
Prel
im

ina
ry

ve
rsi

on

Model-driven Tool Interoperability:
an Application in Bug Tracking1

Marcos Didonet Del Fabro, Jean Bézivin, Patrick Valduriez

ATLAS Group, INRIA and LINA University of Nantes
2, rue de la Houssinière, BP 92208, 44322, Nantes cedex 3, France

{marcos.didonet-del-fabro, jean.bezivin}@univ-nantes.fr, patrick.valduriez@inria.fr

Abstract. Interoperability of heterogeneous data sources has been extensively
studied in data integration applications. However, the increasing number of
tools that produce data with very different formats, such as bug tracking,
version control, etc., produces many different kinds of semantic heterogeneities.
These semantic heterogeneities can be expressed as mappings between the tools
metadata which describe the data manipulated by the tools. However, the
semantics of complex mappings (n:1, 1:m and n:m relationships) is hard to
support. These mappings are usually directly coded in executable
transformations using arithmetic expressions. And there is no mechanism to
create and reuse complex mappings. In this paper we propose a novel approach
to capture different kinds of complex mappings using correspondence models.
The main advantage is to use high level specifications for the correspondence
models that enable representing different kinds of mappings. The
correspondence models may be used to automatically produce executable
transformations. To validate our approach, we provide an experimentation with
a real world scenario using bug tracking tools.

Keywords: complex mappings, semantic heterogeneities, tool interoperability,
MDE (Model Driven Engineering)

1 Introduction

A software tool, e.g., text editing, bug tracking, needs to manipulate data that may be
persistent (e.g., stored in a relational database) or transient (e.g., the execution state of
the tool). Today, many different tools can be used to solve similar problems. As a
result of increased collaboration between organizations and to rapidly changing
environments, it is often necessary that one tool uses the data produced by another
tool. However, the data produced by distinct tools are often heterogeneous with very
different data formats, thus making tool data integration difficult.

The integration of heterogeneous data sources has been studied for a long time in
data integration applications [21, 26, 1, 10]. In order to integrate the data of different
tools, it is necessary to identify the semantic heterogeneities. The format and
semantics of tool data is typically specified as tool metadata. Semantic heterogeneities

1 This work is partially supported by ModelPlex project

Prel
im

ina
ry

ve
rsi

on

can be expressed as mappings which specify the relationships between elements of
tools metadata.

Many solutions have proposed different kinds of mappings ranging from 1-to-1
correspondences [26, 27, 24] to ontology bridges [22, 13, 11]. However, they
typically provide a limited set of semantic relationships, e.g., equality and
equivalence. They do not provide support to explicitly define the semantics of
complex kinds of mappings such as mapping expressions. Mapping expressions are
manipulations over tool elements that involve 1:m, n:1 or n:m relationships, e.g.,
splitting an element Address into Street and Number. Most solutions implement
complex mappings directly in executable transformations using generic arithmetic
expressions, e.g., project_duration = end_date – start_date, name = first_name +
last_name. In this case, the semantics of the entire mapping (e.g., “name
concatenation”) is not defined in the mapping specification, but in the mapping
expression itself. Therefore, it is difficult to create and reuse these expressions. The
lack of explicit semantics also hardens the task of deriving these mappings into
executable transformations. The transformations are responsible to translate the data
produced by a tool into a different format that can be understood and consumed by
another tool.

In this paper, we propose a practical solution based on Model Driven Engineering
together with data integration techniques. Our approach is useful to specify and
capture complex semantic heterogeneities, and to automatically produce executable
transformations. In our approach, the data manipulated by a tool is a model, called a
tool model. A model conforms to a metamodel which is a formal description of the
model.

We classify different kinds of tool semantic heterogeneities according to their
complexity, and we propose a practical solution to express the mapping semantics in a
correspondence metamodel, i.e., at the specification level. The metamodel elements
are created with a vocabulary close to their semantic meanings, e.g., override,
concatenate, split. A correspondence model conforming to this metamodel contains
the mappings between the tool metamodels.

The correspondence models are used to generate executable transformations. A
transformation is also a model, so the heterogeneities (e.g., mapping expressions) are
translated into constructs of specific transformation languages, e.g., XSLT. We
generalize the process of producing transformations into a pattern that is
automatically executed. This pattern may be incrementally modified to handle
different semantic heterogeneities. This is a frequently executed operation in model
driven engineering which can be encapsulated in a TransfGen operation.

The main contributions of this paper are the following. First, we develop
correspondence metamodel extensions that fully capture different kinds of semantic
heterogeneities between tool metamodels. We emphasize the creation of complex
mapping expressions. Second, we provide a generic pattern to automatically generate
transformations based on correspondence models. Third, we consider all entities as
models. This allows us to apply the same principles to manipulate the tool,
correspondence and transformation models. To validate our approach, we provide an
experimentation with a real world interoperability scenario using bug tracking tools
and our AMW (Atlas Model Weaver) prototype [9].

Prel
im

ina
ry

ve
rsi

on

This paper is organized as follows. Section 2 describes a motivating example in
bug tracking tool interoperability. Section 3 presents the base concepts and the
definition of tool correspondences. Section 4 explains how these correspondences are
translated into a transformation model. Section 5 presents our experimental
validation. Section 6 discusses related work. Section 7 concludes.

2 Motivating Example

We illustrate different kinds of semantic heterogeneities in tool interoperability with a
bug tracking scenario. Bug tracking tools manage the bugs (reporting, fixing, etc.) of
a given application. Today, many bug tracking tools are available, e.g., GNATS,
Mantis, Bugzilla, and many others [15]. Consider two autonomous software
development companies, CA and CB, and a set of N bug tracking tools. Company CA
uses tool Ti and company CB uses tool Tj. They need to collaborate without aligning
their software development practices. This is due to pragmatic reasons, e.g., the
companies already participate in other cooperative projects.

We illustrate this situation using two bug tracking tools, Bugzilla [6] and Mantis
[23]. Bugzilla is a general purpose, open source bug tracking tool. It provides features
such as error tracking and quality assurance management. The metadata of Bugzilla is
illustrated in Figure 1.

bug_id : String
bug_status : StatusType
resolution : ResolutionType
priority : PriorityType
rep_platform : String
assigned_to : String
target_milestone : String
creation_ts : String
op_sys : OSType

Bug

who : String
bug_when : Date
the_text : String

LongDesc
bug_id : String

DependsOn

bug_id : String
Blocks

long_desc
blocks

depends_on

0..*

0..*

0..*

Fig. 1. Bugzilla metadata

Mantis is another bug tracking tool. It differs from Bugzilla as a light weight tool
which allows adding new modules. The metadata of Mantis is illustrated in Figure 2.

We observe that it is possible to establish different kind of mappings between the
elements of the tools metadata. The most common kind of mappings is equality,
where two concepts are said to be equal. For example, a software bug is represented
by Bug in Bugzilla and Issue in Mantis. As another example, the date a bug is created
is represented by creation_ts and date_submitted. There are also elements
representing equivalent data, but not the same, e.g., target_milestone is the version
where a bug will be fixed, and fixed_in_version is the version where a bug was fixed.

There are also more complex kinds of mappings. For example, Bugzilla has two
kinds of relationships between bugs: depends_on and blocks. In Mantis, bugs are

Prel
im

ina
ry

ve
rsi

on

related to each other using the element relationships, which points to Relationship.
The relationship type is stored in the element type. As another example, assigned_to
contains the responsible to solve a given bug in Bugzilla. In Mantis the relationship
assigned points to element Person (that contains elements login, value and id).

version : String
platform : String
os : String
os_version : String
date_submitted : Date
fixed_in_version : String

Issue

id : Integer
Identifier

text : String
Note

value : String
ValueWithId

login : String
Person

type : RelationshipType
Relationship

notes

relationships

0..1
resolution

reproducibility

st
at

us

pr
io

rit
y

1 1

0..1

0..*

0..*

0..1

assigned

Fig. 2. Mantis metadata

In addition, there are semantic heterogeneities at the data level. For instance, the
element bug_status in Bugzilla and relationship status in Mantis (that points to
ValueWithId) contains the bug state (e.g., a bug was included in the database, a bug
was solved, etc.), and the element priority contains the priority to solve a given bug
(e.g., immediate, urgent). Each tool has its own set of status and priorities. For
example, it is necessary to take into account that the priority with value “P_1” in
Bugzilla is translated into the value “urgent” in Mantis. The same analogy applies to
the element status. Different kinds of heterogeneities and the other elements not
explained here are discussed later in the paper.

Traditional data integration applications usually create mappings to capture
similarity heterogeneities (e.g., equality, equivalence). These mappings can be used to
produce transformations that execute the translations from Bugzilla to Mantis.
However, complex mapping expressions and data level heterogeneities are coded
either in some element in the mappings, either in the produced transformations. For
example the developer must code how to translate between the enumerations values
in one specific language. The lack of explicit semantics for complex expressions
hardens the creation of mappings because there is no domain information about the
possible mappings. The possible mappings are virtually unlimited when using generic
arithmetic expressions. This way is not possible to understand all the mappings
without analyzing the entire expression in the produced transformations. This also
reduces the reusability of these expressions. In addition, there is not enough semantic
information to automatically produce the transformations, which is a frequently

Prel
im

ina
ry

ve
rsi

on

executed operation in model management. The mappings and produced
transformations must be kept synchronized.

In order to efficiently achieve tool interoperability, all these kinds of mappings
must be explicitly specified. These mappings must be derived into executable
transformations. This process must be efficient, such that new transformations
between other tools can be rapidly developed.

3 Tool Heterogeneity

In this section, we motivate the use of correspondence metamodel extensions to
capture different kinds of tool semantic heterogeneities. First, we define what is a
model which is the basic concept underlying our solution. Second, we define the tool
heterogeneity problem and a core correspondence metamodel. Finally, we classify
different kinds of tool semantic heterogeneities and we propose a set of metamodel
extensions to express these heterogeneities.

3.1 Models

We abstract implementation and representation issues by using an integrated
modeling platform. We present the model definition below (following [17]).
Definition 3.1 (Directed graph). A directed multigraph G = (NG, EG, ΓG, v) consists
of a finite set of nodes NG and a finite set of edges EG, a mapping function ΓG : EG →
NG × NG and a labeling function v : NG ∪ EG → A. The type A is of any data type,
such as characters, integers or classes.
Definition 3.2 (Model). A model M = (G, ω, μ) is a triple where:
− G = (NG, EG, ΓG) is a directed multigraph,
− ω is itself a model (called the reference model of M) associated to a graph Gω =

(Nω, Eω, Γω),
− μ : NG ∪ EG → Nω is a function associating elements (nodes and edges) of G to

nodes of Gω.
The relation between a model and its reference model is called conformance. This

definition allows an indefinite number of levels. However, we observe from different
domains (XML, RDBMS, ontologies) that only three levels are needed. We call these
three levels metametamodel (M3), metamodel (M2) and terminal model (M1). A
metametamodel is a model that is its own reference model. A metamodel is a model
such that its reference model is a metametamodel. A terminal model is a model such
that its reference model is a metamodel.

3.2 Tool Heterogeneity

The tool data and metadata are represented as models and metamodels. Thus, the tool
heterogeneities are expressed as mappings between tool metamodels. The mappings

Prel
im

ina
ry

ve
rsi

on

types are specified in a correspondence metamodel. We define tool, mappings and
correspondence metamodel below.
Definition 3.3 (Tool). A tool T is a tuple <Mt, St>, where:
− Mt = (G, MMt, μ) is the tool model. Mt is the data that is manipulated by T,
− MMt is the reference model (metamodel) that represents the tool metadata,
− St = {si; i = [1..n]} is the set of services (querying, updating, inserting, etc.)

provided by T. Every service s ∈ St must respect the constraints specified in MMt.
Consider a bug tracking tool Ta = <Mta, Sta>. The metamodel MMta specifies how

the bugs are organized, the properties of a bug, the possible states of a bug during its
life cycle, etc. The model Mta has the value of the bugs, e.g., that a given bug “B” has
a status of “in correction” to a developer called “Joseph”. The set Sta contains
miscellaneous services: the inclusion a new bug in the database, the update of a bug
status, the query of a set of bugs, and so on.

Consider another bug tracking tool, Tb = <Mtb, Stb> with a different model,
reference model and set of services. The semantic heterogeneities between
metamodels MMta and MMtb are expressed as mappings. The mappings between tool
metamodels have different types, structures and semantics. However, intuitively, they
depict the notion of typed-links between (meta) model elements.
Definition 3.4 (Mapping). Given two models Mta and Mtb, a mapping M is a tuple
<Sa, Sb, T>, where:
− Sa is a set of elements from the model Mta,
− Sb is a set of elements from the model Mtb,
− T is the type of mapping between the sets Sa and Sb.

There are many different kinds of mappings, for instance equality, equivalence or,
generalization. These are simple kind of mapping that express element similarity,
usually denoting 1-to-1 links. Complex mappings have multiple cardinalities and
semantic meaning. These kind of mappings abstract commonly used mapping
expressions, e.g., the average between a set of elements, or the concatenation of
strings. We specify the different mapping types in a correspondence metamodel.
Definition 3.5 (Correspondence metamodel). A correspondence metamodel is a
model MC = (GC, ωC, μC) that define mapping types, such that:
− GC has two basic types of nodes: links and link endpoints,
− link denote the mapping type, and refers to multiple link endpoints,
− link endpoints refer to the mapped elements.

Consider the mapping expression t = s1 + s2 + s3 + s4 / 4. The mapping language
contains the addition and subtraction operators, plus the tokens (the model elements).
The language does not explicitly specify that it is possible to create average
expressions. The semantic is only known if we analyze the expression itself. In our
solution, we create a link type average that abstracts the semantics provided by the
combination of operations “+” and “/”. This process is the promotion of the mapping
semantics into the correspondence metamodel. The link type refers to a link endpoint
with cardinality N (the source elements), and to a link endpoint with cardinality 1 (the
target element). The mapping expression (the link between the elements) is created in
a correspondence model conforming to the correspondence metamodel.

Prel
im

ina
ry

ve
rsi

on

3.2.1 Core correspondence Metamodel
We create a core correspondence metamodel based on Definition 3.5. The metamodel
is illustrated in Figure 3. The core metamodel has elements with information about
link type, link endpoints and element identification. Element identification is a
practical solution for saving unique identifiers for the linked elements.

name : String
description : String

WElement

WModel
ref : String

WRef

WLinkEnd
WModelRef WElementRef

WLink

m
od

el

ownedElement (1-*)

end (1-*)

element

parent

ch
ild

 (0
-*

)

w
ov

en
M

od
el

 (1
-*

)

Fig. 3. The core correspondence metamodel

WElement is the base element from which all other elements inherit. It has a name
and a description. WModel represents the root element that contains all model
elements. WLink denotes the link type. WLink has a reference end to associate it with
a set of link endpoints (WLinkEnd). WLink can have children links (child reference).
Every WLinkEnd references one WElementRef. The attribute ref contains a unique
identifier of the linked elements. WElementRef is not referenced directly by WLink
because it is possible to refer to the same model element by different link endpoints,
e.g., one model element may participate in more than one mapping expression.
WModelRef is similar to WElementRef, but it contains references to the models as a
whole. The WLink element must be extended to create different link types, e.g.,
equality, average and others. Different link types and link endpoints are added using
metamodel extensions [9].

3.3 Metamodel Extensions for Tool Interoperability

As already stated, it is not possible to create a metamodel containing all types of links
for tool interoperability. We propose to create metamodel extensions to capture
different types of links. We classify them in three major groups according to the
complexity of the links semantics.

The link types are defined in a simplified version of the KM3 metametamodel (see
the complete syntax in [17]). KM3 is formed by classes. Classes may inherit from
other classes, and are formed by attributes and references (attributes and references
have a type and a cardinality). The syntax of KM3 is similar to object notations.

Prel
im

ina
ry

ve
rsi

on

3.3.1 Similarity Expressions
Similarity expressions represent resemblance links between metamodel elements.
These expressions are the link types encountered in most semantic-based mapping
solutions. There are different kinds of similarity expressions. We describe them
below.

Equality: a pair of element represents exactly the same information. For example
the platform of the application the bug was detected is represented by rep_platform in
Bugzilla and platform in Mantis. The link type does not specify the exact data type
(String, Class, etc.). The data type is specified when deploying the solution (as
extensions of WLinkEnd).

class Equal extends WLink { ref source : <DataType>; ref target : <DataType> }
Equivalence: the linked elements contain similar information, but not exactly the

same. However, the translation semantics may be the same as in equality links, i.e.,
one target element receives the value of a source element. We add a description
attribute to provide additional information about the equivalence, and a similarity
measure.

class Equivalence extends WLink {ref source:<DataType>;
ref target: <DataType>; attr description : String; attr similarity : Integer}

Disjointness: two elements cannot be present at the same time because they have
incompatible data. The link type also contains a description.

class Disjoint extends WLink {ref source:<DataType>;
ref target : <DataType> ; attr description : String }

Generality: one model element is more general than the other.
class Inherit extends WLink { ref parent : <DataType>; ref child : <DataType>}
Non equivalence: it is not always possible to translate all the information

produced by one tool into another tool. Some elements from the tool metamodels do
not have any semantic relationship, or are not relevant for a given translation and do
not need to be generated. The element may be simply ignored. However, it is
important for the application developer to be aware of what is not translated. For
example the reproducibility element contains the frequency of reproduction of a given
issue. This element does not exist in Bugzilla.

class Unique extends WLink { ref element : <DataType> }

3.3.2 Mapping Expressions
Mappings expressions are mappings that involve a set of source elements and a set of
target elements. The definition of high level mapping expressions capable of
capturing different kinds of semantic heterogeneities is a main contribution of this
paper. The correspondence metamodel encapsulates mapping expressions in
metamodel elements.

Many-to-one: many-to-one expressions links set of elements of the source model
with a single target element. For example the elements os and os_version from Mantis
contains the operating system and the operating system version. In Bugzilla, this
information is available in one single attribute op_sys.

class ManyToOne extends WLink {
 ref source [*]: <DataType>; ref target: <DataType>}

Split or one-to-many: the opposite of many-to-one expressions, i.e., split
expressions link more than one target element with a single source element.

Prel
im

ina
ry

ve
rsi

on

class OneToMany extends WLink {
 ref source: <DataType>; ref [*] target: <DataType>}

Many-to-many: links a set of elements of source models with a set of elements of
target models, for instance the reorganization of the elements of LongDesc into the
elements of Note.

class ManyToMany extends WLink {
 ref source [*]: <DataType>; ref [*] target: <DataType>}

New values in the target: generates values in the target model that do not have a
correspondence in the source model. The values are automatically generated (e.g., to
automatic generate IDs elements) or take a predefined value from user input.

The class AutoSetValue is extended into AutomaticGenInt and ManualInput. The
class AutomaticGenInt reads the element that is referred by the target reference and
generates a random number for it. The class ManualInput sets the target reference
attribute with the value of sourceValue.

class AutoSetValue extends Equal {}
class AutomaticGenInt extends AutoSetValue {}
class ManualInput extends AutoSetValue { attr sourceValue : <DataType>}

3.3.3 Data Value Expressions
Data value expressions differ from mapping expressions because they also evaluate
the model elements, not only the metamodel elements. Data value expressions modify
the source model values to make them compatible with the target model.

The class DataExpression refers to a set of value equivalences. The source element
is evaluated, and if it is equal to one sourceValue from the set of equivalences, it sets
the target element with the corresponding targetValue. The equivalences may be of
any data type.

class DataExpression extends WLink { ref equiv [*] : Equivalence}
class Equivalence extends WLinkEnd {

ref sourceValue : <DataType>; ref targetValue : <DataType> }
We illustrate data value expressions with the resolution element. The resolution

contains the correction status of a bug (e.g., if it was fixed or not). In Mantis, this
element may have the values: OPEN, FIXED, REOPENED. The possible values in
Bugzilla are: NEW, FIXED, INVALID, WONTFIX.

4 Interpreting Tool Heterogeneity

In the previous section, we explained how to define different metamodel extensions to
capture semantic heterogeneities. The next step is to create a correspondence model
conforming to these extensions and to derive the model into executable
transformations. These transformations translate one tool model into another.

In this section, we first introduce a match operation that creates a correspondence
model. Then, we present a generic pattern used to automatically produce a model
transformation, which is responsible to translate one tool model into another.

Prel
im

ina
ry

ve
rsi

on

4.1 Match Operation

The match operation creates a correspondence model conforming to an extended
correspondence metamodel. The match operation is divided into an automatic and a
manual phase. The automatic phase executes a set of matching algorithms to search
for similar concepts in the tool metamodels. First, we generate a correspondence
model containing the cross product of all metamodel elements of each tool. Then, a
set of matching algorithms is executed sequentially to calculate a similarity value for
every pair of elements. We use existing string comparison algorithms [7], e.g.,
Levenshtein distance, edit distance and QGrams, and an adaptation of the similarity
flooding algorithm [24]. We match only classes, attributes and references. The result
is filtered to obtain only the best similarity values, based on a similarity threshold.
The correspondence model contains only equality mappings.

The manual phase refines the correspondence metamodel by deleting wrong
equality matchings and by adding the complex mapping expressions and data value
expressions. This operation is done with the help of a user interface.

4.2 Generic Transformation Pattern

The definition of the generic transformation pattern relies on three facts. First, the
core correspondence metamodel is formed by links, link endpoints and extensions of
these elements. Second, declarative transformations languages have similar structure.
Third, we use declarative transformation patterns that specify only what to transform,
and not how to transform. The transformation pattern contains the execution
semantics of the correspondence model, because it transforms the different types of
links into executable mapping expressions in some transformation language.

We use higher-order transformations (HOT) to specify the generic pattern. A HOT
takes as input a correspondence model conforming to an extension of the
correspondence metamodel and transforms it into a transformation model.
Definition 4.1 (Higher-order transformation). A higher-order transformation is a
transformation THOT : TIN → TOUT, such that the input and/or the output models are
transformation models. Higher-order transformations either take a transformation
model as input, either produce a transformation model as output, or both.

We create a simple syntax for a transformation metamodel to define the generic
pattern (as illustrated in Figure 4). The keywords are in bold font. The transformation
has a set of declarative rules. The input element matches the input correspondence
metamodels. The output element creates a new element in the output model. The
output element has bindings to assign the source values to the target elements. The
correspondence metamodel has one extension of WLink (as shown below) to denote
source and target elements. The pattern can also be used with different metamodel
extensions.

class WLinkST extends WLink { ref source : WLinkEnd; ref target : WLinkEnd }
The pattern contains four rules (see Figure 4). The rule newRule creates

transformation rules. The rule newOutput creates the output elements. Both are based
on the value of the target reference of a given link. The rule newInput creates the
input element, and it is based in the value of the source reference. This rule may have

Prel
im

ina
ry

ve
rsi

on

a filtering condition depending on the link type. The rule newExpression creates
different mapping expressions. The mapping expressions are created as bindings to
the output elements.

Module TransfGen (C: ωC)
inputModel: C: ωC /* a correspondence model conforming to a metamodel ωC*/
outputModel: T: ωT /* a transformation model conforming to ωT */
rule newRule

input WLinkST (parent isA WModel) /*classifiers (classes, references, attributes)*/
output Rule

input source
output target

rule newInput
input WLinkEnd (link.source = self)
output InputElement

element getElement (element.ref)
condition /*depends on the WLinkST and WLinkEnd types*/

rule newOutput
input WLinkEnd (link.target = self)
output OutputElement

element getElement (element.ref)
bindings link.child /*get the sibling WLinkEnd*/

rule newExpression
input WLinkST (parent isA WLinkST)
output Binding

source MapExp (getElement (source.element.ref)) /*mapping expressions here,*/
target getElement (target.element.ref) /*according to the WLinkST type*/

Fig. 4. Higher-order transformation pattern

This pattern is the basis to define a new model management operation called
TransfGen. This way it is possible to separate the tool interoperability process into
distinct operations. The correspondence model is created by a Match. The
correspondence model is translated into a transformation model using TransfGen. The
translation between models are encapsulated in automatically generated
transformations, which are themselves specific data transformation operations.

5 Experimental Validation

In this section we validate our approach with experiments using the bug tracking tools
from the motivating example, Mantis and Bugzilla. The experiments are conducted
using our model management platform, which is composed by different plugins to
manipulate models. The two plugins used are the AMW (ATLAS Model Weaver)
plugin [9] and the ATL (ATLAS Transformation Language) plugin [16]. AMW is
responsible for managing the metamodel extensions and for the manual match. ATL
is used to implement all the model transformations of the process. ATL has a textual
concrete syntax and an engine to execute the transformations. Both plugins are open
source and are available as Eclipse subprojects [2, 3].

We first show the creation of a correspondence model based on the correspondence
metamodel extensions from Section 3. Then we demonstrate how we use the generic

Prel
im

ina
ry

ve
rsi

on

transformation pattern to interpret the correspondence model and to automatically
produce model transformations. We end with a discussion about our results.

5.1 Correspondence Model

The metamodels of both tools are stored in different data sources. The tool
metamodels are originally in SQL-DDL. They are translated into Ecore [12], which is
the metametamodel used by our plugins (AMW and ATL). The semantics of Ecore is
very close to KM3. This allows us to write metamodels using KM3 textual syntax.
One part of the metamodels is illustrated in the graphical concrete syntax in the
motivating example. The Bugzilla metamodel has 146 elements. The Mantis
metamodel has 62 elements.

We implement the metamodel extensions defined in Section 3. We show below an
excerpt of the correspondence metamodel. It specifies a data value expression used to
translate enumeration values. It compares the value of given source element with the
set of sourceValue, and sets the target element with the corresponding targetValue.

class EnumerationEquiv extends DataExpression {ref equiv [*] : EnumEqual};
class EnumEqual extends Equivalence {

ref sourceValue: String; ref targetValue: String };
We create the correspondence model using ATL transformations to execute the

sequence of matching algorithms, which refine the initial input (the cross-product of
elements) and generate a correspondence model. Our AMW plugin is used to generate
the interoperability metamodel based on a set of extensions and to refine the
correspondence model during the manual phase.

An excerpt of the correspondence model is shown in Figure 5. We use a human
readable syntax to represent information models, similar to HUTN [29].

EnumerationEquiv = {
 source.ref = Left.priority.id;
 target.ref = Right.priority.id;
 equivalence = { source = "NONE"; target = "pt_null"};
 equivalence = { source = "low"; target = "pt_P1"};
};
Left = {
 name ="Mantis";
 ref = "c:\Tool_interoperability\Mantis.ecore";
 priority { id = "EAttribute_priority"; }
};
Right = {
 name ="Bugzilla";
 ref = "c:\Tool_interoperability\Bugzilla.ecore";
 priority { id = "EAttribute_priority"; }
}

Fig. 5. A correspondence model

The model contains the equivalencies between the priority values. Note that both
tool models have a priority property and both have the same ID “EAttribute_priority”.
This does not cause problems because it is relative to the containing model.

Prel
im

ina
ry

ve
rsi

on

The complete correspondence model has 312 elements. This difference on the
number of elements is due to the structure of the correspondence metamodel, because
for every couple of referred elements there is at least one element indicating the link
type, plus the source and target elements. In addition, the source and target elements
refer to an element that contains their identifiers (in the Left and Right elements).

5.2 Interpreting the Correspondence Model

The execution semantics of the correspondence model is specified in a transformation
that takes the correspondence model as input and produces a transformation model as
output. The transformation (485 lines) is implemented based on the generic
transformation pattern. The ATL transformation rules are divided in three parts: the
from block filters the appropriated model elements by their type; the to block contains
the declarative code; the do block contains imperative code. We show in Figure 6 the
rules that interpret the metamodel extension to translate the enumeration values. The
AMW identifier denotes the correspondence metamodel. The ATL identifier denotes
the transformation metamodel.

rule EnumDataTranslation {
from amw : AMW!EnumerationEquiv
to atl : ATL!Binding (

propertyName <- MOF!EClassifier.getInstanceById(amw.target.element.ref).name
)

do { atl.value <- thisModule.CreateEnum(amw, amw.enumEqual);}
}
rule CreateEnum(amw: AMW!EnumerationEquiv, attrEnum: Sequence (AMW!EnumEqual)){

to ifExp : ATL!IfExp (
 thenExpression <- targetEnum,
 condition <- operation
),
operation : ATL!OperatorCallExp (
 operationName <- '=',
 arguments <- sourceEnum
),
endExp : ATL!StringExp (),
sourceEnum: ATL!StringExp (
 stringSymbol <- attrEnum->first().sourceValue.toString()
),
targetEnum : ATL!StringExp (
 stringSymbol <- attrEnum->first().targetValue.toString()
)

do { operation.source <- amw, amw.source->collect(e | e.element.ref),true);
if (attrEnum->size() = 1) {

ifExp.elseExpression <- endExp;
 } else {

ifExp.elseExpression <- thisModule.CreateIfEnum(amw,
attrEnum->subSequence(2,attrEnum->size()));

 }
 }
}

Fig. 6. Higher-order transformation

The rule EnumDataTranslation matches the element EnumerationEquiv from the
correspondence model. It produces a Binding element conforming to the ATL
metamodel. A binding has a propertyName that corresponds to the target model
element. The target element is obtained by getInstanceById function. The property

Prel
im

ina
ry

ve
rsi

on

value calls the rule CreateIfEnum. It receives the set of enumerations as parameters
and produces a model with a set of nested IfExp (conditional expressions).

The IfExp contains a condition expression, which is formed by an equality operator
(OperatorCallExp). This operation compares the source value of the enumerations
and sets the correct target value specified at thenExpression. The StringExp elements
return the sourceValue and targetValue (an empty String if there is no equivalence).
The complete transformation produces a transformation model with a set of rules.
This model is extracted into a text representation that is executed in the ATL engine.

5.3 Discussion

The metamodel extensions enable producing a domain specific (tool interoperability)
correspondence metamodel. Among the different metamodel extensions that are
created, the most used are the concatenation of elements (e.g., os concatenated with
os_version), data type conversions (e.g., Integer to String, references to attributes,
etc.) and conversion of enumerations values.

One interesting observation is that the values of the enumerations from Mantis are
not described in the metamodel, only in a Php file. Since the tool metamodels cannot
be modified (otherwise the services provided might not work properly), the
enumerations are added in one metamodel extension. This is a very specific
extension, which is probably not useful outside the bug-tracking example, but it is still
necessary to be able to create the output transformation.

The correspondence model has composite elements that conform to a combination
of metamodel extensions. For instance we combine the conversion of “references to
attributes” extension with the “concatenation” extension. This way, it is possible to
create more complex output transformation models with the same set of extensions.

The metamodel extensions ease the task of repeatedly creating complex mapping
and data value expressions between tool metamodels. The adaptive user interface is
used together with semi-automatic matching algorithms (see the survey at [32]). The
extensibility of the correspondence metamodel enables leaving human intervention
essentially on the matching phase, because all the necessary information to produce
transformations is available in the correspondence model. This is different from
traditional approaches that have an extra step of mapping discovery [19, 26].
However, it is still possible that a correspondence metamodel covers most semantic
interoperability cases, but not all. Complex expressions that are not often used can be
coded manually in the final generated transformation.

The declarative structure of the correspondence metamodel allows a clear
separation of the input model (the correspondence model) from the output model (a
transformation model). Thus, it is relatively straightforward to modify only the output
model and produce different transformation models. This also enables generating
different expressions in the output transformation. For instance, the translation of
enumeration values may be implemented as nested ifs (our final choice), or using
case-like statements. This opens the possibility of optimizations of the output
transformations (however, this is not the focus in this work). On the negative side,
transformation languages may have complicated metamodels, in particular for
querying and navigation expressions (e.g., OCL, XPath).

Prel
im

ina
ry

ve
rsi

on

Another important result is that we are capable to use most of the metamodel
extensions also in the importing process from SQL-DDL to an Ecore metamodel. The
process is the following: we create a SQL-DDL metamodel conforming to Ecore (to
support standard CREATE TABLE statements). The textual SQL-DDL is translated
into a model conforming to the SQL-DDL metamodel. We then use most part of the
correspondence metamodel extensions (excluding for instance the extensions
concerning enumerations) to create a correspondence metamodel with AMW, and
then a correspondence model to link the SQL-DDL model with a KM3 metamodel
The translation from KM3 to Ecore is straightforward. The SQL-DDL model has 48
elements. The KM3 metamodel has 47. The correspondence model has 132. The
output transformation has 83 lines. This transformation translates the SQL-DDL
model into a KM3 model. In this case, extensions to generate default values are
constantly used, because KM3 models have attributes such as lower, upper (for
cardinality), isAbstract, that are not present in the SQL-DDL definition.

To summarize, our experiments demonstrate that the use of MDE enables to
improve two data integration phases (matching and transformation production) to
solve tool interoperability problems in a practical and efficient manner. We are able to
define different extensions of the core correspondence metamodel to cope with
distinct kinds of semantic heterogeneity. We create a correspondence model using
some matching algorithms and a user interface. We implement the transformation
pattern that automatically generates a transformation to transform the tool models.

6 Related Work

There has been extensive work on data integration that can be applied to tool
interoperability. The usual approach is to identify the relationships between elements
and to save these relationships in some kind of mapping. The most common mappings
are 1-to-1 correspondence [1, 27, 26, 24]. These correspondences are not adapted to
represent complex mappings semantics.

The use of model-based correspondences was introduced in [30]. The
correspondence model is used to merge models. However, it has only equality and
similarity link types. More expressive representations have been proposed to bridge
between different ontologies [28, 22, 11]. These approaches have mappings as first
class entities. The set of valid mapping constructs involve complex axioms, such as
equivalence and generalization. The main limitation is that the fixed set of mapping
constructs cannot be extended in a straightforward way as in our approach.

In our solution, we present a correspondence metamodel that is capable of
capturing virtually all of the representations above, because the metamodel is
extensible. This means we may specify a domain specific mapping with only 1-to-1
relationships until complex structures as in ontology-based approaches.

InfoQuilt [31] provides ways to represent mapping expressions through a library of
mapping functions. However, the library can be used with no restriction, i.e., they are
not separated by application domain. The functions are not part of the mapping
definition, but expressions written in terms of the mapping language. The work in
[18] presents a classification of the semantic and syntactic differences between

Prel
im

ina
ry

ve
rsi

on

schemas. This work proposes a semPro predicate to formalize the semantic proximity
between elements. It is a formal work that focuses in the semantic heterogeneities,
and not a complete integration platform as in our solution. It is a basis for our
classification of tool heterogeneities, but we separate the heterogeneity types based on
their complexity.

Our approach is complementary to existing matching algorithms, as we provide an
efficient way to represent mapping expressions. For example the iMAP prototype [8]
could be used to create a set of complex mapping expressions in our solution. iMAP
implements different complex searchers. Every searcher could be associated with a
correspondence metamodel extension.

The work in [14] proposes the alignment of ontologies based on the computation of
similarities of 1-to-1 and 1-to-m mappings. The similarities are computed taking into
account ontological structures. However, the similarities denote only equivalence
mappings. The 1-to-m similarities could be used as input to algorithms that generate
correspondence models with complex kinds of mappings.

The mappings are used to produce transformations. Clio [26] is one of the first
solutions to provide a semi-automatic mechanism to produce transformations based
on a set of correspondences. Our proposal has a similar architecture. However, Clio
focuses on the generation of nested structures and on foreign key dependencies. There
is no support for different kinds of complex mapping expressions. The work in [19]
proposes an algorithm to generate XQuery. The algorithm uses 1-to-1
correspondences between a set of input XML schemas.

We differ from both approaches because we factor out part of the generation
problem into a generic pattern. We leave the complexity of creating expressions to the
matching phase, as in [8]. This means for instance that we do not implement a chase
procedure to identify possible joins as in Clio. The generic pattern is independent of
the structure of the input models (e.g., nested format), though still dependent of the
core correspondence metamodel.

Model management solutions [5, 24, 4, 20] propose the creation of operations that
encapsulate the most frequently executed metadata tasks. The work in [25]
implements a model management platform using a logic mapping language. The logic
language is translated into XSLT using an ad-hoc implementation. Our approach
presents a model management solution focusing on the creation of element level
constructs. The correspondence model as a whole acts as a high level specification for
data integration operations.

To the best of our knowledge, none of the existing solutions consider the
transformations and correspondences as models at the same time as in our approach.
The model management operations may be applied to transformations as well. This
enables using the declarative pattern to generate transformations from a
correspondence model, and to encapsulate this pattern into a TransfGen operator.

7 Conclusions

In this paper, we have presented a practical and flexible approach that improves data
integration techniques applied to tool interoperability problems. We based our

Prel
im

ina
ry

ve
rsi

on

solution on MDE principles to capture the semantic heterogeneities and to produce
operational mappings between these tools.

Considering two tools in a set of tools dealing with the same problem domain (bug
tracking in our case), the main problem is to deal with different kinds of semantic
heterogeneities, in particular, complex heterogeneities that involve mapping
expressions. After having provided a classification of semantic heterogeneities
between tools, we have shown how this classification may be translated in various
types of links defined in a correspondence metamodel. Furthermore, the
correspondence metamodel may be seen as an extension of a core metamodel that
provides basic support for link management. The main original aspect of our approach
is to offer maximum extensibility to capture the semantic of complex mapping and
data value expressions.

We have shown that metamodel extensions allow expressing the different kinds of
semantic heterogeneities with a dedicated vocabulary and in a declarative way. Every
domain specific metamodel prevents from developing a generic language (and not
well adapted) without the capability to explicitly express the semantic heterogeneities.

The correspondence models conforming to these metamodel were used to produce
transformations. We have shown that the correspondence model can be interpreted
following a generic and declarative pattern. The semantic of this pattern is the basis
for a novel model management operation called TransfGen. Based on this pattern, we
were capable to develop higher-order transformations that automatically produced
output transformation models. The transformations were generated automatically
because we leave all the human intervention to the matching phase.

Finally, considering all entities as models (tools, correspondence and
transformations) enabled to manipulate all of them using the same set of principles.
The main principle is to define different types of domain models and to apply
transformations between them. This was particularly useful when specifying the
semantic heterogeneities and when translating a correspondence model into
executable transformation models.

We validated our approach within our model management platform using AMW
and ATL plugins. We developed a domain specific metamodel to solve a set of tool
interoperability problems. We created metamodel extensions for mapping
expressions, data value expressions, and for elements that do not have equivalencies.
We applied our solution in bug tracking tools using a real world setting.

As future work, we plan to extend the correspondence metamodel for different tool
interoperability scenarios. We envisage verifying if our techniques adapt well to
create ModelGen [4] operations. We also plan to study how to adapt existing
matching algorithms to automatically create complex mappings.

References

1. Abiteboul S, Cluet S, Milo T. Correspondence and Translation for Heterogeneous Data. In
proc. of ICDT 1997, pp 351-363

2. AMW: The ATLAS Model Weaver. Ref. site: http://www.eclipse.org/gmt/amw, 06/2006
3. ATL: ATLAS Transformation Language. Ref. site: http://www.eclipse.org/gmt/atl, 06/2006
4. Atzeni P, Cappellari P, Bernstein P A. Model independent schema and data translation. In

proc. of EDBT 2006, pp 368-385

Prel
im

ina
ry

ve
rsi

on

5. Bernstein P A. Applying Model Management to Classical Meta Data Problems. In proc. of
the 1st CIDR 2003, pp 209-220

6. Bugzilla Bug Tracking Tool. Reference site: http://www.bugzilla.org, 06/ 2006
7. Cohen W, Ravikumar P, Fienberg S E. A Comparison of String Distance Metrics for Name-

Matching Tasks. In proc. of IIWeb 2003, pp 73-78
8. Dhamanka R, Lee Y, Doan A, Halevy A, Domingos P. iMAP: Discovering Complex

Semantic Matches between Database Schemas.In proc. of SIGMOD 2004
9. Didonet Del Fabro M, Bézivin J, Jouault F, Valduriez P. Applying Generic Model

Management to Data Mapping. In proc. of BDA 2005, Saint-Malo, France, pp 343-355
10. Doan A, Halevy A. Semantic Integration Research in the Database Community: A Brief

Survey. AI Magazine, Special Issue on Semantic Integration, Spring 2005, pp 83-94
11. Ehrig M, Haase P, Hefke M, Stojanovic N. Similarity for Ontologies - A Comprehensive

Framework. In proc. of ECIS 2005
12. EMF. Eclipse Modelling Framework. Reference site: http://www.eclipse.org/emf, 06/2006
13. Euzenat J. An API for Ontology Alignment. In proc. of ISWC 2004, pp 698-712
14. Euzenat J, Valtchev P. Similarity-based ontology alignment in OWL-Lite. In proc. of

ECAI2004, pp 333-337, Valencia, Spain, August 2004
15. Flanakin M. Web Log. Comments and complaints on software and technology in general.

Comparison: Web-based Tracker. 08/08/2005.
http://geekswithblogs.net/flanakin/articles/CompareWebTrackers.aspx

16. Jouault F, Kurtev I. Transforming Models with ATL. In proc. of the Model Transformations
in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica, pp 128-138

17. Jouault F, Bézivin J. KM3: a DSL for Metamodel Specification. In proc. of 8th FMOODS,
LNCS 4037, Bologna, Italy, 2006, pp 171-185

18. Kashyap V, Sheth A P. Semantic and Schematic Similarities Between Database Objects: A
Context-Based Approach. VLDB J. 5(4): 276-304, 1996

19. Kedad Z, Xue X. Mapping discovery for XML data integration. In proc. of CoopIS 2005,
Agia Napa, Cyprus, November 2005, pp 166-182

20. Kensche D, Quix C, Chatti M A, Jarke M. GeRoMe: A Generic Role Based Metamodel for
Model Management. OTM Conferences (2) 2005, pp 1206-1224

21. Lenzerini M. Data Integration: A Theoretical Perspective. In PODS 2002. pp 233-246
22. Maedche A, Motik B, Silva N, Volz R. Mafra - a mapping framework for distributed

ontologies. In proc. of EKAW 2002, pp 235-250
23. Mantis Bug Tracking System. Reference site: http://www.mantisbt.org/, 06/2006
24. Melnik, S. Generic Model Management: Concepts and Algorithms, Ph.D. Dissertation,

University of Leipzig, Springer LNCS 2967, 2004
25. Melnik S, Bernstein P A, Halevy A, Rahm E. Supporting Executable Mappings in Model

Management. In proc. of SIGMOD 2005, Maryland, US, pp 167-178
26. Miller R J, Hernandez M A, Haas L M, Yan L-L, Ho C T H, Fagin R, Popa L. The Clio

Project: Managing Heterogeneity. In SIGMOD Record 30, 1, 2001, pp 78–83
27. Milo T, Zohar S. Using Schema Matching to Simplify Heterogeneous Data Translation. In

proc. of VLDB 1998, pp 122-133
28. Mitra P, Wiederhold G, Kersten M. A graph-oriented model for articulation of ontology

interdependencies. LNCS, 1777:86+, 2000
29. OMG (Object Management Group). Human Usable Textual Notation (HUTN)

Specification, Final Adopted Specification. (ptc-02-12-01)
30. Pottinger R A, Bernstein P A. Merging Models Based on Given Correspondences. In proc.

of VLDB 2003. Berlin, Germany, pp 862-873
31. Sheth A P, Thacker S, Patel S. Complex relationships and knowledge discovery support in

the InfoQuilt system. VLDB Journal. 12(1): 2-27, 2003
32. Shvaiko P, Euzenat J. A Survey of Schema-Based Matching Approaches. Journal of Data

Semantics IV: 146-171 (2005)

