learning algorithm, Knowledge

engineering approach, schema mapping, incremental

learning.

1 Introduction

Schema mapping is a set of logical specifications that

express correspondences between semantically related

schemas of different datasets through the application of a

matching algorithm (Shvaiko and Euzenat, 2005). Schema

mapping is used in many application domains such as

data integration, data exchange, data warehousing and

schema evolution (Glavic et al., 2010). Schema matching

can be done in the element level and structure level.

While the element level matching considers only names

Copyright © 2015, Australian Computer Society, Inc. This

paper appeared at the Thirty-Eighth Australasian Computer

Science Conference (ACSC 2015), Sydney, Australia, January

2015. Conferences in Research and Practice in Information

Technology (CRPIT), Vol. 159. David Parry, Eds. Reproduction

for academic, not-for-profit purposes permitted provided this

text is included.

of the schemas, the structure level matching uses the

result of element level matching for matching the full

graph. In this research, we only focus on the element level

matching since our major aim is to evaluate whether our

proposed approach can be applied to the schema mapping

problem and our approach can easily be extended by

considering the structure information.

 In our research, the schema mapping process is defined

as:

 𝑀 = 𝑐(𝑆𝑖 , 𝑇𝑗 , 𝑉𝑖,𝑗),

where 𝑆𝑖 is a source schema, 𝑇𝑗 is a target schema, 𝑉𝑖,𝑗 is

an attribute value vector (𝑉𝑖,𝑗 = {𝑣1, 𝑣2, … , 𝑣𝑛}) and 𝑀 is a

Boolean output (if 𝑆𝑖 is matched with 𝑇𝑗, return true;

otherwise return false). The attribute values are derived

by applying different similarity functions to 𝑆𝑖 and 𝑇𝑗,

and to the values of 𝑆𝑖 and 𝑇𝑗 after text pre-processing

(e.g., synonym, tokenisation, and reverse abbreviation).

Therefore, the schema mapping problem is to find the

classification function (𝑐) that accurately predicts a real

relation between two schema elements.

 Many schema mapping systems (Do and Rahm, 2002a,

Aumueller et al., 2005, Doan et al., 2002, Marie and Gal,

2008) have been developed by employing machine

learning algorithms and/or knowledge engineering

approaches. A machine learning algorithm needs training

data set for building models, but usually it is very difficult

to obtain fine training datasets. In addition, it is very

difficult to change the model by human knowledge. A

knowledge engineering approach encodes human

knowledge directly, such that the knowledge base can be

constructed with limited data, but it requires time-

consuming knowledge acquisition.

 Schemas can be created over time incessantly, and thus

knowledge also changes over time. Machine learning and

knowledge engineering approaches manage this

phenomenon differently. Machine learning algorithms

usually reconstruct their model after collecting sufficient

data, while knowledge engineering approaches acquire

new knowledge if necessary.

 In this research, we propose a hybrid approach that

constructs classification model using a machine learning

algorithm and maintains new knowledge using a

knowledge engineering approach, called ripple-down

rules. When new data are available, the classification

model may suggest wrong classification for some cases.

In this case, it is necessary to add a rule, called censor

rule, which stops the wrong classification and to add a

Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney, Australia,
27 - 30 January 2015

17

rule, called alternative rule, which correctly classifies the

problem case. When a case is stopped by a censor rule but

have no alternative rule that correctly classifies it, the case

has no conclusion. In this case, a new rule that classifies

the case correctly should be as a child rule of the root

node.

 In order to simulate the changes of the data, we

assume that the data for schema mapping is partially

available at the beginning and new data will be added

onward. While the hybrid approach improves the

performance of schema mapping by adding rules

incrementally for correcting schema mapping errors of

the current knowledge base, the decision tree improves its

performance by learning a new model by including newly

available data. Our experimental results show that the

Hybrid-RDR approach produces slightly higher

performance compared to the decision tree.

2 Related Works

Machine learning techniques have been used in the

context of schema matching. Learning Source

Descriptions (LSD) (Doan et al., 2001) is a schema

mapping system and the extension of LSD is GLUE

(Doan et al., 2002) which creates ontology mapping. Both

systems use machine learning techniques like Multi-

strategy learning approach as base learner, Naïve Bayes

for classifying text, and Meta learner for finding

matching among a set of instances. Embley et al. (2004)

develop an approach based on learning rules of decision

trees for discovering hidden mapping among entities. In

this approach, the rules are used for matching terms in

WordNet. However, the decision trees are not used for

choosing the best match algorithms. Duchateau et al.

(2008) present an approach for schema matching which

uses a decision tree to combine the best suitable match

algorithms. The approach inputs a set of schemas and a

decision tree which is composed of match algorithms, and

outputs a list of mappings which are validated by experts

to find out whether the matching is correct or not. The

feedback is used to feed into another decision tree for

learning. The machine learning techniques generally

require refined training dataset that should be prepared by

largely in manual and the techniques cannot easily change

its model without sufficient data. In the rule based

approach, well defined training dataset is not necessary.

In the approach, schema matching is started for a small

amount of schema data by adding rules.

 Some systems have already used rule based techniques

for schema matching. Among them, COMA/COMA++

(Do and Rahm, 2002b, Aumueller et al., 2005) are

generic schema and ontology matching systems where

simple, hybrid and reuse oriented matchers are used. In

the systems, schemas are internally encoded as DAGs

(Directed Acyclic Graphs) and are analysed using string

matching algorithms. Different aggregation functions

such as average, minimum, maximum and weighted sum,

and rule based techniques are used in the systems for

obtaining combined match results. However, in

COMA/COMA++, determining best combination of

matcher is not easy. YAM (Duchateau et al., 2009) is a

machine learning based schema matching factory. In the

learning phase, YAM considers users’ requirement such

as a preference for recall or precision, provided expert

correspondences. It uses a Knowledge Base (KB) that

consists of a set of classifier, a set of similarity measures,

and pairs of schemas which have already been matched.

In the matching phase, the KB is used to match unknown

schemas. However, in the system, appropriate classifier is

selected by users or to use a default classifier learned over

a huge mapping knowledge base. In this research, we use

the hybrid approach combining decision tree and rule

based technique. In our system, the KB is empty at the

beginning, and the first rule is added in the KB by

classifying a dataset using decision tree learning model.

Then rules are added incrementally in order to solve

schema matching problems such as un-classifications and

wrong classifications.

 Traditional rule-based systems require time-consuming

knowledge acquisition as in those systems a highly

trained specialist, the knowledge engineer, and the time-

poor domain expert are necessary in order to analyze

domain (Richards, 2009). In order to solve the problem of

time consuming knowledge acquisition, we adopt RDR

(Ripple Down Rule) (Compton et al., 1991), a well-

known incremental knowledge acquisition method. RDR

has been successfully applied in many practical

knowledge-based system developments. There are several

versions of RDR methods, including Single Classification

RDR (SCRDR), Multiple Classifications RDR

(MCRDR), and Nested RDR. MCRDR is used in order

to solve problems in some domains, e.g., pathology,

text/web document classification, help desk information

retrieval and medication review (Richards, 2009). Since

our research aims to find matching relationship of schema

(matched or not-matched), SCRDR is chosen for our

research.

 The success of RDR does not depend on

representational differences; rather it largely depends on

its distinctive operational semantics on standard

production rules (SPR). SPR has the form 𝑝 → 𝑎, which

is interpreted as “if a case satisfies condition 𝑝 then do

action 𝑎”. RDR systems in general process cases

sequentially and whenever the current knowledge base

suggests wrong conclusions, new rules are added.

Whenever a new rule is created, it is necessary to validate

the rule normally by checking whether or not the future

cases are given the correct classifications. If any case is

wrongly classified by a rule, then RDR systems acquire

exception rules for this particular rule. In this case, the

expert directly refines the new rule adding conditions

until all incorrect cases are removed. However, it is not

easy to construct this kind of rule with resource

constraints such as limited time and information. We use

CPR (censored production rules) based RDR (Kim et al.,

2012), to be used for acquiring exceptions when a new

rule is created using censor conditions. CPR has the form

𝑝 → 𝑎 ¬ 𝑐, which is interpreted as “if a case satisfies

condition 𝑝 then do action 𝑎 unless the case does not

satisfy the censor conditions 𝑐.” This approach also can

provide multiple cornerstone cases that satisfy the main

condition clause (positive cornerstone cases) as well as

the censored condition clause (negative cornerstone

cases). The approach is useful when we have a large

number of validation cases at hand.

CRPIT Volume 159 - Computer Science 2015

18

3 Method

 In this section, we describe our proposed Hybrid-RDR

approach used for schema mapping.

Hybrid-RDR

Hybrid-RDR approach combines a decision tree

algorithm, J48 with CPR based RDR. The process of

Hybrid-RDR is given in Fig.1. The process is described

below:

Fig.1 Hybrid-RDR

 Any machine learning classification algorithms such as

Naïve Bayes, and decision tree, can be used for our

hybrid approach. Among them, we choose the decision

tree algorithm because its model can be understood by the

human expert. A decision tree is a tree whose internal

nodes represent the attributes, and the edges represent the

conditions on the result of the attributes. All the leaf

nodes represent classifications which are either true or

false, indicating whether there is a match or not. We use

J48 decision tree, a Java implementation of C4.5 in

WEKA (Quinlan, 1993), for classifying schemas.

Decision tree inputs a collection of cases (training set)

where each case contains a set of features obtained from

input schemas and from the application of string

similarity metrics and text processing techniques to the

input schemas, and also from manually providing class

level (true or false). Then it builds up a classification

model. The accuracy of the model is evaluated by using a

test dataset.

 For the knowledge engineering, we chose RDR

approach since it overcomes “knowledge acquisition

bottleneck” problem of the conventional knowledge

engineering approaches by employing error-driven

knowledge maintenance strategy, where all rules have

clear relationship and they are added as either exception

or alternative of the existing rules (Compton et al., 1991).

RDR has been successfully applied in many application

domains (Richards, 2009). The structure of Knowledge

Base (KB) is designed as an n-tree. Each node of the tree

is a rule and each rule consists of IF [conditions] THEN

[conclusion] UNLESS [censor-condition]. The KB

structure and the inference process are shown in Fig.2.

Fig.2 Hybrid-RDR Knowledge Base

In Fig.2, at the beginning when KB is empty, we

define R0 (rule 0), which is always true. We denote the

first level rules by R1, R2, R3 and R4 and the censored

rules by C1, C2, and C3. In the approach, the first rule is

added in the KB by classifying a dataset using decision

tree classification model, ML (machine Learning). Then

other rules are added incrementally when schema data

changes over time.

 The inference process is based on searching the KB
represented as a decision list with each decision possibly

refined again by another decision list. Once a rule is

satisfied by any case, the process evaluates whether or not

the censor conditions are matched to the given case. If

any censor rule is not satisfied, then the process stops

with one path and one conclusion. However, if any censor

rule is satisfied, other rules below the rule that was

satisfied at the top level is evaluated. The process stops

when none of the rules can be satisfied by the case in

hand.

 Knowledge acquisition is a process which transfers

knowledge from human experts to knowledge based

systems. Knowledge acquisition process can be divided

into three parts. Firstly, a correct classification should be

decided by the expert. Secondly, new rules’ locations

should be specified by the system. Thirdly, new rule’s

condition should be decided by the expert. If the current

knowledge base suggests wrong classification, it is

necessary to add a censor rule that has NULL as

classification. If the current knowledge base suggests no

classification for any case, a new rule should be added as

an alternative rule, which is added as a child rule of the

root node of the knowledge base. The cases used for

creating rules are called cornerstone cases and they are

used in consequent knowledge acquisition process

(Compton and Jansen, 1990).

The advantage of Hybrid-RDR approach is that only

one classification model is created by decision tree for a

small amount of schema data and knowledge base is then

built incrementally by adding rules to solve schema

matching problems. The process helps to reduce time in

two ways. Firstly, it does not create classification model

when schema data changes over time. Secondly, it does

not classify all the related schemas one by one by

manually creating rules. The Hybrid-RDR approach is

useful where there are large numbers of validation cases

are at hand.

Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney, Australia,
27 - 30 January 2015

19

4 Experimental Design

4.1 Datasets

Four XDR schemas of purchase order domain, such as

EXCEL, CIDX, NORIS, and PARAGON, obtained from

www.biztalk.org are used for this evaluation study. We

denote the schema datasets EXCEL, CIDX, NORIS and

PARAGON by E, C, N, and P respectively. These

schema datasets are used for some schema matcher

evaluation (Do and Rahm, 2002b). These schema datasets

contain different types of features such as identical

words, combined words, abbreviated words and synonym

words. Each schema dataset contains 35 (E), 30 (C), 46

(N), and 59 (P) schema names.

4.2 Experimental Procedure

In this research, we experiment ten matching tasks one by

one. For this, we take all the combinations of six schema

datasets such as E-C (first combination is to deal with two

datasets, EXCEL and CIDX), E-N, E-P, C-N, C-P and N-

P. Then we take the Cartesian product of the six schema

datasets separately. The sizes of Cartesian product of the

datasets are 1050 (E-C), 1610 (E-N), 2065 (E-P), 1380

(C-N), 1770 (C-P) and 2714 (N-P) entity pairs. We

combine all the entity pairs and get total 10589 entity

pairs. We randomly divide the entity pairs into ten for

creating ten datasets (D1 to D10) where datasets D1 to

D8 and D10 contain 1058 entity pairs and D9 dataset

contains 1067 entity pairs. These ten datasets are used for

ten matching tasks. In order to use the datasets for

classification and to give proper knowledge to the users

for creating rules, we construct attributes as follows:

Attributes Construction. In order to give proper

knowledge to the users, attributes are constructed in three

steps:

 The input schema names (source and target);

 Application of text processing approaches such as

tokenization, abbreviations and acronyms expansion,

and synonym lookup on the input schemas. In

tokenization and word separation, schema names

containing multiple words are split into lists of words

by a customizable tokenizer using punctuation,

uppercase, special symbols, whitespace and digits. For

instance, “contactEmail” is split into “contact” and

“Email”. Abbreviations and acronyms are expanded by

using external resources such as a dictionary and/or a

thesaurus. For instance, “tel” is expanded into its

original form “telephone”. For this, we use the

abbreviation file created for COMA (Do and Rahm,

2002b). Synonym processing is applied to use

semantically identical schema names to measure

similarity (e.g., ‘Invoice’ is semantically same as ‘Bill’

in purchase order domain). We use the synonym file

created for COMA (Do and Rahm, 2002b).

 Application of the string similarity metrics on the

features of the attributes computed from step 1 and 2,

which creates another attributes. We use string

similarity metrics developed by two open source

projects. For Levenshtein, JaroWinkler, Jaro Measure,

TFIDF and Jaccard, we use open source library

SecondString
1
 and for Monge-Elkan, Smith-

Waterman, Needleman-Wunsch, Q-gram and Cosine

we use SimMetric open source library
2
. Similarity

values are normalized, such that the value within from

0 to 1, where 0 means strong dissimilarity and 1 means

strong similarity. The threshold values for deciding

schema matching (true/false) are increased with 0.1

from 0 to 1. We also provide class level (true or false)

manually which creates another attribute. In such a

way we get 73 attributes by using schema information

of two datasets (one matching task). Computed

attributes represent knowledge about a relation

between attributes, operator or process patterns. After

preparing the attributes and the schema data under the

attributes, all these are fed in to the dynamic decision

tree algorithm and the Hybrid-RDR. The dynamic

decision tree algorithm learns a new model by

including newly available data. The evaluation

approach is shown in Fig.3.

Fig.3 Dynamic ML and hybrid-RDR

 In the evaluation approach, we randomly select

datasets for training and testing. For example, we select

D1 for training and D10 for testing.

Dynamic ML. In the dynamic machine learning

approach, we create decision tree model, 𝑀𝐿0 for D1 and

test D10. Then we incrementally add other datasets like

D1+D2, D1+D2+D3 for creating decision tree models,

𝑀𝐿1, 𝑀𝐿2 and test D10. In this way, we add all nine

datasets for creating decision tree model, 𝑀𝐿8 and test

D10.

Hybrid-RDR. In Hybrid-RDR approach, we create

decision tree model, 𝑀𝐿0 for D1 and test D10. We also

test D2 and find some un-classified cases and wrong

classified cases. Then we refine the decision tree rule by

adding censor rules, 𝑅𝑢𝑙𝑒0 and again classify the cases by

adding alternative rules, 𝑅𝑢𝑙𝑒0. The censor rules are

added as censor nodes of decision tree in the KB and

alternative rules are added as parent rules in the KB.

The 𝑀𝐿0+𝑅𝑢𝑙𝑒0 is then used for testing D10 and also for

testing D3. We add rules, 𝑅𝑢𝑙𝑒1 again for the wrong

1
 http://secondstring.sourceforge.net

2
 http://sourceforge.net/projects/simmetrics

CRPIT Volume 159 - Computer Science 2015

20

classified cases of D3, and 𝑀𝐿0+𝑅𝑢𝑙𝑒0+𝑅𝑢𝑙𝑒1 is used for

testing D10. In such a way, we incrementally add rules

for all nine datasets, 𝑀𝐿0+𝑅𝑢𝑙𝑒0+𝑅𝑢𝑙𝑒1+…+𝑅𝑢𝑙𝑒8 and

test D10. The detail rule creation process for schema

mapping is described in the following:

Schema Mapping by Hybrid-RDR. A simple GUI

(Graphical User Interface) is created which can select any

datasets from repository. The attributes that are created

by the above steps of Attribute construction are

represented in a “Case Browser” to provide sufficient

knowledge to the users (Fig. 4). The system works in two

phases: Training phase and classification phase. In the

training phase, “Training by DT” of Fig. 4 is used. We

use the button in order to train one dataset using decision

tree, J48. The attributes which are created by the above

steps of Attribute construction, are used as training

sample to build a model. The purpose of building a model

is to classify whether a given entity pair of schema names

is matched or not based on their feature similarity

measure. For all machine learning techniques, we

consider 10-fold cross validation. 10-fold cross validation

means that the data is split into 10 groups where nine

groups are considered for training and the remaining one

group is considered for testing. This process is repeated

for all 10 groups. In the classification phase, “Classify”

button of Fig. 4 is used. For matching entity pair of

schema names using the algorithm, we provide the

attributes created from another datasets. Finally, we get

the matching results as true positive (if reported match by

expert is true and predicted match by algorithm is true),

false positive (if reported match is false and predicted

match is true), true negative (if reported match is false

and predicted match is false) and false negative (if

reported match is true and predicted match is false) which

are displayed in Fig. 4.

Fig. 4. GUI represents 73 attributes with schema names (all the attributes are not visible)

In order to solve the problem of false negative and false

positive (wrong classifications), we use “Edit

Classification” of Fig. 4. “Edit Classification” button

helps to refine the wrong classified cases by adding new

conditions until all incorrect cases are removed or

creating another new rule using knowledge Acquisition

GUI. Classification for the censor rule is always

“NULL”. For editing classification, the Knowledge

Acquisition GUI is displayed in Fig. 5.

Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney, Australia,
27 - 30 January 2015

21

Fig. 5. Knowledge Acquisition GUI for editing rules

 In Fig.5, parent condition is decision tree which gives

the wrong classification for the current case. In order to

edit the parent rule, it is not necessary to select the

classification as classification for the censor rules is

always “NULL”. First, the rule conditions are added. For

each condition in the rule, the attribute, operator, and

value are selected from the drop down boxes, which list

all the attributes, operators and values respectively. After

selecting condition, “Add Condition” adds condition. It

is possible to add more than one condition and delete

condition using “Delete Selected” button if users think

that the added condition is not suitable. “Satisfy

Condition” button helps to look at whether the rule is

satisfied by the selected case or not. If rule is satisfied,

the “Validate New Rule” becomes active and this helps

to validate the rule on the un-classified and wrong

classified cases of the dataset (Fig. 6).

Fig. 6. Rule validation

 In Fig. 6, Reported Match shows the manual matching

results and Algorithmic Match shows the results

calculated from rules. The “Save Rule” button helps to

save rule in the rule database (KB) and case in the case

database. “Edit Classification” button helps to refine the

wrong classified cases by adding new conditions until all

wrong cases are removed or creating another new rule

using knowledge Acquisition GUI. Classification for the

censor rule is always “NULL”. The refined cases and the

deleted wrong classified cases from the satisfied cases list

are shown in Fig. 7.

Fig. 7. GUI for refined cases and the deleted cases

 In Fig. 7, the “Save Rule” button saves the censor rule

in the rule database (KB) as censor node and the deleted

cases in the case database as NULL classification. If there

are more wrong classified cases, the rule can be refined

by adding other censor rules. Then to classify the

“NULL’ classified cases, the alternative rules are created

by “Add Classification” button of Fig. 4, are used. For

adding classification, the Knowledge Acquisition GUI is

like Fig. 5. In this case, first the classification of the rule

is selected. This can be done using the drop down box at

CRPIT Volume 159 - Computer Science 2015

22

the top, which lists TRUE or FALSE classifications for

this domain. Having selected the classification, the

conditions for creating rule are added. Then it is checked

whether the rule is satisfied by the current case or not. If

the rule is satisfied, then it is validated to determine

whether the conclusion provided by the rule is matched

with the reported match. The alternative rule is saved in

the KB as parent rule. If any case is wrongly classified by

the current rule, then the classification is edited.

4.3 Evaluation Metrics

As this task is a classification task, we use the following

conventional metrics: precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, recall =

𝑇𝑃

𝑇𝑃+𝐹𝑁

and F-measure =
 2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
, where 𝑇𝑃 is True

Positive (hit), 𝐹𝑃 is False Positive (false alarm, Type I

error) and 𝐹𝑁 is False Negative (miss, Type II error). For

a specific threshold value, we calculate TP, FP and FN by

comparing manually defined matches (R) with the

predicted matches (P) returned by the matching

algorithms according to Jimenez et al. (2009).

5 Evaluation Results

Performance of the Hybrid-RDR method and dynamic

decision tree depend on the features of the datasets which

are created using string similarity metrics and text

processing techniques. The performance of Hybrid-RDR

method also depends on the efficient rule creation. We

compute performance in terms of precision, recall and F-

measure. Precision estimates the reliability of the match

predictions and recall specifies the share of real matches.

During schema mapping, manually matching schemas of

two heterogeneous data sources and false identified

matches by algorithms are handled by humans. The

burden of deleting false identified matches is much easier

than creating manual matches among thousands of

schemas (Stoilos et al., 2005). As for calculating recall

value, manually identified matches are necessary, so

recall value is very important. Only precision or recall

cannot estimate the performance of match algorithms

(Cheng et al., 2005). So it is necessary to calculate the

overall performance or F-measure of rule based system

and machine learning techniques using both precision and

recall. For this, we determine the best performing

classification system based on the optimized F-measure

(Marie and Gal, 2008) for almost all experimental

datasets. For all experiments using decision tree, we use

WEKA (Hall et al., 2009) data mining and machine

learning toolbox.

5.1 Schema Mapping Results

In the experiment, we randomly select datasets for

training and testing. We do three experiments to get the

performance of dynamic decision tree and Hybrid-RDR

method. The performances (precision, recall and F-

measure) of schema mapping using dynamic decision tree

and Hybrid-RDR, and the rules used by Hybrid-RDR

method are described in Fig. 8.

Experiment

1

Experiment

2

Experiment

3

Fig. 8. Schema mapping results using dynamic decision tree and Hybrid-RDR

 In Fig. 8, for all experiments, ML means the results

that are produced by dynamic decision tree and ML+RDR

means the results that are got by using Hybrid-RDR. In

all experiments, we randomly select one dataset for

training and other dataset for testing. In dynamic decision

tree method, we create decision tree model, 𝑀𝐿0 for one

dataset and use 𝑀𝐿0 for testing the test dataset. Then we

select another dataset and add the previous dataset for

which 𝑀𝐿0 has been created, with the current selected

dataset, and create 𝑀𝐿1 and use 𝑀𝐿1 for testing the test

dataset. In this way, we create ML for all the datasets

except test dataset and use ML for testing the test dataset.

Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney, Australia,
27 - 30 January 2015

23

In Hybrid-RDR approach, we create decision tree model,

𝑀𝐿0 for one dataset and use 𝑀𝐿0 for testing the test

dataset. We also select another dataset and use 𝑀𝐿0 for

testing and find some un-classified cases and wrong

classified cases. Then we refine the decision tree rule by

adding censor rule, 𝑅𝑢𝑙𝑒0 and again classify the cases by

adding alternative rules, 𝑅𝑢𝑙𝑒0. Total 𝑅𝑢𝑙𝑒0 is 12, 12, 14

for experiment1, experiment2 and experiment3

respectively. The 𝑀𝐿0+𝑅𝑢𝑙𝑒0 is then used for testing the

test dataset and also for testing another dataset. We add

rules again for the wrong classified cases of another

dataset, and total 𝑅𝑢𝑙𝑒1 is 7, 10 and 4 for experiment1,

experiment2 and experiment3 respectively. The

𝑀𝐿0+𝑅𝑢𝑙𝑒0+𝑅𝑢𝑙𝑒1 is used for testing the test dataset and

also for testing another dataset. In such a way, we add

rules incrementally for all nine datasets,

 𝑀𝐿0+𝑅𝑢𝑙𝑒0+𝑅𝑢𝑙𝑒1+…+𝑅𝑢𝑙𝑒8 and use for testing the

test dataset. In the table, we also see that the number of

rules addition for wrong classifications decreases

gradually.

 The results indicate that using ML+RDR, the

performance is higher than ML in almost all experiments

in terms of precision, recall and F-measure. In

experiment2, though the performance of ML is higher

according to precision for almost all datasets except D1,

D8 and D9, but recall and F-measure using ML are not

higher than ML+RDR. The reason of high precision

means less false positive values, and low recall means

that the false negative numbers are high (Marie and Gal,

2008).

5.2 Prune Tree and Knowledge Base

As an example of prune tree for training one dataset and

two datasets using J48 is given in Fig. 9(a) and 9(b)

respectively. It is found that the prune tree for training

one dataset is different from the prune tree of training two

datasets.

Fig. 9 (a). J48 Prune Tree for training one dataset

Fig. 9 (b). J48 Prune Tree for training two datasets

Example of Knowledge Base (KB) of Hybrid-RDR which

is created for solving un-classifications and wrong

classifications is given in Table 1.

RID PID Condition Conclusion CaseID

1 0 0 0 0

2 1 Decision Tree TRUE/FALSE ALL

3 2 Lev_AbbTokT==1.0 NULL 643

4 1 Lev_AbbTokT==1.0 TRUE 643

5 2 JaroW_ST == 0.9 NULL 272

6 1 JaroW_ST == 0.9 TRUE 272

7 2 Lev_ST <= 0.2 NULL 63

8 1 Lev_ST <= 0.2 FALSE 63

9 6 Lev_ST == 0.6 &&

JaroW_ST == 0.9

NULL 818

10 1 Lev_ST == 0.6 &&

JaroW_ST == 0.9

FALSE 818

11 2 Lev_TokSynT==1.0 NULL 978

12 1 Lev_TokSynT==1.0 TRUE 978

Table 1. Knowledge Base (KB) for creating rules using Hybrid-

RDR

 In Table 1, the attributes RID, PID, Condition,

Conclusion and CaseID means rule id, parent rule id,

condition for the rules, conclusion produced by rules and

the classified case id respectively. In addition, Lev, S, T,

AbbTokT, TokSynT, and JaroW means Levenshtein

function, source schema, target schema, abbreviation and

tokenization of target, tokenization and synonym of

target, and JaroWinkler function respectively. The values

1.0, 0.9, 0.2, 0.6 are thresholds. Example of rule,

JaroW_ST==0.9 means if the value of JaroWinkler

function applied on source and target equals to the

threshold value 0.9, then the conclusion is TRUE.

In the table, rule 1 is always true. We use rules 2 to 12 for

classifying cases of datasets. We apply rule 2 to classify

one dataset and test dataset. In order to solve un-

classification and wrong classification of one dataset, we

create rules 3 to 8 and apply rules 1 to 8 for classifying

another dataset and test dataset. Then we add rules 9 to 12

for solving wrong classification of another dataset which

incrementally build the knowledge base. In Table 1, we

see that the same rules, for example 3 and 4 are used for

making NULL and TRUE conclusion. The reason is that

first we create censor rule, for example rule 3 for making

wrong classification as NULL classification. Then we add

CRPIT Volume 159 - Computer Science 2015

24

alternative rule, for example rule 4 for making the right

classification.

 In Fig. 9(a), 9(b) and Table 1, we find that though the

rules of training one dataset and two datasets are different

using the dynamic decision tree, the rules of classifying

one dataset and another dataset are not different using

Hybrid-RDR, rather we add rules incrementally for

solving wrong classifications. Therefore, the advantage of

Hybrid-RDR compared to dynamic decision tree is that

we do not need to create training model whenever the

schema data changes over time.

6 Discussion
In order to solve the problem of a machine learning

algorithm that needs training data set for building models,

and a knowledge engineering approach that requires time-

consuming knowledge acquisition when schema data

changes over time, we propose a Hybrid-RDR. The

advantage of Hybrid-RDR is that classification model is

built by decision tree only for a small amount of schema

data, and knowledge base is then built incrementally by

adding rules to solve schema matching problems: un-

classifications and wrong classifications. In this research,

we only focus on element level schema matching using

Hybrid-RDR in order to determine whether our proposed

approach can be applied to the schema mapping problem.

In future, we will perform structure level matching with

our element level matching by Hybrid-RDR to improve

the performance.

7 Conclusion and Future Works

In this research, we have proposed Hybrid-RDR approach

by combining decision tree, J48 and CPR based RDR. We

have computed attributes from the input schemas as well

as from the application of text processing techniques and

string similarity metrics on the schema names. In

addition, we have designed a schema mapping tool and

used the attributes in order to create rules using Hybrid-

RDR. It can handle two problems of schema matching,

un-classifications and wrong classifications using

incremental knowledge acquisition techniques. We have

also used the attributes to feed into a machine learning

technique, dynamic decision tree and have compared the

performance of Hybrid-RDR and dynamic decision tree

for schema mapping. We have found that our Hybrid-

RDR method shows slightly better performance than the

dynamic decision tree. The main advantage of Hybrid-

RDR compared to dynamic decision tree is that it is not

necessary to create models whenever the schema data

changes over time. The model which is created for one

dataset, can be used for classifying another dataset, and

rules can be added incrementally for solving wrong

classifications. Later the same model and the added rules

can be used for classifying another dataset. In this

research, we have only considered element level

matching, but accurate results of this element level

matching should be a premise to work in the next step

with structure level matching.

Acknowledgement
The Intelligent Sensing and Systems Laboratory and the

Tasmanian node of the Australian Centre for Broadband

Innovation are assisted by a grant from the Tasmanian

Government which is administered by the Tasmanian

Department of Economic Development, Tourism and the

Arts.

References

Aumueller, D., Do, H-H., Massmann, S. and Rahm, E

(2005): Schema and ontology matching with

COMA++. In Proceedings of the ACM SIGMOD

international conference on Management of

data, ACM, 906-908.

Cheng, W., Lin, H. and Sun, Y. (2005): An efficient

schema matching algorithm. In Knowledge-

Based Intelligent Information and Engineering

Systems, Springer, 972-978.

Compton, P., Edwards, G., Kang, B., Lazarus, L., Malor,

R., Menzies, T., Preston, P., Srinivasan, A. and

Sammut, C. (1991): Ripple down rules:

possibilities and limitations. In Proceedings of

the Sixth AAAI Knowledge Acquisition for

Knowledge-Based Systems Workshop, Calgary,

Canada, University of Calgary, 6-1.

Compton, P. and Jansen, R. (1990): A philosophical basis

for knowledge acquisition. In Knowledge

acquisition, 2(3), 241-258.

Do, H-H. and Rahm, E. (2002a): COMA: a system for

flexible combination of schema matching

approaches. In Proceedings of the 28th

international conference on Very Large Data

Bases, Hong Kong, China.

Doan, A., Domingos, P. and Halevy, A.Y. (2001):

Reconciling schemas of disparate data sources: a

machine-learning approach. In Proceedings of

the 2001 ACM SIGMOD international

conference on Management of data, Santa

Barbara, California, USA, ACM.

Doan, A., Madhavan, J., Domingos, P. and Halevy,

A.(2002): Learning to map between ontologies

on the semantic web. In Proceedings of the 11th

international conference on World Wide Web,

ACM, 662-673.

Duchateau, F., Bellahsene, Z. and Coletta, R. (2008): A

flexible approach for planning schema matching

algorithms. In On the Move to Meaningful

Internet Systems: OTM 2008. Springer.

Duchateau, F., Coletta, R., Bellahsene, Z. and Miller, R.J.

(2009): Yam: a schema matcher factory. In

Proceedings of the 18th ACM conference on

Information and knowledge management, ACM,

2079-2080.

Embley, D.W., Xu, L. and Ding, Y. (2004): Automatic

direct and indirect schema mapping: experiences

and lessons learned. In ACM SIGMod Record,

33(4), 14-19.

Glavic, B., Alonso, G., Miller, R.J. and Haas, L.M.

(2010): TRAMP: Understanding the behavior of

schema mappings through provenance. In

Proceedings of the VLDB Endowment, 3(1-2),

1314-1325.

Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney, Australia,
27 - 30 January 2015

25

Hall, M., Frank, E., Holmes, G., Pfahringer, B.,

Reutemann, P. & Witten, I.H. (2009): The

WEKA data mining software: an update. In

ACM SIGKDD explorations newsletter, 11(1),

10-18.

Jimenez, S., Becerra, C., Gelbukh, A. and Gonzalez, F.

(2009): Generalized monge-elkan method for

approximate text string comparison. In

Computational Linguistics and Intelligent Text

Processing, Springer, 559-570.

Kang, B., Compton, P. and Preston, P. (1995): Multiple

classification ripple down rules: Evaluation and

possibilities. In The 9th knowledge acquisition

for knowledge based systems workshop.

Kim, Y.S., Compton, P. & Kang, B.H. (2012): Ripple-

down rules with censored production rules. In

Knowledge Management and Acquisition for

Intelligent Systems, Springer, 175-187.

Marie, A. & Gal, A. (2008): Boosting schema matchers.

In On the Move to Meaningful Internet Systems:

OTM, Springer, 283-300.

Quinlan, J.R. (1993): C4. 5: programs for machine

learning. Morgan kaufmann (1).

Richards, D. (2009): Two decades of ripple down rules

research. In The Knowledge Engineering

Review, 24(2), 159-184.

Shvaiko, P. and Euzenat, J. (2005): A survey of schema-

based matching approaches. In Journal on Data

Semantics IV, Springer, 146-171.

Stoilos, G., Stamou, G. and Kollias, S. (2005): A string

metric for ontology alignment. In Proceedings of

the 4th international conference on The

Semantic Web, Galway, Ireland: Springer-

Verlag.

CRPIT Volume 159 - Computer Science 2015

26

