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Abstract 

Schema mapping is essential to manage schema 

heterogeneity among different sources. Schema mapping 

can be conducted by using machine learning algorithms or 

by knowledge engineering approaches. These two 

approaches have advantages and disadvantages. The 

machine learning approaches can learn their model using 

the data, but they are static, so they cannot be modified to 

reflect the domain data changes. Inversely, the knowledge 

engineering approaches need domain experts, but they can 

be modified by reflecting the domain data changes. In 

order to exploit the advantages of both approaches and 

reduce the limitations, we propose a hybrid approach, 

called Hybrid-RDR, which combines a machine learning 

algorithm with ripple-down rules (RDR), an incremental 

knowledge engineering approach.  A model is constructed 

by a decision tree algorithm and then it is extended by 

adding rules incrementally. This approach achieves higher 

performance in terms of precision, recall and F-measure 

compared to the machine learning algorithm. This 

significantly reduces the effort for classifying the related 

schemas one by one by manually creating rules and it is 

possible to modify the knowledge base by adding rules 

without creating model again if decision tree gives wrong 

classifications whenever the schema data changes over 

time. 

Keywords: Machine learning algorithm, Knowledge 

engineering approach, schema mapping, incremental 

learning. 

1 Introduction 

Schema mapping is a set of logical specifications that 

express correspondences between semantically related 

schemas of different datasets through the application of a 

matching algorithm (Shvaiko and Euzenat, 2005). Schema 

mapping is used in many application domains such as 

data integration, data exchange, data warehousing and 

schema evolution (Glavic et al., 2010). Schema matching 

can be done in the element level and structure level. 

While the element level matching considers only names  
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of the schemas, the structure level matching uses the 

result of element level matching for matching the full 

graph. In this research, we only focus on the element level 

matching since our major aim is to evaluate whether our 

proposed approach can be applied to the schema mapping 

problem and our approach can easily be extended by 

considering the structure information. 

   In our research, the schema mapping process is defined 

as: 

 𝑀 = 𝑐(𝑆𝑖 , 𝑇𝑗 , 𝑉𝑖,𝑗), 

where  𝑆𝑖 is a source schema,  𝑇𝑗 is a target schema, 𝑉𝑖,𝑗 is 

an attribute value vector (𝑉𝑖,𝑗 = {𝑣1, 𝑣2, … , 𝑣𝑛}) and 𝑀 is a 

Boolean output (if 𝑆𝑖 is matched with 𝑇𝑗, return true; 

otherwise return false). The attribute values are derived 

by applying different similarity functions to  𝑆𝑖 and 𝑇𝑗, 

and to the values of 𝑆𝑖 and 𝑇𝑗 after text pre-processing 

(e.g., synonym, tokenisation, and reverse abbreviation). 

Therefore, the schema mapping problem is to find the 

classification function (𝑐) that accurately predicts a real 

relation between two schema elements. 

     Many schema mapping systems (Do and Rahm, 2002a, 

Aumueller et al., 2005, Doan et al., 2002, Marie and Gal, 

2008) have been developed by employing machine 

learning algorithms and/or knowledge engineering 

approaches. A machine learning algorithm needs training 

data set for building models, but usually it is very difficult 

to obtain fine training datasets. In addition, it is very 

difficult to change the model by human knowledge. A 

knowledge engineering approach encodes human 

knowledge directly, such that the knowledge base can be 

constructed with limited data, but it requires time- 

consuming knowledge acquisition.  

     Schemas can be created over time incessantly, and thus 

knowledge also changes over time. Machine learning and 

knowledge engineering approaches manage this 

phenomenon differently. Machine learning algorithms 

usually reconstruct their model after collecting sufficient 

data, while knowledge engineering approaches acquire 

new knowledge if necessary.  

     In this research, we propose a hybrid approach that 

constructs classification model using a machine learning 

algorithm and maintains new knowledge using a 

knowledge engineering approach, called ripple-down 

rules. When new data are available, the classification 

model may suggest wrong classification for some cases. 

In this case, it is necessary to add a rule, called censor 

rule, which stops the wrong classification and to add a 
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rule, called alternative rule, which correctly classifies the 

problem case. When a case is stopped by a censor rule but 

have no alternative rule that correctly classifies it, the case 

has no conclusion. In this case, a new rule that classifies 

the case correctly should be as a child rule of the root 

node.  

     In order to simulate the changes of the data, we 

assume that the data for schema mapping is partially 

available at the beginning and new data will be added 

onward. While the hybrid approach improves the 

performance of schema mapping by adding rules 

incrementally for correcting schema mapping errors of 

the current knowledge base, the decision tree improves its 

performance by learning a new model by including newly 

available data. Our experimental results show that the 

Hybrid-RDR approach produces slightly higher 

performance compared to the decision tree. 

2 Related Works 

Machine learning techniques have been used in the 

context of schema matching. Learning Source 

Descriptions (LSD) (Doan et al., 2001) is a schema 

mapping system and the extension of LSD is GLUE 

(Doan et al., 2002) which creates ontology mapping. Both 

systems use machine learning techniques like Multi-

strategy learning approach as base learner, Naïve Bayes 

for classifying text, and Meta learner for finding 

matching among a set of instances. Embley et al. (2004) 

develop an approach based on learning rules of decision 

trees for discovering hidden mapping among entities. In 

this approach, the rules are used for matching terms in 

WordNet. However, the decision trees are not used for 

choosing the best match algorithms. Duchateau et al. 

(2008) present an approach for schema matching which 

uses a decision tree to combine the best suitable match 

algorithms. The approach inputs a set of schemas and a 

decision tree which is composed of match algorithms, and 

outputs a list of mappings which are validated by experts 

to find out whether the matching is correct or not. The 

feedback is used to feed into another decision tree for 

learning. The machine learning techniques generally 

require refined training dataset that should be prepared by 

largely in manual and the techniques cannot easily change 

its model without sufficient data. In the rule based 

approach, well defined training dataset is not necessary. 

In the approach, schema matching is started for a small 

amount of schema data by adding rules.  

    Some systems have already used rule based techniques 

for schema matching. Among them, COMA/COMA++ 

(Do and Rahm, 2002b, Aumueller et al., 2005) are  

generic schema and ontology matching systems where 

simple, hybrid and reuse oriented matchers are used. In 

the systems, schemas are internally encoded as DAGs 

(Directed Acyclic Graphs) and are analysed using string 

matching algorithms. Different aggregation functions 

such as average, minimum, maximum and weighted sum, 

and rule based techniques are used in the systems for 

obtaining combined match results. However, in 

COMA/COMA++, determining best combination of 

matcher is not easy. YAM (Duchateau et al., 2009) is a 

machine learning based schema matching factory. In the 

learning phase, YAM considers users’ requirement such 

as a preference for recall or precision, provided expert 

correspondences. It uses a Knowledge Base (KB) that 

consists of a set of classifier, a set of similarity measures, 

and pairs of schemas which have already been matched. 

In the matching phase, the KB is used to match unknown 

schemas. However, in the system, appropriate classifier is 

selected by users or to use a default classifier learned over 

a huge mapping knowledge base. In this research, we use 

the hybrid approach combining decision tree and rule 

based technique. In our system, the KB is empty at the 

beginning, and the first rule is added in the KB by 

classifying a dataset using decision tree learning model. 

Then rules are added incrementally in order to solve 

schema matching problems such as un-classifications and 

wrong classifications. 

   Traditional rule-based systems require time-consuming 

knowledge acquisition as in those systems a highly 

trained specialist, the knowledge engineer, and the time-

poor domain expert are necessary in order to analyze 

domain (Richards, 2009). In order to solve the problem of 

time consuming knowledge acquisition, we adopt RDR 

(Ripple Down Rule) (Compton et al., 1991), a well-

known incremental knowledge acquisition method. RDR 

has been successfully applied in many practical 

knowledge-based system developments. There are several 

versions of RDR methods, including Single Classification 

RDR (SCRDR), Multiple Classifications RDR 

(MCRDR), and Nested RDR.  MCRDR is used in order 

to solve problems in some domains, e.g., pathology, 

text/web document classification, help desk information 

retrieval and medication review (Richards, 2009). Since 

our research aims to find matching relationship of schema 

(matched or not-matched), SCRDR is chosen for our 

research.  

    The success of RDR does not depend on 

representational differences; rather it largely depends on 

its distinctive operational semantics on standard 

production rules (SPR). SPR has the form 𝑝 → 𝑎, which 

is interpreted as “if a case satisfies condition 𝑝 then do 

action 𝑎”. RDR systems in general process cases 

sequentially and whenever the current knowledge base 

suggests wrong conclusions, new rules are added. 

Whenever a new rule is created, it is necessary to validate 

the rule normally by checking whether or not the future 

cases are given the correct classifications. If any case is 

wrongly classified by a rule, then RDR systems acquire 

exception rules for this particular rule.  In this case, the 

expert directly refines the new rule adding conditions 

until all incorrect cases are removed. However, it is not 

easy to construct this kind of rule with resource 

constraints such as limited time and information. We use 

CPR (censored production rules) based RDR (Kim et al., 

2012), to be used for acquiring exceptions when a new 

rule is created using censor conditions. CPR has the form 

𝑝 → 𝑎 ¬ 𝑐, which is interpreted as “if a case satisfies 

condition 𝑝 then do action 𝑎 unless the case does not 

satisfy the censor conditions 𝑐.”  This approach also can 

provide multiple cornerstone cases that satisfy the main 

condition clause (positive cornerstone cases) as well as 

the censored condition clause (negative cornerstone 

cases). The approach is useful when we have a large 

number of validation cases at hand. 
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3 Method 

            In this section, we describe our proposed Hybrid-RDR 

approach used for schema mapping. 

 

Hybrid-RDR 

Hybrid-RDR approach combines a decision tree 

algorithm, J48 with CPR based RDR. The process of 

Hybrid-RDR is given in Fig.1. The process is described 

below: 

 

Fig.1 Hybrid-RDR 

    Any machine learning classification algorithms such as 

Naïve Bayes, and decision tree, can be used for our 

hybrid approach. Among them, we choose the decision 

tree algorithm because its model can be understood by the 

human expert. A decision tree is a tree whose internal 

nodes represent the attributes, and the edges represent the 

conditions on the result of the attributes. All the leaf 

nodes represent classifications which are either true or 

false, indicating whether there is a match or not. We use 

J48 decision tree, a Java implementation of C4.5 in 

WEKA (Quinlan, 1993), for classifying schemas. 

Decision tree inputs a collection of cases (training set) 

where each case contains a set of features obtained from 

input schemas and from the application of string 

similarity metrics and text processing techniques to the 

input schemas, and also from manually providing class 

level (true or false). Then it builds up a classification 

model. The accuracy of the model is evaluated by using a 

test dataset.  

      For the knowledge engineering, we chose RDR 

approach since it overcomes “knowledge acquisition 

bottleneck” problem of the conventional knowledge 

engineering approaches by employing error-driven 

knowledge maintenance strategy, where all rules have 

clear relationship and they are added as either exception 

or alternative of the existing rules (Compton et al., 1991). 

RDR has been successfully applied in many application 

domains (Richards, 2009).    The structure of Knowledge 

Base (KB) is designed as an n-tree. Each node of the tree 

is a rule and each rule consists of IF [conditions] THEN 

[conclusion] UNLESS [censor-condition]. The KB 

structure and the inference process are shown in Fig.2. 

 
Fig.2 Hybrid-RDR Knowledge Base 

In Fig.2, at the beginning when KB is empty, we 

define R0 (rule 0), which is always true. We denote the 

first level rules by R1, R2, R3 and R4 and the censored 

rules by C1, C2, and C3. In the approach, the first rule is 

added in the KB by classifying a dataset using decision 

tree classification model, ML (machine Learning). Then 

other rules are added incrementally when schema data 

changes over time. 

    The inference process is based on searching the KB 
represented as a decision list with each decision possibly 

refined again by another decision list. Once a rule is 

satisfied by any case, the process evaluates whether or not 

the censor conditions are matched to the given case. If 

any censor rule is not satisfied, then the process stops 

with one path and one conclusion. However, if any censor 

rule is satisfied, other rules below the rule that was 

satisfied at the top level is evaluated.  The process stops 

when none of the rules can be satisfied by the case in 

hand. 

    Knowledge acquisition is a process which transfers 

knowledge from human experts to knowledge based 

systems. Knowledge acquisition process can be divided 

into three parts. Firstly, a correct classification should be 

decided by the expert. Secondly, new rules’ locations 

should be specified by the system. Thirdly, new rule’s 

condition should be decided by the expert. If the current 

knowledge base suggests wrong classification, it is 

necessary to add a censor rule that has NULL as 

classification. If the current knowledge base suggests no 

classification for any case, a new rule should be added as 

an alternative rule, which is added as a child rule of the 

root node of the knowledge base. The cases used for 

creating rules are called cornerstone cases and they are 

used in consequent knowledge acquisition process 

(Compton and Jansen, 1990).  

The advantage of Hybrid-RDR approach is that only 

one classification model is created by decision tree for a 

small amount of schema data and knowledge base is then 

built incrementally by adding rules to solve schema 

matching problems. The process helps to reduce time in 

two ways. Firstly, it does not create classification model 

when schema data changes over time. Secondly, it does 

not classify all the related schemas one by one by 

manually creating rules. The Hybrid-RDR approach is 

useful where there are large numbers of validation cases 

are at hand.  
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4 Experimental Design   

4.1 Datasets 

Four XDR schemas of purchase order domain, such as 

EXCEL, CIDX, NORIS, and PARAGON, obtained from 

www.biztalk.org are used for this evaluation study. We 

denote the schema datasets EXCEL, CIDX, NORIS and 

PARAGON by E, C, N, and P respectively. These 

schema datasets are used for some schema matcher 

evaluation (Do and Rahm, 2002b). These schema datasets 

contain different types of features such as identical 

words, combined words, abbreviated words and synonym 

words. Each schema dataset contains 35 (E), 30 (C), 46 

(N), and 59 (P) schema names. 

4.2 Experimental Procedure 

In this research, we experiment ten matching tasks one by 

one. For this, we take all the combinations of six schema 

datasets such as E-C (first combination is to deal with two 

datasets, EXCEL and CIDX), E-N, E-P, C-N, C-P and N-

P. Then we take the Cartesian product of the six schema 

datasets separately. The sizes of Cartesian product of the 

datasets are 1050 (E-C), 1610 (E-N), 2065 (E-P), 1380 

(C-N), 1770 (C-P) and 2714 (N-P) entity pairs. We 

combine all the entity pairs and get total 10589 entity 

pairs. We randomly divide the entity pairs into ten for 

creating ten datasets (D1 to D10) where datasets D1 to 

D8 and D10 contain 1058 entity pairs and D9 dataset 

contains 1067 entity pairs. These ten datasets are used for 

ten matching tasks. In order to use the datasets for 

classification and to give proper knowledge to the users 

for creating rules, we construct attributes as follows: 

Attributes Construction. In order to give proper 

knowledge to the users, attributes are constructed in three 

steps:  

 The input schema names (source and target);  

 Application of text processing approaches such as 

tokenization, abbreviations and acronyms expansion, 

and synonym lookup on the input schemas. In 

tokenization and word separation, schema names 

containing multiple words are split into lists of words 

by a customizable tokenizer using punctuation, 

uppercase, special symbols, whitespace and digits. For 

instance, “contactEmail” is split into “contact” and 

“Email”. Abbreviations and acronyms are expanded by 

using external resources such as a dictionary and/or a 

thesaurus. For instance, “tel” is expanded into its 

original form “telephone”. For this, we use the 

abbreviation file created for COMA (Do and Rahm, 

2002b). Synonym processing is applied to use 

semantically identical schema names to measure 

similarity (e.g., ‘Invoice’ is semantically same as ‘Bill’ 

in purchase order domain). We use the synonym file 

created for COMA (Do and Rahm, 2002b).  

 Application of the string similarity metrics on the 

features of the attributes computed from step 1 and 2, 

which creates another attributes. We use string 

similarity metrics developed by two open source 

projects. For Levenshtein, JaroWinkler, Jaro Measure, 

TFIDF and Jaccard, we use open source library 

SecondString
1
 and for Monge-Elkan, Smith-

Waterman, Needleman-Wunsch, Q-gram and Cosine 

we use SimMetric open source library
2
. Similarity 

values are normalized, such that the value within from 

0 to 1, where 0 means strong dissimilarity and 1 means 

strong similarity. The threshold values for deciding 

schema matching (true/false) are increased with 0.1 

from 0 to 1. We also provide class level (true or false) 

manually which creates another attribute. In such a 

way we get 73 attributes by using schema information 

of two datasets (one matching task). Computed 

attributes represent knowledge about a relation 

between attributes, operator or process patterns.  After 

preparing the attributes and the schema data under the 

attributes, all these are fed in to the dynamic decision 

tree algorithm and the Hybrid-RDR. The dynamic 

decision tree algorithm learns a new model by 

including newly available data. The evaluation 

approach is shown in Fig.3. 

 
Fig.3 Dynamic ML and hybrid-RDR 

  

     In the evaluation approach, we randomly select 

datasets for training and testing. For example, we select 

D1 for training and D10 for testing.  

Dynamic ML. In the dynamic machine learning 

approach, we create decision tree model, 𝑀𝐿0 for D1 and 

test D10. Then we incrementally add other datasets like 

D1+D2, D1+D2+D3 for creating decision tree models, 

𝑀𝐿1, 𝑀𝐿2  and test D10. In this way, we add all nine 

datasets for creating decision tree model, 𝑀𝐿8 and test 

D10. 

 

Hybrid-RDR. In Hybrid-RDR approach, we create 

decision tree model, 𝑀𝐿0 for D1 and test D10. We also 

test D2 and find some un-classified cases and wrong 

classified cases. Then we refine the decision tree rule by 

adding censor rules, 𝑅𝑢𝑙𝑒0 and again classify the cases by 

adding alternative rules, 𝑅𝑢𝑙𝑒0. The censor rules are 

added as censor nodes of decision tree in the KB and 

alternative rules are added as parent rules in the KB. 

The 𝑀𝐿0+𝑅𝑢𝑙𝑒0 is then used for testing D10 and also for 

testing D3. We add rules, 𝑅𝑢𝑙𝑒1 again for the wrong 

                                                           
1
 http://secondstring.sourceforge.net 

2
 http://sourceforge.net/projects/simmetrics 
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classified cases of D3, and 𝑀𝐿0+𝑅𝑢𝑙𝑒0+𝑅𝑢𝑙𝑒1 is used for 

testing D10. In such a way, we incrementally add rules 

for all nine datasets,  𝑀𝐿0+𝑅𝑢𝑙𝑒0+𝑅𝑢𝑙𝑒1+…+𝑅𝑢𝑙𝑒8 and 

test D10. The detail rule creation process for schema 

mapping is described in the following: 

 

Schema Mapping by Hybrid-RDR. A simple GUI 

(Graphical User Interface) is created which can select any 

datasets from repository. The attributes that are created 

by the above steps of Attribute construction are 

represented in a “Case Browser” to provide sufficient 

knowledge to the users (Fig. 4). The system works in two 

phases: Training phase and classification phase. In the 

training phase, “Training by DT” of Fig. 4 is used. We 

use the button in order to train one dataset using decision 

tree, J48. The attributes which are created by the above 

steps of Attribute construction, are used as training 

sample to build a model. The purpose of building a model 

is to classify whether a given entity pair of schema names 

is matched or not based on their feature similarity 

measure. For all machine learning techniques, we 

consider 10-fold cross validation. 10-fold cross validation 

means that the data is split into 10 groups where nine 

groups are considered for training and the remaining one 

group is considered for testing. This process is repeated 

for all 10 groups. In the classification phase, “Classify” 

button of Fig. 4 is used. For matching entity pair of 

schema names using the algorithm, we provide the 

attributes created from another datasets. Finally, we get 

the matching results as true positive (if reported match by 

expert is true and predicted match by algorithm is true), 

false positive (if reported match is false and predicted 

match is true), true negative (if reported match is false 

and predicted match is false) and false negative (if 

reported match is true and predicted match is false) which 

are displayed in Fig. 4.  

 

 

 

Fig. 4. GUI represents 73 attributes with schema names (all the attributes are not visible)  

In order to solve the problem of false negative and false 

positive (wrong classifications), we use “Edit 

Classification” of Fig. 4. “Edit Classification” button 

helps to refine the wrong classified cases by adding new 

conditions until all incorrect cases are removed or 

creating another new rule using knowledge Acquisition 

GUI. Classification for the censor rule is always 

“NULL”. For editing classification, the Knowledge 

Acquisition GUI is displayed in Fig. 5. 
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Fig. 5. Knowledge Acquisition GUI for editing rules 

    In Fig.5, parent condition is decision tree which gives 

the wrong classification for the current case. In order to 

edit the parent rule, it is not necessary to select the 

classification as classification for the censor rules is 

always “NULL”. First, the rule conditions are added. For 

each condition in the rule, the attribute, operator, and 

value are selected from the drop down boxes, which list 

all the attributes, operators and values respectively. After 

selecting condition, “Add Condition” adds condition. It 

is possible to add more than one condition and delete 

condition using “Delete Selected” button if users think 

that the added condition is not suitable. “Satisfy 

Condition” button helps to look at whether the rule is 

satisfied by the selected case or not. If rule is satisfied, 

the “Validate New Rule” becomes active and this helps 

to validate the rule on the un-classified and wrong 

classified cases of the dataset (Fig. 6). 

 

 

 

 

Fig. 6. Rule validation 

    In Fig. 6, Reported Match shows the manual matching 

results and Algorithmic Match shows the results 

calculated from rules. The “Save Rule” button helps to 

save rule in the rule database (KB) and case in the case 

database. “Edit Classification” button helps to refine the 

wrong classified cases by adding new conditions until all 

wrong cases are removed or creating another new rule 

using knowledge Acquisition GUI. Classification for the 

censor rule is always “NULL”. The refined cases and the 

deleted wrong classified cases from the satisfied cases list 

are shown in Fig. 7.  

 

Fig. 7. GUI for refined cases and the deleted cases 

    In Fig. 7, the “Save Rule” button saves the censor rule 

in the rule database (KB) as censor node and the deleted 

cases in the case database as NULL classification. If there 

are more wrong classified cases, the rule can be refined 

by adding other censor rules. Then to classify the 

“NULL’ classified cases, the alternative rules are created 

by “Add Classification” button of Fig. 4, are used. For 

adding classification, the Knowledge Acquisition GUI is 

like Fig. 5. In this case, first the classification of the rule 

is selected. This can be done using the drop down box at 
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the top, which lists TRUE or FALSE classifications for 

this domain. Having selected the classification, the 

conditions for creating rule are added. Then it is checked 

whether the rule is satisfied by the current case or not. If 

the rule is satisfied, then it is validated to determine 

whether the conclusion provided by the rule is matched 

with the reported match. The alternative rule is saved in 

the KB as parent rule. If any case is wrongly classified by 

the current rule, then the classification is edited.  

4.3   Evaluation Metrics 

As this task is a classification task, we use the following 

conventional metrics: precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
, recall = 

𝑇𝑃

𝑇𝑃+𝐹𝑁
 

and F-measure = 
 2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
, where 𝑇𝑃 is True 

Positive (hit),  𝐹𝑃 is False Positive (false alarm, Type I 

error) and 𝐹𝑁 is False Negative (miss, Type II error). For 

a specific threshold value, we calculate TP, FP and FN by 

comparing manually defined matches (R) with the 

predicted matches (P) returned by the matching 

algorithms according to  Jimenez et al. (2009).  

5 Evaluation Results 

Performance of the Hybrid-RDR method and dynamic 

decision tree depend on the features of the datasets which 

are created using string similarity metrics and text 

processing techniques. The performance of Hybrid-RDR 

method also depends on the efficient rule creation. We 

compute performance in terms of precision, recall and F-

measure. Precision estimates the reliability of the match 

predictions and recall specifies the share of real matches. 

During schema mapping, manually matching schemas of 

two heterogeneous data sources and false identified 

matches by algorithms are handled by humans. The 

burden of deleting false identified matches is much easier 

than creating manual matches among thousands of 

schemas (Stoilos et al., 2005). As for calculating recall 

value, manually identified matches are necessary, so 

recall value is very important. Only precision or recall 

cannot estimate the performance of match algorithms 

(Cheng et al., 2005). So it is necessary to calculate the 

overall performance or F-measure of rule based system 

and machine learning techniques using both precision and 

recall. For this, we determine the best performing 

classification system based on the optimized F-measure 

(Marie and Gal, 2008) for almost all experimental 

datasets. For all experiments using decision tree, we use 

WEKA (Hall et al., 2009) data mining and machine 

learning toolbox.  

5.1 Schema Mapping Results 

In the experiment, we randomly select datasets for 

training and testing. We do three experiments to get the 

performance of dynamic decision tree and Hybrid-RDR 

method. The performances (precision, recall and F-

measure) of schema mapping using dynamic decision tree 

and Hybrid-RDR, and the rules used by Hybrid-RDR 

method are described in Fig. 8. 

 

 

 

Experiment

1 

  
 

 
 

 

Experiment

2 

 

    
 

 

 

 

Experiment

3 

 

    
Fig. 8. Schema mapping results using dynamic decision tree and Hybrid-RDR 

 

     In Fig. 8, for all experiments, ML means the results 

that are produced by dynamic decision tree and ML+RDR 

means the results that are got by using Hybrid-RDR. In 

all experiments, we randomly select one dataset for 

training and other dataset for testing. In dynamic decision 

tree method, we create decision tree model, 𝑀𝐿0  for one 

dataset and use 𝑀𝐿0  for testing the test dataset. Then we 

select another dataset and add the previous dataset for 

which  𝑀𝐿0 has been created, with the current selected 

dataset, and create  𝑀𝐿1 and use  𝑀𝐿1 for testing the test 

dataset. In this way, we create ML for all the datasets 

except test dataset and use ML for testing the test dataset. 
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In Hybrid-RDR approach, we create decision tree model, 

𝑀𝐿0 for one dataset and use 𝑀𝐿0 for testing the test 

dataset. We also select another dataset and use 𝑀𝐿0 for 

testing and find some un-classified cases and wrong 

classified cases. Then we refine the decision tree rule by 

adding censor rule, 𝑅𝑢𝑙𝑒0 and again classify the cases by 

adding alternative rules, 𝑅𝑢𝑙𝑒0. Total 𝑅𝑢𝑙𝑒0 is 12, 12, 14 

for experiment1, experiment2 and experiment3 

respectively. The 𝑀𝐿0+𝑅𝑢𝑙𝑒0 is then used for testing the 

test dataset and also for testing another dataset. We add 

rules again for the wrong classified cases of another 

dataset, and total 𝑅𝑢𝑙𝑒1 is 7, 10 and 4 for experiment1, 

experiment2 and experiment3 respectively. The 

𝑀𝐿0+𝑅𝑢𝑙𝑒0+𝑅𝑢𝑙𝑒1 is used for testing the test dataset and 

also for testing another dataset. In such a way, we add 

rules incrementally for all nine datasets, 

 𝑀𝐿0+𝑅𝑢𝑙𝑒0+𝑅𝑢𝑙𝑒1+…+𝑅𝑢𝑙𝑒8 and use for testing the 

test dataset. In the table, we also see that the number of 

rules addition for wrong classifications decreases 

gradually. 

    The results indicate that using ML+RDR, the 

performance is higher than ML in almost all experiments 

in terms of precision, recall and F-measure. In 

experiment2, though the performance of ML is higher 

according to precision for almost all datasets except D1, 

D8 and D9, but recall and F-measure using ML are not 

higher than ML+RDR. The reason of high precision 

means less false positive values, and low recall means 

that the false negative numbers are high (Marie and Gal, 

2008).  

5.2 Prune Tree and Knowledge Base 

As an example of prune tree for training one dataset and 

two datasets using J48 is given in Fig. 9(a) and 9(b) 

respectively. It is found that the prune tree for training 

one dataset is different from the prune tree of training two 

datasets. 

 

Fig. 9 (a). J48 Prune Tree for training one dataset  

 

 

Fig. 9 (b). J48 Prune Tree for training two datasets  

Example of Knowledge Base (KB) of Hybrid-RDR which 

is created for solving un-classifications and wrong 

classifications is given in Table 1.  

 

RID PID Condition Conclusion CaseID 

1 0 0 0 0 

2 1 Decision Tree TRUE/FALSE ALL 

3 2 Lev_AbbTokT==1.0 NULL 643 

4 1 Lev_AbbTokT==1.0 TRUE 643 

5 2 JaroW_ST == 0.9 NULL 272 

6 1 JaroW_ST == 0.9 TRUE 272 

7 2 Lev_ST <= 0.2 NULL 63 

8 1 Lev_ST <= 0.2 FALSE 63 

9 6 Lev_ST == 0.6 && 

JaroW_ST == 0.9 

NULL 818 

10 1 Lev_ST == 0.6 && 

JaroW_ST == 0.9 

FALSE 818 

11 2 Lev_TokSynT==1.0 NULL 978 

12 1 Lev_TokSynT==1.0 TRUE 978 

Table 1. Knowledge Base (KB) for creating rules using Hybrid-

RDR 

   In Table 1, the attributes RID, PID, Condition, 

Conclusion and CaseID means rule id, parent rule id, 

condition for the rules, conclusion produced by rules and 

the classified case id respectively. In addition, Lev, S, T, 

AbbTokT, TokSynT, and JaroW means Levenshtein 

function, source schema, target schema, abbreviation and 

tokenization of target, tokenization and synonym of 

target, and JaroWinkler function respectively. The values 

1.0, 0.9, 0.2, 0.6 are thresholds. Example of rule, 

JaroW_ST==0.9 means if the value of JaroWinkler 

function applied on source and target equals to the 

threshold value 0.9, then the conclusion is TRUE. 

In the table, rule 1 is always true. We use rules 2 to 12 for 

classifying cases of datasets. We apply rule 2 to classify 

one dataset and test dataset. In order to solve un-

classification and wrong classification of one dataset, we 

create rules 3 to 8 and apply rules 1 to 8 for classifying 

another dataset and test dataset. Then we add rules 9 to 12 

for solving wrong classification of another dataset which 

incrementally build the knowledge base. In Table 1, we 

see that the same rules, for example 3 and 4 are used for 

making NULL and TRUE conclusion. The reason is that 

first we create censor rule, for example rule 3 for making 

wrong classification as NULL classification. Then we add 
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alternative rule, for example rule 4 for making the right 

classification.  

    In Fig. 9(a), 9(b) and Table 1, we find that though the 

rules of training one dataset and two datasets are different 

using the dynamic decision tree, the rules of classifying 

one dataset and another dataset are not different using 

Hybrid-RDR, rather we add rules incrementally for 

solving wrong classifications. Therefore, the advantage of 

Hybrid-RDR compared to dynamic decision tree is that 

we do not need to create training model whenever the 

schema data changes over time. 

6 Discussion 
In order to solve the problem of a machine learning 

algorithm that needs training data set for building models, 

and a knowledge engineering approach that requires time- 

consuming knowledge acquisition when schema data 

changes over time, we propose a Hybrid-RDR. The 

advantage of Hybrid-RDR is that classification model is 

built by decision tree only for a small amount of schema 

data, and knowledge base is then built incrementally by 

adding rules to solve schema matching problems: un-

classifications and wrong classifications. In this research, 

we only focus on element level schema matching using 

Hybrid-RDR in order to determine whether our proposed 

approach can be applied to the schema mapping problem. 

In future, we will perform structure level matching with 

our element level matching by Hybrid-RDR to improve 

the performance. 

7 Conclusion and Future Works 

In this research, we have proposed Hybrid-RDR approach 

by combining decision tree, J48 and CPR based RDR. We 

have computed attributes from the input schemas as well 

as from the application of text processing techniques and 

string similarity metrics on the schema names. In 

addition, we have designed a schema mapping tool and 

used the attributes in order to create rules using Hybrid-

RDR. It can handle two problems of schema matching, 

un-classifications and wrong classifications using 

incremental knowledge acquisition techniques. We have 

also used the attributes to feed into a machine learning 

technique, dynamic decision tree and have compared the 

performance of Hybrid-RDR and dynamic decision tree 

for schema mapping. We have found that our Hybrid-

RDR method shows slightly better performance than the 

dynamic decision tree. The main advantage of Hybrid-

RDR compared to dynamic decision tree is that it is not 

necessary to create models whenever the schema data 

changes over time. The model which is created for one 

dataset, can be used for classifying another dataset, and 

rules can be added incrementally for solving wrong 

classifications. Later the same model and the added rules 

can be used for classifying another dataset. In this 

research, we have only considered element level 

matching, but accurate results of this element level 

matching should be a premise to work in the next step 

with structure level matching.  
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