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Abstract. Interoperability of heterogeneous data sources has been extensively 
studied in data integration applications. However, the increasing number of 
tools that produce data with very different formats, such as bug tracking, 
version control, etc., produces many different kinds of semantic heterogeneities. 
These semantic heterogeneities can be expressed as mappings between the tools 
metadata which describe the data manipulated by the tools. However, the 
semantics of complex mappings (n:1, 1:m and n:m relationships) is hard to 
support. These mappings are usually directly coded in executable 
transformations using arithmetic expressions. And there is no mechanism to 
create and reuse complex mappings. In this paper we propose a novel approach 
to capture different kinds of complex mappings using correspondence models. 
The main advantage is to use high level specifications for the correspondence 
models that enable representing different kinds of mappings. The 
correspondence models may be used to automatically produce executable 
transformations. To validate our approach, we provide an experimentation with 
a real world scenario using bug tracking tools. 

Keywords: complex mappings, semantic heterogeneities, tool interoperability, 
MDE (Model Driven Engineering) 

1 Introduction 

A software tool, e.g., text editing, bug tracking, needs to manipulate data that may be 
persistent (e.g., stored in a relational database) or transient (e.g., the execution state of 
the tool). Today, many different tools can be used to solve similar problems. As a 
result of increased collaboration between organizations and to rapidly changing 
environments, it is often necessary that one tool uses the data produced by another 
tool. However, the data produced by distinct tools are often heterogeneous with very 
different data formats, thus making tool data integration difficult.  

The integration of heterogeneous data sources has been studied for a long time in 
data integration applications [21, 26, 1, 10]. In order to integrate the data of different 
tools, it is necessary to identify the semantic heterogeneities. The format and 
semantics of tool data is typically specified as tool metadata. Semantic heterogeneities 
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can be expressed as mappings which specify the relationships between elements of 
tools metadata. 

Many solutions have proposed different kinds of mappings ranging from 1-to-1 
correspondences [26, 27, 24] to ontology bridges [22, 13, 11]. However, they 
typically provide a limited set of semantic relationships, e.g., equality and 
equivalence. They do not provide support to explicitly define the semantics of 
complex kinds of mappings such as mapping expressions. Mapping expressions are 
manipulations over tool elements that involve 1:m, n:1 or n:m relationships, e.g., 
splitting an element Address into Street and Number. Most solutions implement 
complex mappings directly in executable transformations using generic arithmetic 
expressions, e.g., project_duration = end_date – start_date, name = first_name + 
last_name. In this case, the semantics of the entire mapping (e.g., “name 
concatenation”) is not defined in the mapping specification, but in the mapping 
expression itself. Therefore, it is difficult to create and reuse these expressions. The 
lack of explicit semantics also hardens the task of deriving these mappings into 
executable transformations. The transformations are responsible to translate the data 
produced by a tool into a different format that can be understood and consumed by 
another tool. 

In this paper, we propose a practical solution based on Model Driven Engineering 
together with data integration techniques. Our approach is useful to specify and 
capture complex semantic heterogeneities, and to automatically produce executable 
transformations. In our approach, the data manipulated by a tool is a model, called a 
tool model. A model conforms to a metamodel which is a formal description of the 
model. 

We classify different kinds of tool semantic heterogeneities according to their 
complexity, and we propose a practical solution to express the mapping semantics in a 
correspondence metamodel, i.e., at the specification level. The metamodel elements 
are created with a vocabulary close to their semantic meanings, e.g., override, 
concatenate, split. A correspondence model conforming to this metamodel contains 
the mappings between the tool metamodels. 

The correspondence models are used to generate executable transformations. A 
transformation is also a model, so the heterogeneities (e.g., mapping expressions) are 
translated into constructs of specific transformation languages, e.g., XSLT. We 
generalize the process of producing transformations into a pattern that is 
automatically executed. This pattern may be incrementally modified to handle 
different semantic heterogeneities. This is a frequently executed operation in model 
driven engineering which can be encapsulated in a TransfGen operation.  

The main contributions of this paper are the following. First, we develop 
correspondence metamodel extensions that fully capture different kinds of semantic 
heterogeneities between tool metamodels. We emphasize the creation of complex 
mapping expressions. Second, we provide a generic pattern to automatically generate 
transformations based on correspondence models. Third, we consider all entities as 
models. This allows us to apply the same principles to manipulate the tool, 
correspondence and transformation models. To validate our approach, we provide an 
experimentation with a real world interoperability scenario using bug tracking tools 
and our AMW (Atlas Model Weaver) prototype [9]. 
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This paper is organized as follows. Section 2 describes a motivating example in 
bug tracking tool interoperability. Section 3 presents the base concepts and the 
definition of tool correspondences. Section 4 explains how these correspondences are 
translated into a transformation model. Section 5 presents our experimental 
validation. Section 6 discusses related work. Section 7 concludes. 

2 Motivating Example 

We illustrate different kinds of semantic heterogeneities in tool interoperability with a 
bug tracking scenario. Bug tracking tools manage the bugs (reporting, fixing, etc.) of 
a given application. Today, many bug tracking tools are available, e.g., GNATS, 
Mantis, Bugzilla, and many others [15]. Consider two autonomous software 
development companies, CA and CB, and a set of N bug tracking tools. Company CA 
uses tool Ti and company CB uses tool Tj. They need to collaborate without aligning 
their software development practices. This is due to pragmatic reasons, e.g., the 
companies already participate in other cooperative projects. 

We illustrate this situation using two bug tracking tools, Bugzilla [6] and Mantis 
[23]. Bugzilla is a general purpose, open source bug tracking tool. It provides features 
such as error tracking and quality assurance management. The metadata of Bugzilla is 
illustrated in Figure 1. 

bug_id : String
bug_status : StatusType
resolution : ResolutionType
priority : PriorityType
rep_platform : String
assigned_to : String
target_milestone : String
creation_ts : String
op_sys : OSType

Bug

who : String
bug_when : Date
the_text : String

LongDesc
bug_id : String

DependsOn

bug_id : String
Blocks

long_desc
blocks

depends_on

0..*

0..*

0..*

 

Fig. 1. Bugzilla metadata 

Mantis is another bug tracking tool. It differs from Bugzilla as a light weight tool 
which allows adding new modules. The metadata of Mantis is illustrated in Figure 2.  

We observe that it is possible to establish different kind of mappings between the 
elements of the tools metadata. The most common kind of mappings is equality, 
where two concepts are said to be equal. For example, a software bug is represented 
by Bug in Bugzilla and Issue in Mantis. As another example, the date a bug is created 
is represented by creation_ts and date_submitted. There are also elements 
representing equivalent data, but not the same, e.g., target_milestone is the version 
where a bug will be fixed, and fixed_in_version is the version where a bug was fixed. 

There are also more complex kinds of mappings. For example, Bugzilla has two 
kinds of relationships between bugs: depends_on and blocks. In Mantis, bugs are 
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related to each other using the element relationships, which points to Relationship. 
The relationship type is stored in the element type. As another example, assigned_to 
contains the responsible to solve a given bug in Bugzilla. In Mantis the relationship 
assigned points to element Person (that contains elements login, value and id). 

  

version : String
platform : String
os : String
os_version : String
date_submitted : Date
fixed_in_version : String

Issue

id : Integer
Identifier

text : String
Note

value : String
ValueWithId

login : String
Person

type : RelationshipType
Relationship

notes

relationships

0..1
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reproducibility
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Fig. 2. Mantis metadata 

In addition, there are semantic heterogeneities at the data level. For instance, the 
element bug_status in Bugzilla and relationship status in Mantis (that points to 
ValueWithId) contains the bug state (e.g., a bug was included in the database, a bug 
was solved, etc.), and the element priority contains the priority to solve a given bug 
(e.g., immediate, urgent). Each tool has its own set of status and priorities. For 
example, it is necessary to take into account that the priority with value “P_1” in 
Bugzilla is translated into the value “urgent” in Mantis. The same analogy applies to 
the element status. Different kinds of heterogeneities and the other elements not 
explained here are discussed later in the paper. 

Traditional data integration applications usually create mappings to capture 
similarity heterogeneities (e.g., equality, equivalence). These mappings can be used to 
produce transformations that execute the translations from Bugzilla to Mantis. 
However, complex mapping expressions and data level heterogeneities are coded 
either in some element in the mappings, either in the produced transformations. For 
example the developer must code how to translate between the enumerations values  
in one specific language. The lack of explicit semantics for complex expressions 
hardens the creation of mappings because there is no domain information about the 
possible mappings. The possible mappings are virtually unlimited when using generic 
arithmetic expressions. This way is not possible to understand all the mappings 
without analyzing the entire expression in the produced transformations. This also 
reduces the reusability of these expressions. In addition, there is not enough semantic 
information to automatically produce the transformations, which is a frequently 
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executed operation in model management. The mappings and produced 
transformations must be kept synchronized. 

In order to efficiently achieve tool interoperability, all these kinds of mappings 
must be explicitly specified. These mappings must be derived into executable 
transformations. This process must be efficient, such that new transformations 
between other tools can be rapidly developed. 

3 Tool Heterogeneity 

In this section, we motivate the use of correspondence metamodel extensions to 
capture different kinds of tool semantic heterogeneities. First, we define what is a 
model which is the basic concept underlying our solution. Second, we define the tool 
heterogeneity problem and a core correspondence metamodel. Finally, we classify 
different kinds of tool semantic heterogeneities and we propose a set of metamodel 
extensions to express these heterogeneities. 

3.1 Models 

We abstract implementation and representation issues by using an integrated 
modeling platform. We present the model definition below (following [17]). 
Definition 3.1 (Directed graph). A directed multigraph G = (NG, EG, ΓG, v) consists 
of a finite set of nodes NG and a finite set of edges EG, a mapping function ΓG : EG → 
NG × NG and a labeling function v : NG ∪ EG → A. The type A is of any data type, 
such as characters, integers or classes. 
Definition 3.2 (Model). A model M = (G, ω, μ) is a triple where: 
− G = (NG, EG, ΓG) is a directed multigraph, 
− ω is itself a model (called the reference model of M) associated to a graph Gω = 

(Nω, Eω, Γω), 
− μ : NG ∪ EG → Nω is a function associating elements (nodes and edges) of G to 

nodes of Gω. 
The relation between a model and its reference model is called conformance. This 

definition allows an indefinite number of levels. However, we observe from different 
domains (XML, RDBMS, ontologies) that only three levels are needed. We call these 
three levels metametamodel (M3), metamodel (M2) and terminal model (M1). A 
metametamodel is a model that is its own reference model. A metamodel is a model 
such that its reference model is a metametamodel. A terminal model is a model such 
that its reference model is a metamodel. 

3.2 Tool Heterogeneity 

The tool data and metadata are represented as models and metamodels. Thus, the tool 
heterogeneities are expressed as mappings between tool metamodels. The mappings 
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types are specified in a correspondence metamodel. We define tool, mappings and 
correspondence metamodel below. 
Definition 3.3 (Tool). A tool T is a tuple <Mt, St>, where: 
− Mt = (G, MMt, μ) is the tool model. Mt is the data that is manipulated by T, 
− MMt is the reference model (metamodel) that represents the tool metadata, 
− St = {si; i = [1..n]} is the set of services (querying, updating, inserting, etc.) 

provided by T. Every service s ∈ St must respect the constraints specified in MMt. 
Consider a bug tracking tool Ta = <Mta, Sta>. The metamodel MMta specifies how 

the bugs are organized, the properties of a bug, the possible states of a bug during its 
life cycle, etc. The model Mta has the value of the bugs, e.g., that a given bug “B” has 
a status of “in correction” to a developer called “Joseph”. The set Sta contains 
miscellaneous services: the inclusion a new bug in the database, the update of a bug 
status, the query of a set of bugs, and so on. 

Consider another bug tracking tool, Tb = <Mtb, Stb> with a different model, 
reference model and set of services. The semantic heterogeneities between 
metamodels MMta and MMtb are expressed as mappings. The mappings between tool 
metamodels have different types, structures and semantics. However, intuitively, they 
depict the notion of typed-links between (meta) model elements. 
Definition 3.4 (Mapping). Given two models Mta and Mtb, a mapping M is a tuple 
<Sa, Sb, T>, where: 
− Sa is a set of elements from the model Mta, 
− Sb is a set of elements from the model Mtb, 
− T is the type of mapping between the sets Sa and Sb. 

There are many different kinds of mappings, for instance equality, equivalence or, 
generalization. These are simple kind of mapping that express element similarity, 
usually denoting 1-to-1 links. Complex mappings have multiple cardinalities and 
semantic meaning. These kind of mappings abstract commonly used mapping 
expressions, e.g., the average between a set of elements, or the concatenation of 
strings. We specify the different mapping types in a correspondence metamodel. 
Definition 3.5 (Correspondence metamodel). A correspondence metamodel is a 
model MC = (GC, ωC, μC) that define mapping types, such that: 
− GC has two basic types of nodes: links and link endpoints, 
− link denote the mapping type, and refers to multiple link endpoints, 
− link endpoints refer to the mapped elements. 

Consider the mapping expression t = s1 + s2 + s3 + s4 / 4. The mapping language 
contains the addition and subtraction operators, plus the tokens (the model elements). 
The language does not explicitly specify that it is possible to create average 
expressions. The semantic is only known if we analyze the expression itself. In our 
solution, we create a link type average that abstracts the semantics provided by the 
combination of operations “+” and “/”. This process is the promotion of the mapping 
semantics into the correspondence metamodel. The link type refers to a link endpoint 
with cardinality N (the source elements), and to a link endpoint with cardinality 1 (the 
target element). The mapping expression (the link between the elements) is created in 
a correspondence model conforming to the correspondence metamodel. 
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3.2.1 Core correspondence Metamodel 
We create a core correspondence metamodel based on Definition 3.5. The metamodel 
is illustrated in Figure 3. The core metamodel has elements with information about 
link type, link endpoints and element identification. Element identification is a 
practical solution for saving unique identifiers for the linked elements. 

 

name : String
description : String

WElement

WModel
ref : String

WRef

WLinkEnd
WModelRef WElementRef
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Fig. 3. The core correspondence metamodel 

WElement is the base element from which all other elements inherit. It has a name 
and a description. WModel represents the root element that contains all model 
elements. WLink denotes the link type. WLink has a reference end to associate it with 
a set of link endpoints (WLinkEnd). WLink can have children links (child reference). 
Every WLinkEnd references one WElementRef. The attribute ref contains a unique 
identifier of the linked elements. WElementRef is not referenced directly by WLink 
because it is possible to refer to the same model element by different link endpoints, 
e.g., one model element may participate in more than one mapping expression. 
WModelRef is similar to WElementRef, but it contains references to the models as a 
whole. The WLink element must be extended to create different link types, e.g., 
equality, average and others. Different link types and link endpoints are added using 
metamodel extensions [9]. 

3.3 Metamodel Extensions for Tool Interoperability 

As already stated, it is not possible to create a metamodel containing all types of links 
for tool interoperability. We propose to create metamodel extensions to capture 
different types of links. We classify them in three major groups according to the 
complexity of the links semantics. 

The link types are defined in a simplified version of the KM3 metametamodel (see 
the complete syntax in [17]). KM3 is formed by classes. Classes may inherit from 
other classes, and are formed by attributes and references (attributes and references 
have a type and a cardinality). The syntax of KM3 is similar to object notations. 
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3.3.1 Similarity Expressions 
Similarity expressions represent resemblance links between metamodel elements. 
These expressions are the link types encountered in most semantic-based mapping 
solutions. There are different kinds of similarity expressions. We describe them 
below. 

Equality: a pair of element represents exactly the same information. For example 
the platform of the application the bug was detected is represented by rep_platform in 
Bugzilla and platform in Mantis. The link type does not specify the exact data type 
(String, Class, etc.). The data type is specified when deploying the solution (as 
extensions of WLinkEnd). 

class Equal extends WLink { ref source : <DataType>; ref target : <DataType> } 
Equivalence: the linked elements contain similar information, but not exactly the 

same. However, the translation semantics may be the same as in equality links, i.e., 
one target element receives the value of a source element. We add a description 
attribute to provide additional information about the equivalence, and a similarity 
measure. 

class Equivalence extends WLink {ref source:<DataType>;  
ref  target: <DataType>; attr description : String; attr similarity : Integer} 

Disjointness: two elements cannot be present at the same time because they have 
incompatible data. The link type also contains a description. 

class Disjoint extends WLink {ref source:<DataType>;  
ref target : <DataType> ; attr description : String } 

Generality: one model element is more general than the other. 
class Inherit extends WLink { ref parent : <DataType>; ref child : <DataType>} 
Non equivalence: it is not always possible to translate all the information 

produced by one tool into another tool. Some elements from the tool metamodels do 
not have any semantic relationship, or are not relevant for a given translation and do 
not need to be generated. The element may be simply ignored. However, it is 
important for the application developer to be aware of what is not translated. For 
example the reproducibility element contains the frequency of reproduction of a given 
issue. This element does not exist in Bugzilla. 

class Unique extends WLink { ref element : <DataType> } 

3.3.2 Mapping Expressions 
Mappings expressions are mappings that involve a set of source elements and a set of 
target elements. The definition of high level mapping expressions capable of 
capturing different kinds of semantic heterogeneities is a main contribution of this 
paper. The correspondence metamodel encapsulates mapping expressions in 
metamodel elements. 

Many-to-one: many-to-one expressions links set of elements of the source model 
with a single target element. For example the elements os and os_version from Mantis 
contains the operating system and the operating system version. In Bugzilla, this 
information is available in one single attribute op_sys. 

class ManyToOne extends WLink { 
      ref source [*]: <DataType>; ref target: <DataType>} 

Split or one-to-many: the opposite of many-to-one expressions, i.e., split 
expressions link more than one target element with a single source element. 
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class OneToMany extends WLink { 
     ref source: <DataType>; ref [*] target: <DataType>} 

Many-to-many: links a set of elements of source models with a set of elements of 
target models, for instance the reorganization of the elements of LongDesc into the 
elements of Note. 

class ManyToMany extends WLink { 
          ref source [*]: <DataType>; ref [*] target: <DataType>} 

New values in the target: generates values in the target model that do not have a 
correspondence in the source model. The values are automatically generated (e.g., to 
automatic generate IDs elements) or take a predefined value from user input. 

The class AutoSetValue is extended into AutomaticGenInt and ManualInput. The 
class AutomaticGenInt reads the element that is referred by the target reference and 
generates a random number for it. The class ManualInput sets the target reference 
attribute with the value of sourceValue. 

class AutoSetValue extends Equal {} 
class AutomaticGenInt extends AutoSetValue {} 
class ManualInput extends AutoSetValue { attr sourceValue : <DataType>} 

3.3.3 Data Value Expressions 
Data value expressions differ from mapping expressions because they also evaluate 
the model elements, not only the metamodel elements. Data value expressions modify 
the source model values to make them compatible with the target model. 

The class DataExpression refers to a set of value equivalences. The source element 
is evaluated, and if it is equal to one sourceValue from the set of equivalences, it sets 
the target element with the corresponding targetValue. The equivalences may be of 
any data type. 

class DataExpression extends WLink { ref equiv [*] : Equivalence} 
class Equivalence extends WLinkEnd { 

ref sourceValue : <DataType>; ref targetValue : <DataType> } 
We illustrate data value expressions with the resolution element. The resolution 

contains the correction status of a bug (e.g., if it was fixed or not). In Mantis, this 
element may have the values: OPEN, FIXED, REOPENED. The possible values in 
Bugzilla are: NEW, FIXED, INVALID, WONTFIX. 

4 Interpreting Tool Heterogeneity 

In the previous section, we explained how to define different metamodel extensions to 
capture semantic heterogeneities. The next step is to create a correspondence model 
conforming to these extensions and to derive the model into executable 
transformations. These transformations translate one tool model into another. 

In this section, we first introduce a match operation that creates a correspondence 
model. Then, we present a generic pattern used to automatically produce a model 
transformation, which is responsible to translate one tool model into another. 
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4.1 Match Operation 

The match operation creates a correspondence model conforming to an extended 
correspondence metamodel. The match operation is divided into an automatic and a 
manual phase. The automatic phase executes a set of matching algorithms to search 
for similar concepts in the tool metamodels. First, we generate a correspondence 
model containing the cross product of all metamodel elements of each tool. Then, a 
set of matching algorithms is executed sequentially to calculate a similarity value for 
every pair of elements. We use existing string comparison algorithms [7], e.g., 
Levenshtein distance, edit distance and QGrams, and an adaptation of the similarity 
flooding algorithm [24]. We match only classes, attributes and references. The result 
is filtered to obtain only the best similarity values, based on a similarity threshold. 
The correspondence model contains only equality mappings. 

The manual phase refines the correspondence metamodel by deleting wrong 
equality matchings and by adding the complex mapping expressions and data value 
expressions. This operation is done with the help of a user interface. 

4.2 Generic Transformation Pattern 

The definition of the generic transformation pattern relies on three facts. First, the 
core correspondence metamodel is formed by links, link endpoints and extensions of 
these elements. Second, declarative transformations languages have similar structure. 
Third, we use declarative transformation patterns that specify only what to transform, 
and not how to transform. The transformation pattern contains the execution 
semantics of the correspondence model, because it transforms the different types of 
links into executable mapping expressions in some transformation language. 

We use higher-order transformations (HOT) to specify the generic pattern. A HOT 
takes as input a correspondence model conforming to an extension of the 
correspondence metamodel and transforms it into a transformation model. 
Definition 4.1 (Higher-order transformation). A higher-order transformation is a 
transformation THOT : TIN → TOUT, such that the input and/or the output models are 
transformation models. Higher-order transformations either take a transformation 
model as input, either produce a transformation model as output, or both. 

We create a simple syntax for a transformation metamodel to define the generic 
pattern (as illustrated in Figure 4). The keywords are in bold font. The transformation 
has a set of declarative rules. The input element matches the input correspondence 
metamodels. The output element creates a new element in the output model. The 
output element has bindings to assign the source values to the target elements. The 
correspondence metamodel has one extension of WLink (as shown below) to denote 
source and target elements. The pattern can also be used with different metamodel 
extensions. 

class WLinkST extends WLink { ref source : WLinkEnd; ref target : WLinkEnd } 
The pattern contains four rules (see Figure 4). The rule newRule creates 

transformation rules. The rule newOutput creates the output elements. Both are based 
on the value of the target reference of a given link. The rule newInput creates the 
input element, and it is based in the value of the source reference. This rule may have 
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a filtering condition depending on the link type. The rule newExpression creates 
different mapping expressions. The mapping expressions are created as bindings to 
the output elements. 

 

Module TransfGen (C: ωC)
inputModel:  C: ωC /* a correspondence model conforming to a metamodel ωC*/
outputModel: T: ωT /* a transformation model conforming to ωT */
rule newRule

input WLinkST (parent isA WModel)  /*classifiers (classes, references, attributes)*/
output Rule

input source
output target

rule newInput
input WLinkEnd (link.source = self)
output InputElement

element getElement (element.ref)
condition /*depends on the WLinkST and WLinkEnd types*/

rule newOutput
input WLinkEnd (link.target = self)
output OutputElement

element getElement (element.ref) 
bindings link.child /*get the sibling WLinkEnd*/

rule newExpression
input WLinkST (parent isA WLinkST)
output Binding

source MapExp (getElement (source.element.ref) ) /*mapping expressions here,*/
target  getElement (target.element.ref)                 /*according to the WLinkST type*/

 
Fig. 4. Higher-order transformation pattern 

This pattern is the basis to define a new model management operation called 
TransfGen. This way it is possible to separate the tool interoperability process into 
distinct operations. The correspondence model is created by a Match. The 
correspondence model is translated into a transformation model using TransfGen. The 
translation between models are encapsulated in automatically generated 
transformations, which are themselves specific data transformation operations. 

5 Experimental Validation 

In this section we validate our approach with experiments using the bug tracking tools 
from the motivating example, Mantis and Bugzilla. The experiments are conducted 
using our model management platform, which is composed by different plugins to 
manipulate models. The two plugins used are the AMW (ATLAS Model Weaver) 
plugin [9] and the ATL (ATLAS Transformation Language) plugin [16]. AMW is 
responsible for managing the metamodel extensions and for the manual match. ATL 
is used to implement all the model transformations of the process. ATL has a textual 
concrete syntax and an engine to execute the transformations. Both plugins are open 
source and are available as Eclipse subprojects [2, 3]. 

We first show the creation of a correspondence model based on the correspondence 
metamodel extensions from Section 3. Then we demonstrate how we use the generic 
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transformation pattern to interpret the correspondence model and to automatically 
produce model transformations. We end with a discussion about our results. 

5.1 Correspondence Model 

The metamodels of both tools are stored in different data sources. The tool 
metamodels are originally in SQL-DDL. They are translated into Ecore [12], which is 
the metametamodel used by our plugins (AMW and ATL). The semantics of Ecore is 
very close to KM3. This allows us to write metamodels using KM3 textual syntax. 
One part of the metamodels is illustrated in the graphical concrete syntax in the 
motivating example. The Bugzilla metamodel has 146 elements. The Mantis 
metamodel has 62 elements. 

We implement the metamodel extensions defined in Section 3. We show below an 
excerpt of the correspondence metamodel. It specifies a data value expression used to 
translate enumeration values. It compares the value of given source element with the 
set of sourceValue, and sets the target element with the corresponding targetValue. 

class EnumerationEquiv extends DataExpression {ref equiv [*] : EnumEqual}; 
class EnumEqual extends Equivalence { 

ref sourceValue: String; ref targetValue: String }; 
We create the correspondence model using ATL transformations to execute the 

sequence of matching algorithms, which refine the initial input (the cross-product of 
elements) and generate a correspondence model. Our AMW plugin is used to generate 
the interoperability metamodel based on a set of extensions and to refine the 
correspondence model during the manual phase. 

An excerpt of the correspondence model is shown in Figure 5. We use a human 
readable syntax to represent information models, similar to HUTN [29].  

EnumerationEquiv = {
     source.ref = Left.priority.id;  
     target.ref = Right.priority.id;
     equivalence = { source = "NONE";  target = "pt_null"};
     equivalence = { source = "low";  target = "pt_P1"};
};
Left = {
     name ="Mantis";
     ref = "c:\Tool_interoperability\Mantis.ecore";
     priority {  id = "EAttribute_priority";   }
};
Right = {
    name ="Bugzilla";
    ref = "c:\Tool_interoperability\Bugzilla.ecore";
     priority {   id = "EAttribute_priority";   }
}  

Fig. 5. A correspondence model 

The model contains the equivalencies between the priority values. Note that both 
tool models have a priority property and both have the same ID “EAttribute_priority”. 
This does not cause problems because it is relative to the containing model.  
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The complete correspondence model has 312 elements. This difference on the 
number of elements is due to the structure of the correspondence metamodel, because 
for every couple of referred elements there is at least one element indicating the link 
type, plus the source and target elements. In addition, the source and target elements 
refer to an element that contains their identifiers (in the Left and Right elements). 

5.2 Interpreting the Correspondence Model 

The execution semantics of the correspondence model is specified in a transformation 
that takes the correspondence model as input and produces a transformation model as 
output. The transformation (485 lines) is implemented based on the generic 
transformation pattern. The ATL transformation rules are divided in three parts: the 
from block filters the appropriated model elements by their type; the to block contains 
the declarative code; the do block contains imperative code. We show in Figure 6 the 
rules that interpret the metamodel extension to translate the enumeration values. The 
AMW identifier denotes the correspondence metamodel. The ATL identifier denotes 
the transformation metamodel. 

 

rule EnumDataTranslation {
from amw : AMW!EnumerationEquiv  
to atl : ATL!Binding (

propertyName <- MOF!EClassifier.getInstanceById(amw.target.element.ref).name
    )

do { atl.value <- thisModule.CreateEnum(amw, amw.enumEqual);}
}
rule CreateEnum(amw: AMW!EnumerationEquiv, attrEnum: Sequence (AMW!EnumEqual)){

to ifExp : ATL!IfExp (
  thenExpression <- targetEnum,
  condition <- operation
),
operation : ATL!OperatorCallExp (
  operationName <- '=',
  arguments <- sourceEnum
),
endExp : ATL!StringExp (),
sourceEnum: ATL!StringExp (
  stringSymbol <- attrEnum->first().sourceValue.toString()
),
targetEnum : ATL!StringExp (
  stringSymbol <- attrEnum->first().targetValue.toString()
)

do { operation.source <- amw, amw.source->collect(e | e.element.ref),true);
if ( attrEnum->size() = 1 ) {

ifExp.elseExpression <- endExp;
  } else {

ifExp.elseExpression <- thisModule.CreateIfEnum(amw, 
attrEnum->subSequence(2,attrEnum->size()));

  }
  }
}  

Fig. 6. Higher-order transformation 

The rule EnumDataTranslation matches the element EnumerationEquiv from the 
correspondence model. It produces a Binding element conforming to the ATL 
metamodel. A binding has a propertyName that corresponds to the target model 
element. The target element is obtained by getInstanceById function. The property 
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value calls the rule CreateIfEnum. It receives the set of enumerations as parameters 
and produces a model with a set of nested IfExp (conditional expressions).  

The IfExp contains a condition expression, which is formed by an equality operator 
(OperatorCallExp). This operation compares the source value of the enumerations 
and sets the correct target value specified at thenExpression. The StringExp elements 
return the sourceValue and targetValue (an empty String if there is no equivalence). 
The complete transformation produces a transformation model with a set of rules. 
This model is extracted into a text representation that is executed in the ATL engine. 

5.3 Discussion 

The metamodel extensions enable producing a domain specific (tool interoperability) 
correspondence metamodel. Among the different metamodel extensions that are 
created, the most used are the concatenation of elements (e.g., os concatenated with 
os_version), data type conversions (e.g., Integer to String, references to attributes, 
etc.) and conversion of enumerations values. 

One interesting observation is that the values of the enumerations from Mantis are 
not described in the metamodel, only in a Php file. Since the tool metamodels cannot 
be modified (otherwise the services provided might not work properly), the 
enumerations are added in one metamodel extension. This is a very specific 
extension, which is probably not useful outside the bug-tracking example, but it is still 
necessary to be able to create the output transformation. 

The correspondence model has composite elements that conform to a combination 
of metamodel extensions. For instance we combine the conversion of “references to 
attributes” extension with the “concatenation” extension. This way, it is possible to 
create more complex output transformation models with the same set of extensions. 

The metamodel extensions ease the task of repeatedly creating complex mapping 
and data value expressions between tool metamodels. The adaptive user interface is 
used together with semi-automatic matching algorithms (see the survey at [32]). The 
extensibility of the correspondence metamodel enables leaving human intervention 
essentially on the matching phase, because all the necessary information to produce 
transformations is available in the correspondence model. This is different from 
traditional approaches that have an extra step of mapping discovery [19, 26]. 
However, it is still possible that a correspondence metamodel covers most semantic 
interoperability cases, but not all. Complex expressions that are not often used can be 
coded manually in the final generated transformation. 

The declarative structure of the correspondence metamodel allows a clear 
separation of the input model (the correspondence model) from the output model (a 
transformation model). Thus, it is relatively straightforward to modify only the output 
model and produce different transformation models. This also enables generating 
different expressions in the output transformation. For instance, the translation of 
enumeration values may be implemented as nested ifs (our final choice), or using 
case-like statements. This opens the possibility of optimizations of the output 
transformations (however, this is not the focus in this work). On the negative side, 
transformation languages may have complicated metamodels, in particular for 
querying and navigation expressions (e.g., OCL, XPath). 
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Another important result is that we are capable to use most of the metamodel 
extensions also in the importing process from SQL-DDL to an Ecore metamodel. The 
process is the following: we create a SQL-DDL metamodel conforming to Ecore (to 
support standard CREATE TABLE statements). The textual SQL-DDL is translated 
into a model conforming to the SQL-DDL metamodel. We then use most part of the 
correspondence metamodel extensions (excluding for instance the extensions 
concerning enumerations) to create a correspondence metamodel with AMW, and 
then a correspondence model to link the SQL-DDL model with a KM3 metamodel 
The translation from KM3 to Ecore is straightforward. The SQL-DDL model has 48 
elements. The KM3 metamodel has 47. The correspondence model has 132. The 
output transformation has 83 lines. This transformation translates the SQL-DDL 
model into a KM3 model. In this case, extensions to generate default values are 
constantly used, because KM3 models have attributes such as lower, upper (for 
cardinality), isAbstract, that are not present in the SQL-DDL definition. 

To summarize, our experiments demonstrate that the use of MDE enables to 
improve two data integration phases (matching and transformation production) to 
solve tool interoperability problems in a practical and efficient manner. We are able to 
define different extensions of the core correspondence metamodel to cope with 
distinct kinds of semantic heterogeneity. We create a correspondence model using 
some matching algorithms and a user interface. We implement the transformation 
pattern that automatically generates a transformation to transform the tool models. 

6 Related Work 

There has been extensive work on data integration that can be applied to tool 
interoperability. The usual approach is to identify the relationships between elements 
and to save these relationships in some kind of mapping. The most common mappings 
are 1-to-1 correspondence [1, 27, 26, 24]. These correspondences are not adapted to 
represent complex mappings semantics. 

The use of model-based correspondences was introduced in [30]. The 
correspondence model is used to merge models. However, it has only equality and 
similarity link types. More expressive representations have been proposed to bridge 
between different ontologies [28, 22, 11]. These approaches have mappings as first 
class entities. The set of valid mapping constructs involve complex axioms, such as 
equivalence and generalization. The main limitation is that the fixed set of mapping 
constructs cannot be extended in a straightforward way as in our approach. 

In our solution, we present a correspondence metamodel that is capable of 
capturing virtually all of the representations above, because the metamodel is 
extensible. This means we may specify a domain specific mapping with only 1-to-1 
relationships until complex structures as in ontology-based approaches. 

InfoQuilt [31] provides ways to represent mapping expressions through a library of 
mapping functions. However, the library can be used with no restriction, i.e., they are 
not separated by application domain. The functions are not part of the mapping 
definition, but expressions written in terms of the mapping language. The work in 
[18] presents a classification of the semantic and syntactic differences between 
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schemas. This work proposes a semPro predicate to formalize the semantic proximity 
between elements. It is a formal work that focuses in the semantic heterogeneities, 
and not a complete integration platform as in our solution. It is a basis for our 
classification of tool heterogeneities, but we separate the heterogeneity types based on 
their complexity. 

Our approach is complementary to existing matching algorithms, as we provide an 
efficient way to represent mapping expressions. For example the iMAP prototype [8] 
could be used to create a set of complex mapping expressions in our solution. iMAP 
implements different complex searchers. Every searcher could be associated with a 
correspondence metamodel extension.  

The work in [14] proposes the alignment of ontologies based on the computation of 
similarities of 1-to-1 and 1-to-m mappings. The similarities are computed taking into 
account ontological structures. However, the similarities denote only equivalence 
mappings. The 1-to-m similarities could be used as input to algorithms that generate 
correspondence models with complex kinds of mappings. 

The mappings are used to produce transformations. Clio [26] is one of the first 
solutions to provide a semi-automatic mechanism to produce transformations based 
on a set of correspondences. Our proposal has a similar architecture. However, Clio 
focuses on the generation of nested structures and on foreign key dependencies. There 
is no support for different kinds of complex mapping expressions. The work in [19] 
proposes an algorithm to generate XQuery. The algorithm uses 1-to-1 
correspondences between a set of input XML schemas. 

We differ from both approaches because we factor out part of the generation 
problem into a generic pattern. We leave the complexity of creating expressions to the 
matching phase, as in [8]. This means for instance that we do not implement a chase 
procedure to identify possible joins as in Clio. The generic pattern is independent of 
the structure of the input models (e.g., nested format), though still dependent of the 
core correspondence metamodel. 

Model management solutions [5, 24, 4, 20] propose the creation of operations that 
encapsulate the most frequently executed metadata tasks. The work in [25] 
implements a model management platform using a logic mapping language. The logic 
language is translated into XSLT using an ad-hoc implementation. Our approach 
presents a model management solution focusing on the creation of element level 
constructs. The correspondence model as a whole acts as a high level specification for 
data integration operations. 

To the best of our knowledge, none of the existing solutions consider the 
transformations and correspondences as models at the same time as in our approach. 
The model management operations may be applied to transformations as well. This 
enables using the declarative pattern to generate transformations from a 
correspondence model, and to encapsulate this pattern into a TransfGen operator. 

7 Conclusions 

In this paper, we have presented a practical and flexible approach that improves data 
integration techniques applied to tool interoperability problems. We based our 
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solution on MDE principles to capture the semantic heterogeneities and to produce 
operational mappings between these tools. 

Considering two tools in a set of tools dealing with the same problem domain (bug 
tracking in our case), the main problem is to deal with different kinds of semantic 
heterogeneities, in particular, complex heterogeneities that involve mapping 
expressions. After having provided a classification of semantic heterogeneities 
between tools, we have shown how this classification may be translated in various 
types of links defined in a correspondence metamodel. Furthermore, the 
correspondence metamodel may be seen as an extension of a core metamodel that 
provides basic support for link management. The main original aspect of our approach 
is to offer maximum extensibility to capture the semantic of complex mapping and 
data value expressions. 

We have shown that metamodel extensions allow expressing the different kinds of 
semantic heterogeneities with a dedicated vocabulary and in a declarative way. Every 
domain specific metamodel prevents from developing a generic language (and not 
well adapted) without the capability to explicitly express the semantic heterogeneities. 

The correspondence models conforming to these metamodel were used to produce 
transformations. We have shown that the correspondence model can be interpreted 
following a generic and declarative pattern. The semantic of this pattern is the basis 
for a novel model management operation called TransfGen. Based on this pattern, we 
were capable to develop higher-order transformations that automatically produced 
output transformation models. The transformations were generated automatically 
because we leave all the human intervention to the matching phase. 

Finally, considering all entities as models (tools, correspondence and 
transformations) enabled to manipulate all of them using the same set of principles. 
The main principle is to define different types of domain models and to apply 
transformations between them. This was particularly useful when specifying the 
semantic heterogeneities and when translating a correspondence model into 
executable transformation models. 

We validated our approach within our model management platform using AMW 
and ATL plugins. We developed a domain specific metamodel to solve a set of tool 
interoperability problems. We created metamodel extensions for mapping 
expressions, data value expressions, and for elements that do not have equivalencies. 
We applied our solution in bug tracking tools using a real world setting. 

As future work, we plan to extend the correspondence metamodel for different tool 
interoperability scenarios. We envisage verifying if our techniques adapt well to 
create ModelGen [4] operations. We also plan to study how to adapt existing 
matching algorithms to automatically create complex mappings. 
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