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Different versions of the Web Coverage Service (WCS) schemas of the Open
Geospatial Consortium (OGC) reflect semantic conflict. When applying the extended
FRAG-BASE schema-matching approach (a schema-matching method based on
COMA++, including an improved schema decomposition algorithm and schema frag-
ments identification algorithm, which enable COMA++-based support to OGC Web
Service schema matching), the average recall of WCS schema matching is only 72%,
average precision is only 82% and average overall is only 57%. To improve the quality
of multi-version WCS retrieval, we propose a schema-matching method that measures
node semantic similarity (NSS). The proposed method is based on WordNet, conjunc-
tive normal form and a vector space model. A hybrid algorithm based on label meanings
and annotations is designed to calculate the similarity between label concepts. We trans-
late the semantic relationships between nodes into a propositional formula and verify
the validity of this formula to confirm the semantic relationships. The algorithm first
computes the label and node concepts and then calculates the conceptual relationship
between the labels. Finally, the conceptual relationship between nodes is computed.
We then use the NSS method in experiments on different versions of WCS. Results
show that the average recall of WCS schema matching is greater than 83%; average
precision reaches 92%; and average overall is 67%.

Keywords: schema matching; Web Coverage Service; semantic relationship;
conjunctive normal form; vector space model

1. Introduction

Chen et al. (2011) proposed a fragment-based dynamic syntax schema-matching method
(extended FRAG-BASE schema match) that is applicable to different versions of the Open
Geospatial Consortium (OGC) Web Service schemas. When applying the extended FRAG-
BASE schema-matching approach, the average recall of Web Coverage Service (WCS)
(Whiteside and Evans 2008) schema matching is 72%; average precision is 82%; and
average overall is 57%. Semantic heterogeneity of different OGC Web Service schemas
manifests in two aspects: differences in element definitions (e.g. naming, additional, reduc-
tion and inheritance) and differences in attribute definitions (e.g. namespaces, constraint
conditions and reference types).
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2 N. Chen et al.

These differences considerably exacerbate the difficulty of schema matching. Such dif-
ferences are observed in element naming (e.g. the same element label may have different
meanings or different element labels may denote the same idea). In addition, the follow-
ing factors also affect the difficulty of schema matching: for instance, the schemas have
the characteristics of a complex element structure, are distributed and are of large scale.
The proposed fragment-base schema-matching method in the syntactic level uses the divi-
sion principle for a problem with a large schema to be matched, decomposes the schema
files into small fragments and then matches the fragments. However, the syntactic schema-
matching method is often unable to discover potential semantic mapping relationships,
such as element ‘abstract’ and element ‘description’; they have identical semantics, yet
they cannot be identified by the syntax method. To improve schema-matching quality, par-
ticularly in terms of recall, we propose a new semantic schema-matching method based on
the similarity between nodes. The method first computes the label and node concepts and
then calculates the conceptual relationship between the labels to construct the propositional
formula that represents the conceptual relationship between the nodes. Finally, we apply a
propositional formula validator to verify the conceptual relationships. This study offers the
following contributions:

(1) To overcome the compound words recognition, the proposed method calculated the
semantic similarity between the different labels and assigned a weight to different
semantic similarities with the label’s importance in the node context.

(2) To improve the precision of schema matching, the node’s annotation was used to
calculate the similar value using the application of vector space model (VSM).
The node semantic similarity (NSS) and node’s annotation similarity were com-
bined to generate the final similar value of correspondence schema. Compared to
syntax schema-matching method, the proposed method achieved a higher matching
accuracy.

(3) To improve the efficiency of schema matching, a schema division procedure was
applied before semantic-matching execution; the proposed method decomposed
the node labels into independent fragments. Compared to the general semantic
schema-matching method, the proposed method achieved a higher performance.

The rest of the article is organised as follows: Section 2 provides an overview of semantic
schema matching. Section 3 presents a comprehensive discussion of the NSS schema-
matching method for multi-version WCS retrieval. Section 4 presents experiments on the
quality of the COMA++, FRAG-BASE and NSS methods for WCS. Finally, Section 5
provides the conclusion and recommendations for future work.

2. Overview of semantic schema match

Semantic matching (Giunchiglia and Shvaiko 2003) computes semantic relationships (e.g.
inclusion and equality) between the label concepts of elements (the original meaning of
element labels) to obtain a value between the [0, 1] interval. Many semantic-matching
systems for schema are currently available; these employ different algorithms to achieve
semantic matching between schema elements.

First, there are some semantic-matching systems that calculate the words’ seman-
tic similarity based on WordNet (Miller 1995). For instance, COMA++ (Do and Rahm
2006) can perform general semantic matching, in which the semantic relationship between
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elements is computed according to their semantic associations in WordNet. Typically, users
are required to incorporate new semantic relationship pairs of elements into the COMA++
knowledge library. Therefore, COMA++ cannot precisely calculate semantic similarity,
thereby yielding poor matching quality. Giunchiglia and Yatskevich (2007) propose an
element-level semantic-matching approach using WordNet. The matchers use WordNet as
a source of background knowledge and obtain semantic conceptual relationships from the
database. The experimental results derived by the element-level matchers reflect as good
a matching quality as that achieved by the matching systems of the Ontology Alignment
Evaluation Initiative (OAEI 2006).

Second, there are many typical semantic-matching systems based on SATisfiability
(SAT) solver, such as S-Match (Giunchiglia et al. 2004) and PROMPT (Noy and Musen
2000). S-Match (Giunchiglia and Shvaiko 2003) is an iterative semantic-matching system
based on an SAT solver. It is an element-level semantic matcher that has a pair of schema
files as input and pairs of matching elements as output. S-Match can improve matching pre-
cision and recall; however, schema attribute and instance have not been considered in this
method. Its deficiency lies in its dependence on the efficiency of implementation, capacity
for property processing and precision of the contextual meaning of a word.

Third, there are some semantic-matching experiments based on VSM (Algergawy et al.
2010). For instance, Carmel et al. (2002) applied VSM to query xml documents via xml
fragments; the proposed method presented an extension of the VSM to integrate a measure
of similarity between xml paths and embodied the model in information retrieval system.
Rubén and Jaime (2006) used VSM to calculate semantic similarity for ontology align-
ment, modelled the ontology relationships with N-dimension vector space and applied a
graph matching algorithm to compute the similarities between ontologies.

On the basis of analysis of the existing semantic-matching approaches, we propose
a semantic-matching approach based on node similarity. The proposed approach is also
designed according to the characteristics of the matching schema files. The algorithm
enables the semantic analysis of label concepts, especially combination labels. In view
of the varying glyphs and meanings of the different versions of schema label elements, we
present a hybrid approach based on label meanings and annotations to calculate the simi-
larity between label concepts. That is, we consider the use of generic terms (based on the
semantic similarity approach) to calculate the similarities in label meanings and employ an
approach based on a VSM to calculate the similarities between annotation labels. Results
show that the approach is valid for labels with differences in glyph and meaning but sim-
ilarities in annotation. The validity of the approach for such types of labels enables the
discovery of new similarity relationships and effective improvement of recall. The seman-
tic relationships between nodes are translated into a propositional formula, whose validity
is then verified to confirm the semantic relationships between nodes.

3. Methods

Semantic schema matching is based on two key notions: ‘concept at a label’ and ‘concept at
a node’. Label refers to a brief description of the element in the schema; it is an identifying
or descriptive marker that is attached to an object. Node refers to a connecting point at
which several lines come together; it is the source of lymph and lymphocytes. Concept at
a label represents a set of documents or data instances belonging to the label. Concept at
a node represents a set of documents or data instances that we would classify under this
node.
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4 N. Chen et al.

3.1. Architecture

Figure 1 shows the overview of the semantic similarity schema-matching approach. The
approach comprises two core and three complementary components. The two core compo-
nents are schema preprocessing and matching implementation. The three complementary
components are knowledge and data management libraries, a semantic matcher and an SAT
solver.

The schema preprocessing component is used to analyse, represent and identify the
input-distributed schema files into a series of independent fragments and also calculate
the concepts of labels and nodes. The tasks in the component include (1) analyse and
represent the input schema file using a common tree; (2) divide the common tree into
a series of independent fragments (Chen et al. 2011); (3) calculate the concepts of all
the labels in the schema tree according to the auxiliary information in the knowledge
and data management libraries; and (4) calculate the concept of nodes in the schema
tree.

The matching actuator computes the conceptual semantic relationships between all the
label elements and nodes in the schema tree. On the basis of the labels in WordNet and
annotation text in the VSM, we apply a hybrid method to calculate the conceptual rela-
tionships between labels. This method features combined meaning and annotation text
similarities between labels. First, the conceptual relationships between nodes are calcu-
lated according to the conceptual relationship between labels. Second, the corresponding
relationships between schema elements are determined according to the semantic relation-
ships between nodes. The matcher used in the semantic-matching system includes string,
meaning-based and annotation-based matchers. The meaning-based and annotation-based
matchers input two WordNet meanings, after which the semantic relationships between
meanings are calculated using WordNet hierarchy attributes and the annotation compari-
son technique. In calculating the semantic relationships between nodes, the computation
of the conceptual relationships between nodes is translated into a kind of conjunctive nor-
mal form (CNF). The relationships between nodes are then verified using the propositional
SAT solver. After this, the semantic similarity between nodes is calculated according to the
concepts at nodes. Finally, the nodes that exceed the threshold are selected for outputting as
mapping results. The semantic schema-matching approach based on node similarity inputs
two matching schema files and outputs the mapping between the elements in the schema
files.

Schema file A
Schema

presentation
Label concepts

computation
Node concepts
computation

Label
conceptual
relations

computation

Node
conceptual
relations

computation

Mapping
selection

Output mapping
results

SAT solver
Semantic
matcher

Knowledge and data
management libraries

Schema preprocessing Schema-matching implementation

Schema file B

Figure 1. Overview of NSS schema-matching method.
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3.2. Schema preprocessing

The main goal of schema preprocessing is to dynamically resolve the input schema and
represent it using the schema tree. It also calculates the concepts at labels and nodes in the
tree. If the internal schema is indicated as a graph structure, the Protoplasm tool is uni-
formly used to transform the schema into a tree structure (Bernstein et al. 2004). The OGC
Web Service schema files include a distributed namespace and import other schema files
through redirection (e.g. include and import). During the resolution process, the included
or imported schema files are first downloaded to the local. Then, the corresponding refer-
enced contents are imported into a separate file. Finally, the internal schema tree is used
to represent the contents. After loading the represented schema, the concepts at labels and
concepts at nodes of the schema elements are calculated through the following steps:

Step 1: Constructing the concepts at labels. The idea is to translate natural language
expressions into internal formula language. The concepts and internal relationships are
calculated according to the possible meanings of label words. For any given label, the
concepts at labels, denoted as cL, are returned through the analysis of semantics in the
real world. We use propositional logic formula to encode the concept at labels. The labels
are divided into words according to punctuation marks (e.g. space and character case);
an example is the GetCoverage → <get, coverage> function. Usually, the computer can
automatically handle this phase. Symbolised terms are mainly a complete set of characters
or words, which can be found in WordNet. However, some terms cannot be found in the
database; these include abbreviations (e.g. CRS and SRS). In such cases, the complete
forms or meanings of terms should be determined according to annotations.

Second, lexical entries are classified and then analysed in terms of morphology to iden-
tify the various possible label forms; an example is Coverages → coverage. Lexical entry
classification often requires manual inspection because a lexical entry may come in many
forms (e.g. past tense or gerunds), thereby necessitating an analysis of the most primitive
form of the word. To do this, we establish the atomic concept of a lexical entry and then
use WordNet to extract the meaning of the classified lexical entries. For example, the label
‘GetCoverage’ with lexical entry ‘get’ has 36 verb meanings in WordNet, whereas ‘cover-
age’ has three noun meanings. Finally, a complex concept is constructed according to the
preposition and conjunction in the label. For example, ‘∩’ represents conjunction ‘or’ and
‘∪’ denotes conjunction ‘and’. We define the concept of a label thus:

Definition 1: The concept of a label. Suppose we have a label A = (a1, a2, a3, ..., ai),
where ai is the lexical entry composition of label A, i is the lexical entry number of label A
and the concept of label A is the combined meaning of all lexical entries in WordNet (i.e. a
conjunction or disjunction of the meaning of all lexical entries). The formula is expressed
as follows:

CA = (
a1, WNa1

) ∝ (
a2, WNa2

) ∝ (a3, WNa3) ∝ · · · ∝ (
ai, WNai

)
(1)

where WNai represents the meaning with a combination of lexical entries of labelai and
∝ denotes the combined operation symbol, which can be ‘∪’ or ‘∩’. If the label A is
decomposed by the word ‘and’ or character case, the combined operational symbol is ‘∪’;
else if the label A is decomposed by the word ‘or’ or space, the combined operation symbol
‘∩’ will be used.
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6 N. Chen et al.

Using GetCoverage label as an example, the concept is represented as follows:

CGetCoverage = (
get, WNget

) ∪ (
coverage, WNcoverage

)
where ‘∪’ is the disjunction of the meaning between get and coverage in WordNet. Another
example is the label CintegerOrNull = (

integer, WNinteger

) ∩ (null, WNnull)

where ‘∩’ is the conjunction of the meaning between integer and null in WordNet.

Step 2: Constructing the concepts at nodes. The concepts at nodes are based on the
concepts at labels. In addition to considering the concepts at labels of the current node,
the intermediate nodes from the root to the current node are identified. The idea is that
by understanding the tree structure (i.e. the concept of a given label-arisen context), the
concepts at labels can be expanded to concepts at nodes. Cn represents the concepts at
nodes, where n indicates the position of the node in the tree. The concept of a node is
defined as follows:

Definition 2: The concept of a node. Suppose we have a label with node A, and its
position in the tree is n. B1, B2, B3, ..., Bn are intermediate nodes from the root to node
A, and n is the number of intermediate nodes. Hence, the concept of node A is one of
conjunctive concepts at labels of all the nodes from the root to node A. The formula is
expressed as follows:

Cn = cB1 ∩ cB2 ∩ cB3 ∩ · · · ∩ cBn ∩ cA (2)

where cBn represents the concepts at labels of intermediate nodes and cA denotes the
concepts at labels of node A.

Under normal conditions, if the tree where the node is located is unspecified, the
default node refers to the node in the current tree. If there is more than one tree, sub-
script figures are typically used to indicate which node is located in which tree. For
example, C25 represents the fifth concept at a node in the second tree. Using Figure 2
as an example, the seventh concept at a node in the first tree is expressed as follows:
C17=CGetCoverage ∩ CrangeSubset ∩ CaxisSubset ∩ Cname.

Figure 2. Schema mapping results in different versions of ‘wcsGetCoverage.xsd’ schema files.
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3.3. Implementation of semantic schema matching

The core semantic matching uses the relationship of the concept at a label and the concept
at a node to represent the relationship between two schema elements from the semantic of
elements and schema structure. Then, it translates these relationships into similarity and
finally generates optimal mapping according to the similarity. An element in one schema
may correspond to more than one element in other schema. However, the matching cardinal
is 1 to 1 according to the context of schema files. Therefore, we output the mapping with
the highest similarity value. The procedure is called the optimal mapping. The conceptual
relationships between nodes are equivalence, more general, less general and disjointness.
When none of the relationships hold, the special Idk (I don’t know) relationship is returned.
Equivalence is the strongest relationship, with a similarity of 1. Idk is the weakest relation-
ship, with a similarity of 0. More and less general are of the same strength, and their values
can be selected by users. Each mapping element calculated by semantic matching is a
four-tuple represented as follows:

< IDi,j, n1i, n2j, R >,i = 1, 2, 3, ..., n1,j = 1, 2, 3, ..., n2

where IDi,j is the unique identifier of a mapping element, n1i represents the ith node in
the first schema tree, n1 indicates the total number of nodes in the first schema tree, n2j

represents node j in the second schema tree, n2 denotes the total number of nodes in the
second schema tree and R is the concrete semantic relationship between two nodes. We take
two versions of WCS schema files (Figure 2) as an example. The figure shows the schema
diagram and part of the mapping results in two different versions of getCoverage.xsd
schema files. Each node is identified with a unique number, and the letter ‘C’ is used to
represent the concepts of nodes and labels. ‘C1’ and ‘C2’ denote the concepts of nodes and
labels in the first and second trees. For example, C1GetCoverage represents the concept at label
GetCoverage and C13 represents the concept at label three in the first tree.

Semantic schema matching is divided into four steps, implemented in two phases. The
first two steps are schema file parsing and the establishment of the concepts at labels
and concepts at nodes. These steps are accomplished in the preprocessing phase. The
third step is calculating semantic similarity between the concepts at labels. The fourth
is computing semantic similarity between two nodes, which is completed in the semantic-
matching implementation phase. The succeeding two sections focus on the computation of
the similarity between the concepts at labels and similarity between the concepts at nodes.

3.3.1. Computation of the conceptual similarity between labels

Computing the conceptual similarity between labels requires the use of a priori knowledge
(e.g. WordNet dictionary) and professional knowledge (which are domain oriented, for
example, the term ‘coverage’ in the domain of earth science means geospatial data with
spatial reference, such as satellite images, digital elevation model and other phenomena
represented by values at each measurement point; but in news field it means newspapers,
radio or television) to determine the semantic similarity between labels. The semantic
organisational unit of WordNet is the tree, where the nodes are a synonym set with the
same meaning and edges associated between synonym sets. The main types of association
include synonyms and hyponyms. With the WordNet dictionary, we can decide the seman-
tic relationship between labels quickly and improve the matching efficiency. On the basis
of the label in the WordNet association between synonym sets, we can define the semantic
relationship between labels.
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8 N. Chen et al.

Definition 3: Semantic relationship between labels. Suppose we have the following
labels:

A = (
Asyns, Ahypers, Ahypos, Ameros, Aholos, Aantos

)
,

B = (
Bsyns, Bhypers, Bhypos, Bmeros, Bholos, Bantos

)
where Asyns, Bsyns, Ahypers, Bhypers, Ahypos, Bhypos, Ameros, Bmeros, Aholos, Bholos, Aantos and Bantos

represent the synonym, hypernym, hyponym, metonym, homonym and antonym sets of
labels A and B. Therefore, the semantic relationships between A and B are expressed as
follows:

• A = B: When the hyponyms of a label in WordNet contains another label, the seman-
tic relationship between these two labels is defined as equivalence, expressed by the
formula Asyns ⊇ B or A ⊆ Bsyns, then A = B.

• A ⊇ B: On comparing labels in WordNet, whose hyponyms or metonyms contain
another label, the semantic relationship between the two labels is defined as more
general, expressed by the formula Ahopos ⊇ B or Ameros ⊇ B, then A ⊇ B.

• A ⊆ B: On comparing a label in WordNet, whose hypernyms or homonyms contain
another label, the semantic relationship between the two labels is defined as less
general, expressed by the formula A ⊆ Bhopos or A ⊆ Bmeros, then A ⊆ B.

• A⊥B: On comparing a label in WordNet, whose synsets reflect any relationship or
antonyms contain another label, the semantic relationship between the two labels is
defined as disjointness, expressed by the formula Aantos ⊇ B or A ⊆ Bantos, then A⊥B.

However, determining the exact meaning of a word in the current context is often
difficult because one phrase may have many synonyms in WordNet. Therefore, estimating
the semantic relationship according to the above-mentioned associative relationship (e.g.
considering the semantic distance between synonyms and the amount of information
included to determine semantic similarity) is insufficient for accurately determining
the similarity between two labels. There are currently two kinds of WordNet-based
similarity calculation methods. One is the hierarchical relationship-based semantic
dictionary approach, in which word similarity is calculated according to the hyponymic
and appositive relationship between these linguistic resources. Leacock et al. (1998)
calculate the similarity between words using two synonyms in the WordNet hyponymic
relationship that constitutes the shortest path. The dictionary-based approach is more
intuitive, simple and effective. However, it is considerably affected by human subjectivity
and sometimes cannot reflect objective fact. The other calculation method is based on the
corpus statistics methods, which take the probability distribution of information context as
a reference lexical similarity. Resnik (1999) uses information content to evaluate semantic
similarity in taxonomy. Jiang and Conrath (1997) compute semantic similarity based
on corpus statistics and lexical taxonomy. Lee (1993) computes word similarity using
relative entropy, whereas Brown et al. (1991) use average mutual information. In addition,
a context vector matcher (Patwardhan and Pedersen 2006) uses the semantic similarity
between the context vectors of two synonyms to represent the similarity. A context
vector matcher uses annotation vocabulary in WordNet as corpus. This task involves the
following steps: (1) the frequency of words in the annotation vocabulary is calculated;
(2) these words are searched in the related annotation in the corpus; (3) the dimension and
amplitude of these word annotation vectors are computed; and (4) the vector dot product
and magnitude of the two synonyms are used to represent the similarity. Quantitative
analysis based on a statistical method enables the accurate and effective measurement of
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the semantic similarity between words. However, this approach presents more complicated
calculation and potentially problematic performance.

Problems are still encountered when calculating word similarity in WCS schema using
WordNet. First, compound words and abbreviations are unsupported; therefore, WordNet
cannot identify these words. For example, WordNet cannot identify InterpolationMethod
from Interpolation and Method and fun, the abbreviation of function. Second, short
terms are also unsupported. For example, WordNet cannot identify CRS from Coordinate
Reference System. Third, professional and technical words are inadequately supported. For
example, scalable vector graphics cannot be identified in WordNet. Fourth, the similar-
ity between some labels cannot be evaluated based merely on the meaning of shapes.
Examples are sourceCoverage and identifier or BoundingBox and Envelope. Although
these labels are categorised as disjointness on the basis of the shape meanings, the
label in the schema file annotation identifies them as associated with the semantic
relationship.

In this study, most label elements of the matching schema files are compound labels,
whose different versions may not have semantic association in meaning. Compound
labels can be decomposed to compute combined semantic similarity. However, for
compound labels with unrelated meanings but semantic association, semantic sim-
ilarity cannot be accurately calculated. Moreover, the compound label elements in
Web Service schema files described in the XML document schema have an annota-
tion documentation (e.g. <xsl:annotation><xsl:document> annotation documentation
</xsl:document></xsl:annotation>). These annotation documentations provide rela-
tively accurate descriptions of the precise meaning of compound labels, serving as another
reference tool for identifying the semantic relationship between two compound labels. For
example, for labels Identifier and sourceCoverage, a low similarity equivalent to zero is
obtained if only the shape meaning expressed in WordNet is considered. However, using the
annotations of two labels as basis yields Identifier with the annotation ‘identifier of the cov-
erage that this GetCoverage operation request shall draw from’ and sourceCoverage with
the annotation ‘The coverage offering (Identified by its “name”) that this request will draw
from’. Thus, the compound labels are similar in terms of annotation documentation and,
accordingly, semantic relationship. To more accurately calculate the semantic similarity
between labels, particularly that between compound labels, we adopt a similarity calcu-
lation approach. In this approach, the calculation of the similarity in meanings between
compound labels and the annotation documentation of the labelling method between two
labels are used as bases. That is, the meaning similarity and annotation documentation sim-
ilarity are computed, and then the larger similarity is selected to represent the end similarity
between two labels. This approach is based not only on the meaning of shapes, but also on
the original meaning of the labels. This objectively reflects the definite semantic relation-
ship between labels. Figure 3 shows the procedure for computing the similarity between
labels. The steps are outlined as follows:

Step 1: Preprocessing label elements. The primary step is inputting two labels using a
label processor after a collection of compositions is processed and an annotation of element
labels is output in the schema files. The establishment of a collection of label composi-
tions involves the processing of labels that symbolise and classify symbolic labels. After
classification, each label composition can then be identified in WordNet.

Step 2: Computation of meaning similarity. Label compositions are entered using an
approach based on semantic distance to calculate the meaning similarity between label
compositions. Then, the meaning similarity between two labels is generated; that is, the
similarity of concepts at labels is calculated.
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Figure 3. Procedure of similarity computing between labels.

Before calculating the similarity between label compositions, the atomic concepts
of these compositions should first be established; that is, the meaning of each label
composition should be searched in WordNet after classification. The meaning of each com-
position is called a sememe. Suppose the set of sememes is S. The number of sememes is
represented as |S|, and each sememe is represented as Si, where i = 1, 2, 3,..., |S|. The
relationships of different compositions between sememes include hyponymy, synonymy
and meronymy. All sememes constitute a sememe concept tree, where different levels
of sememe meanings have different distances. For the distance between sememe Si with
hyponymy and its father sememe Sj, we apply the following formula:

distance
(
si, sj

) = α + ci · β (3)

where α represents the initial value of the distance, with the default value being 2.0, ci

denotes the depth of the sememe in the sememe concept tree and β indicates the decre-
ment of each layer in the concept tree with a default value of –0.1. The distance between
sememes with synonymy and meronymy is calculated according to the following formula:

distance
(
si, sj

) = w · (α + cmax · β) (4)

where w represents the weight of a certain sememe relationship, and w ≥ 1, cmax denotes
the maximum depth of the sememe in the sememe concept tree. The depth is deeper in
the sememe concept tree. The smaller the distance, the more similar the sememe. The
Floyd algorithm is usually applied to calculate the shortest distance dist(si, sj) between Si

and Sj. Once the distance between two sememes has been calculated, we can compute the
similarity between the two sememes. Rada et al. (1989) and Lee (1993) apply this approach
to calculate similarity. The formula is expressed as

sim
(
si, sj

) = λ

λ + dist
(
si, sj

) (5)

where λ is a non-vanishing constant 0 < λ< ∞, often assigned a value of 1. dist
(
si, sj

)
represents the distance between Si and Sj. For example, when the two sememes are
the same, dist

(
si, sj

)
is 0, and the similarity between the sememes is sim

(
si, sj

) =
λ

λ + dist(si,sj)
= λ

λ + 0=1.

The calculation of the similarity between the compositions of the labels is based on the
similarity calculation for the sememes of the compositions. Each composition is regarded
as a word; the similarity between words is the similarity between the concepts of words.
We then define the inner product of the concepts.
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Definition 4: The inner product of the concepts. Suppose we have the following
concepts:

C = (c1, c2, c3, ..., cm) , D = (d1, d2, d3, ..., dn)

where c1, c2, c3, ..., cm and d1, d2, d3, ..., dn are the sememes of C and D, respectively. Then,
the inner product of concepts C and Dis represented as follows:

(C, D) =
m∑

i=1

n∑
j=1

sim
(
ci, dj

)
(6)

The normal number of the concepts and the definition of similarity between concepts can
be derived according to the inner product of the concepts.

Definition 5: The normal number and similarity. Suppose we have a concept c, whose
normal number is defined as

‖c‖ = √
(c, c) (7)

The similarity between the two concepts is defined as follows:

sim(c, d) = (c, d)

||c|| · ||d|| = (c, d)√
(c, c) · (d, d)

(8)

Equation (8) can be used to calculate similarity when dealing with the concept of a simple
label. When compound labels are involved, the above-mentioned method is first used to
calculate the similarities between the simple labels that constitute the compound labels.
Then the similarities between the simple labels are combined to determine the similarity
between two compound labels. Identifying key and non-critical parts is difficult. Some
of these key and non-critical parts may be compound labels. Therefore, determining the
importance of different sub-label weights is also a challenge. WordNet focuses only on
describing nouns and verbs. Hence, we propose that the weights be determined according
to the part of speech of the sub-label; that is, different weights are assigned to different
labels with different parts of speech. The weights follow the order: wnoun > wverb > wadj >

wadv, where wnoun, wverb, wadj and wadv represent the weights of nouns, verbs, adverbs and
adjectives. The calculation formula for the similarity between compound labels is defined
as follows:

Definition 6: The similarity between labels. Suppose we have the following labels:

A = (
anouns, averbs, aadjs, aadvs

)
,

B = (
bnouns, bverbs, badjs, badvs

)
where anouns, bnouns, averbs, bverbs, aadjs, badjs, aadvs and badvs denote labels A and B after
the set of nouns, verbs, adverbs and adjectives are symbolised. Thus, similarity sim(A, B)
between labels A and B is expressed as

sim(A, B) = wnoun × sim (anouns, bnouns) + wverb × sim (averbs, bverbs)

+ wadj × sim
(
aadjs, badjs

) + wadv × sim (aadvs, badvs) ,
wnoun + wverb + wadj + wadv = 1.0

(9)
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12 N. Chen et al.

where sim (anouns, bnouns), sim (averbs, bverbs),sim
(
aadjs, badjs

)
and sim (aadvs, badvs) calculate

the similarity between the label pairs of nouns, verbs, adverbs and adjectives, respectively.
Figure 2 shows that we can calculate the similarity between compound labels

interpolationMethod and InterpolationType. First, label interpolationMethod is symbol-
ised into interpolation and method. InterpolationType is partitioned into interpolation and
type. Then, the symbols are evaluated after being classified as parts of speech to obtain
noun symbol pairs (interpolation, interpolation) and (method, type). Next, the similarity
between noun symbol pairs is calculated using Equation (8). The similarity between (inter-
polation, interpolation) is 1.0 and that between (method, type) is 0.0. Finally, the similarity
between compound labels interpolationMethod and InterpolationType is calculated using
Equation (9):

sim(interpolationMethod, interpolationMethod) = wnoun1

× sim(interpolation, interpolation)
+ wnoun2 × sim(Method, Type)

= 0.6 × 1.0 + 0.4 × 0.0 = 0.6,

where wnoun1 = 0.6, wnoun2 = 0.4.

Step 3: The computation of context similarity. We apply an approach based on a VSM
to calculate the context similarity between the label annotations. To calculate the context
similarity between the label annotations, we first create a VSM of annotation context. The
VSM of the context is established as follows. First, word segmentation is applied to the
context. That is, the words are segregated from the context according to the blank spaces
between the English words in the context, and the high-frequency words in the context
are removed according to stopword in WordNet. The root and affixes of each word are
simultaneously removed. Context ci is expressed as {w1w2w3...wk}, and the number of
occurrences of each word Nwi is calculated. Second, the weight vector of each word is
calculated. Let us take words wi as an example. We first query the Concept Chain of wi in
WordNet. Then, using the number of wi occurrences, Nwi is designated as a representation
of the weight of its synonym and direct hypernym. Sequential processing of other words
in the context is performed. If the WordNet synonym of some words wj appears in the
synonym set of wi, change happens to the weight of synonym set corresponding to wi;
that is, Nwi=Nwi+Nwj . When all the words in the context are disposed of, the weights of
synonyms of all words are normalised. The normalised formula is shown as follows:

Nwi = Nwi√
n∑

i=1
N2

wi

(10)

where Nwi represents the weights of synonyms of some words and n denotes the number of
words in the context.

When all the words in the context are disposed of, a context can be expressed using the
VSM. For any context D, the final VSM is represented as follows:

{
w1unw1 ,w2unw2 , . . . ,wmunwm

}
where wmu is the context word vector and nwm is the word vector corresponding to the
weight of the synonym.
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An established document vector model constitutes a vector space M, where
set |M| = m for any word vectorw ∈ M . The document space is expressed as{
w1unw1 ,w2unw2 , . . . ,wmunwm

}
. The inner product of the document space is defined below.

Definition 7: The inner product of the document space. Suppose we have the following
documents:

di = {
w1inw1 ,w2inw2 , . . . ,wminwm

}
, dj = {

w1jnw1 ,w2jnw2 , . . . ,wmjnwm

}
then, the inner product of document di and dj is expressed as

(
di, dj

) =
m∑

u=1

n∑
v=1

(
wiunwu , wjvnwv

) =
m∑

u=1

n∑
v=1

wiu.wjv.
(
nwu , nwv

)
(11)

The document norm and the definition of context similarity can be derived according to
the inner product of the document space.

Definition 8: Norm document and context similarity. Suppose we have the following
document:

di = {
w1inw1 , w2inw2 , . . . , wminwm

}
The definition of its norm is represented as follows:

‖di‖ = √
(di, di) =

√√√√ m∑
u=1

m∑
v=1

wui.wvi.
(
nwu , nwv

)
(12)

Suppose we have the following document spaces:

di = {
w1unw1 , w2unw2 , . . . , wmunwm

}
, dj = {

w1vnw1 , w2vnw2 , . . . , wnvnwn

}
then, the context similarity between document space diand dj is defined as

sim
(
di, dj

) =
(
di, dj

)
||di|| · ||dj|| =

(
di, dj

)
√

(di, di) · (
dj, dj

) (13)

Let us take two labels, Identifier and sourceCoverage, as an example. Their annotations
denote ‘identifier of the coverage that this GetCoverage operation request shall draw
from’ and ‘The coverage offering (Identified by its “name”) that this request will draw
from’, respectively. The VSM is applied, first by performing word segmentation to obtain
the word sets (identifier, coverage, getcoverage, operation, request, draw) and (coverage,
offering, identified, name, request, draw). Then, the word frequencies are calculated and
expressed as (1,1,1,1,1,1) and (1,1,1,1,1,1), respectively. The word vector of these words
are calculated and denoted as follows:

{identifier(0.0,0.0,0.56,0.12,0.0,0.0), coverage(1.0,0.0,0.0,0.11,0.0,0.0),
getcoverage(0.23,0.0,0.0,0.07,0.0,0.0), operation(0.0,0.0,0.0,0.0,0.0,0.0),
request(0.0,0.0,0.0,0.0,1.0,0.0), draw(0.0,0.0,0.0,0.0,0.0,1.0)},
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14 N. Chen et al.

{coverage(0.12,1.0,0.23,0.0,0.0,0.0), offering(0.0,0.0,0.0,0.0,0.0,0.0),
identified(0.56,0.07,0.0,0.00,0.0,0.0), name(0.12,0.11,0.0,0.0,0.0,0.0),
request(0.0,0.0,0.0,0.0,1.0,0.0), draw (0.0,0.0,0.0,0.0,0.0,1.0)}

Finally, the weights of these word vectors are calculated according to WordNet and
represented as (0.17,0.18,0.17,0.16,0.16,0.16) and (0.18,0.16,0.16,0.18,0.16,0.16). Using
Equation (13), we determine the annotation context similarity between labels as equivalent
to 0.672.

Step 4: The selection of similarity. In calculating the meaning similarity between labels,
as well as the annotation context similarity between labels, the maximum similarity is
selected as the final similarity between labels. Hence,

sim(label1, label2) = max
(
simsynonym(label1, label2), simgloss(label1, label2)

)
(14)

where simsynonym(label1, label2) represents the meaning similarity between two labels and
simgloss(label1, label2) expresses the annotation context similarity between two labels; if
there are no annotations associated to the schema elements, then simgloss(label1, label2) =
0.0.

For example, the meaning similarity between labels Identifier and sourceCoverage is
represented as simsynonym(identifier, sourceCoverage) = 0, whereas the annotation context
similarity is denoted as simgloss(identifier, sourceCoverage) = 0.672. Therefore, the final
similarity between the two labels is 0.672.

Take Figure 2 as an example. Table 1 shows the final similarity, derived using Equation
(14), and Table 2 shows the semantic relationship translated according to similarity.

To conveniently calculate the conceptual relationship between nodes as the similar-
ity between all the labels is calculated, we translate the similarity between labels into a
semantic relationship between labels. For example, if the similarity is equal to 1, then the
similarity is defined as an equivalence relationship. If the similarity is less than 1 but higher
than 0.6, then this is defined as a more general or less general relationship. A similarity
of less than 0.5 is defined as a disjointness relationship. The relationship between labels
is a matrix: one version of the node label is represented by the horizontal axis, and the
other version is represented by the vertical axis, and the cell is used to represent semantic
relationship value between two labels.

3.3.2. Computation of conceptual similarity between nodes

The similarity between nodes is equivalent to a semantic similarity between any two nodes
in the schema tree, which is a quantitative description of semantic relationship between

Table 1. Similarity values between labels of ‘wcsGetCoverage.xsd’.

v1.1
v1.0 GetCoverage Identifier DomainSubset RangeSubset InterpolationType AxisSubset

GetCoverage 1.0 0.145 0.0 0.0 0.0 0.0
sourceCoverage 0.21 0.672 0.0 0.0 0.0 0.0
domainSubset 0.0 0.0 1.0 0.21 0.0 0.21
rangeSubset 0.0 0.0 0.21 1.0 0.0 0.21
axisSubset 0.0 0.0 0.21 0.21 0.0 1.0
Name 0.0 0.8 0.0 0.0 0.0 0.0
interpolationMethod 0.0 0.0 0.0 0.0 0.6 0.0
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Table 2. Semantic relations between labels of ‘wcsGetCoverage.xsd’.

v1.1
v1.0 GetCoverage Identifier DomainSubset RangeSubset InterpolationType AxisSubset

GetCoverage =
sourceCoverage ⊆
domainSubset = ⊥
rangeSubset ⊥ =
axisSubset =
Name ⊆
interpolationMethod =

nodes. The idea in the computation of similarity between nodes is that if the relationship
between nodes is represented using CNF, then the calculation of the relationship between
nodes is translated into the issue of a verification normal formula. The computation of the
similarity between nodes involves the following steps:

Step 1: The CNF of the conceptual relationship between nodes is constructed. That is,
the conceptual relationship between two nodes is calculated according to the concepts of
nodes. The concepts of nodes are established during the preprocessing of schema files, and
the conceptual relationship formula for nodes is established on the basis of the conceptual
axiom between nodes. First, we establish the conceptual axiom between nodes and define
the axioms as follows:

Definition 9: Axioms. Suppose we have the following nodes:
A= {a1, a2, . . . , am} and B= {b1, b2, . . . , bm}, and suppose α1 = rel (a1, b1),α2 =
rel (a2, b2),...,αm = rel

(
ai, bj

)
denote nodes A and B and the context semantic relationship

between node labels, respectively. Then, the axiom between nodes A and B is

axiom(A, B) =
⋂m

i=1
(aiαibi) (15)

where a1,a2,...,am and b1,b2,...,bn, respectively, represent the context concepts of node
labels of nodes A and B.

Taking Figure 2 as an example, we calculate the axioms between nodes C15

and C213 . The node C15 context node labels are GetCoverage, interpolationMethod,
and the node C213 context node labels are GetCoverage, RangeSubset, FieldSubset,
InterpolationType. The conceptual relationship between labels is GetCoverage =
GetCoverage, interpolationMethod = InterpolationType. Therefore, the axioms between
nodes C15 and C213 is (GetCoverage = GetCoverage) ∧ (interpolationMethod =
InterpolationType). (∧ denotes the conjunction of conceptual relationships between nodes.)

Once the axiom is established, the conceptual relationship formula for nodes is set.
However, before establishing the conceptual relationship formula for nodes, a kind of con-
ceptual relationship between nodes should be set. Then, the validity of the relationships is
verified; that is, we determine whether the relationships hold. The conceptual relationship
between nodes is often assumed to contain the more general and less general relation-
ships. When none of the relationships hold, the disjointness relationship is returned. When
all of the relationships hold, the equivalence relationship is returned. Then, the data in
Table 3 (second column) are used to translate the relationships of the concept at nodes into
propositional conjunction.

The conceptual relationship between two nodes is derived through a series of axioms
that work out the relationship establishment, using the formula
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16 N. Chen et al.

Table 3. Semantic relation and propositional formulas relation.

rel(a, b)
Translate rel(a, b) into

propositional logic Translate formula (8) into CNF

a = b A↔ b N/A
a ⊆ b a → b axioms ∧ context1 ∧ �context2
a ⊇ b b → a axioms ∧ context2 ∧ �context1
a ⊥ b � (a ∧ b) axioms ∧ context1 ∧ context2

axioms → rel (context1, context2) (16)

where axioms, context1 and context2 are axioms, and the context of the first and second
nodes, rel, is based on the axiom derived from the relationship between context1 and con-
text2 (i.e. conceptual relationship between nodes). To confirm the validity of Equation (16),
we show that its negation is not satisfied. That is,

axioms → rel(context1, context2) (17)

The third column in Table 2 describes how to use Equation (17) to translate the semantic
relationship before testing.

We again take Figure 2 as an example. The relationship between C15 and C213 should be
verified. Suppose C15⊆ C213 , that is, C15→C213 . Then, we obtain the following relationship
formula:

(GetCoverage ↔ GetCoverage) ∩ (interpolationMethod ↔ InterpolationType)
∩ (GetCoverage ∩ interpolationMethod) ∩ ¬ (GetCoverage ∩ RangeSubset
∩ FieldSubset ∩ InterpolationType)

(18)

We translate Equation (18) into CNF, expressed as follows:

(¬GetCoverage ∪ GetCoverage) ∩ (GetCoverage ∪ ¬GetCoverage)
∩ (¬interpolationMethod ∪ InterpolationType)
∩ (interpolationMethod ∪ ¬InterpolationType)
∩ (GetCoverage ∩ interpolationMethod)
∩ ¬(GetCoverage ∩ RangeSubset ∩ FieldSubset ∩ InterpolationType)

(19)

A disjunction of all the atomic formula conjunctions is performed.

Step 2: Validating the propositional formula. All propositional formula validations
use the SAT-based solver based on standard Davis-Putnam-Logemann-Loveland (DPLL).
To confirm that Equation (19) holds, it is translated into

(¬GetCoverage ∪ GetCoverage) ∩ (GetCoverage ∪ ¬GetCoverage)
∩ (¬interpolationMethod ∪ InterpolationType)
∩ (interpolationMethod ∪ ¬ InterpolationType)
∩ GetCoverage ∩ interpolationMethod
∩ (¬GetCoverage ∩ ¬RangeSubset ∩ ¬FieldSubset ∩ ¬InterpolationType)

(20)
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Table 4. Conceptual relation between nodes of WCS.

C22 C23 C24 C213 C214

C12 = ⊥ ⊥ ⊥ ⊥
C13 ⊥ = ⊥ ⊥ ⊥
C14 ⊥ ⊥ = ⊥ ⊥
C15 ⊥ ⊥ ⊥ = ⊥
C16 ⊥ ⊥ ⊥ ⊥ =

To simplify the calculation formula, all the bold parts in Equation (20) are assigned as true
variables; that is, context1 in the formula assignment is true. The formula translated into
Equation (20) is

GetCoverage ∩ InterpolationType ∩ (¬GetCoverage ∩ ¬RangeSubset
∩ ¬FieldSubset ∩ ¬InterpolationType)

(21)

No context1 variables are found in Equation (21). If the assignments of GetCoverage,
InterpolationMethod are true, a contradiction exists in the results from the formula above.
Therefore, Equation (18) is not satisfied and proves C15 →C213 . Likewise, C213→C15 can be
confirmed. Finally, we derive C15↔C213 , indicating that C15 and C213 have an equivalence
relationship.

Step 3: The conceptual relationship between nodes is translated into the similarity
between nodes. In other words, different similarities are assigned to different types of
conceptual relationship between nodes. For example, the assignment of the equivalence
relationship is 1. The assignment of the less general or more general relationship is 0.8.
Other relationships are assigned a value of 0. On the basis of the similarities, we gener-
ate the pair of nodes whose similarities are higher than the threshold as output mapping.
Table 4 shows the results of parts of the conceptual relationship between nodes in Figure 2.

4. Results and discussion

There are seven schema files included in the WCS 1.0.0 (http://schemas.opengis.net/
wcs/1.0.0/); we can find the three schema files ‘wcsCapabilities.xsd’, ‘describeCover-
age.xsd’ and ‘getCoverage.xsd’ have covered the seven schema files. There are 17 schema
files included in WCS 1.1.0 (http://schemas.opengis.net/wcs/1.1.0/); we also can find
the 3 schema files ‘wcsGetCapabilities.xsd’, ‘wcsDescribeCoverage.xsd’ and ‘wcsGet-
Coverage.xsd’ have covered the 17 schema files. Therefore, the following schema-
matching experiments are tested between ‘wcsCapabilities.xsd’ and ‘wcsGetCapabili-
ties.xsd’, ‘describeCoverage.xsd’ and ‘wcsDescribeCoverage.xsd’ and ‘getCoverage.xsd’
and ‘wcsGetCoverage.xsd’.

Three match methods, COMA++, FRAG-BASE and NSS, are applied in the following
experiments. For COMA++, we use the best combination Strategies, that is, Average for
aggregation, Both for direction, Average for computing combined similarity, and use the
combination of Threshold and MaxDelta for selection. A domain dictionary containing
40 synonyms and 22 abbreviations is used in semantic name matching.
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18 N. Chen et al.

4.1. Results

Precision, recall and overall (Rahm and Bernstein 2001) measurements are employed to
assess the matching quality of the schema-matching technique.

(1) Precision reflects the share of real correspondences between all the identified
correspondences:

Precision = T

P
= T

T + F
(22)

(2) Recall specifies the share of identified real correspondences:

Recall = T

R
(23)

(3) Overall represents a combined measure for match quality, taking into account the
post-match effort needed to remove false matches and add missed matches:

Overall = Recall ×
(

2 − 1

Precision

)
(24)

where T represents the true matches, P denotes all the matches, F indicates the false
matches and R specifies all the true matches, and T is a subset of R.

4.1.1. Precision

Figure 4 shows that the NSS method yields the best precision for wcsGetCapabilities,
describeCoverage and getCoverage. The precision for wcsGetCapabilities is 95%; that for
describeCoverage is 89%; and that for getCoverage is 91%. The mean precision of NSS is
as high as 92%; that for COMA++ is about 83%; and that for FRAG-BASE is about 82%.

4.1.2. Recall

Figure 5 shows that the NSS method yields the best recall for wcsGetCapabilities,
describeCoverage and getCoverage. The recall for wcsGetCapabilities is 78%; that for
describeCoverage is 88%; and that for getCoverage is 84%. The mean recall of NSS is
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Figure 4. Recall of three match methods for WCS.
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Figure 5. Precision of three match methods for WCS.

as high as 83%, whereas that for COMA++ and FRAG-BASE is about 75% and 72%,
respectively.

4.1.3. Overall

Figure 6 shows that the NSS method yields the best overall for wcsGetCapabilities,
describeCoverage and getCoverage. The overall for wcsGetCapabilities is 69%, whereas
that for describeCoverage and getCoverage is 62% and 70%, respectively. The mean over-
all of NSS is as high as 67%, whereas that for COMA++ and FRAG-BASE is about 62%
and 57%, respectively.

4.2. Discussion

4.2.1. Advantages

Compared with the conventional syntax-based matching method such as COMA++, the
NSS method primarily performs semantic comparisons whilst offering syntax comparisons
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Figure 6. Overall of three match methods for WCS.
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of labels that are unsupported by WordNet. Conventional syntax-based matching primarily
performs syntax comparison, but does not carry out an in-depth analysis of semantic rela-
tionship between labels. Therefore, determining the mapping relationship between labels,
which have semantic connection but different names, is difficult. In addition, expanding
the concept of a label to that of a node, normalising the concepts of nodes and verifying
the proposition of the normal formula result in the effective matching of elements from
the schema element structure and context. A conventional syntax-based matcher such as
CUPID performs structure matching mainly according to the tree where the nodes pass
coverage for comparison without considering the context relationship between nodes. This
is more purely a structural comparison and presents difficulty in reflecting the semantic
relationship between nodes.

Compared with the conventional semantic-based matching method, the NSS method
based on the similarity between nodes focuses on the semantic analysis of compound words
and the weights of the composition of compound words. It more accurately calculates
the semantic relationship between two compound words by applying a VSM to compute
the annotation context similarity between label elements. This consequently improves the
precision of the similarity calculation for two label elements and the recall of matching
results.

4.2.2. Disadvantages

The experimental results show that when the semantic-based schema-matching method is
used to match different schema files, the results vary considerably. These variations are
attributed mainly to the difference in types, complexities and extent of difference between
different versions. First, the more complex the structure of the schema elements and com-
bination of label elements were, the longer the time it took to accomplish schema matching
and the greater the probability of error matching and lost matching.

Second, different versions of schema files differ in terms of structural differences or
semantics between the label elements because of the large differences between versions.
The result is increased difficulty in achieving good matching quality. Compared with two
different versions of WFS and WCS, WCS differs more considerably with respect to the
class structure, property differences and elements named. These differences are mainly due
to different versions of WCS, particularly the difference between the reference informa-
tion models. These differences result in lower quality matching, when the semantic-based
matching method is not applied. The schema matching of the two WCS versions yield an
average recall of only about 70%, whereas the semantic-based matching method yields an
average recall rate of 80%.

No in-depth analysis of performance issues is performed in the semantic-based match-
ing method. The semantic-based schema-matching method is performed because of the
need for additional preprocessing of all label elements (especially in processing the com-
pound words), WordNet knowledge-based initialisation, semantic analysis, relationship
identification and validation, calculation of similarity values and so on. Therefore, the effi-
ciency is visibly lower than that achieved with COMA++ and other methods. More efforts
are required for improvement.

5. Conclusion and future work

An NSS schema-matching method based on WordNet, CNF and VSM has been pro-
posed for WCS. Given that different versions of the WCS schemas suffer from semantic
heterogeneity, a hybrid algorithm was designed; this algorithm is based on label meanings
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and annotations, enabling the calculation of the similarity between concepts of labels.
Semantic relationships between nodes were translated into a propositional formula, and the
validity of the formula was verified to confirm the semantic relationships between nodes.
The NSS method was tested on different WCS versions. The results show that the average
recall of the NSS matching is above 83%; average precision reaches 92%; and average
overall is 67%. The proposed method overcomes the recognition of compound words and
achieved a higher matching accuracy and a higher performance. It will effectively promote
the integration of heterogeneous web services. Future research will focus on the time com-
plexity analysis and run-time evaluation of the NSS method and developing a distributed
NSS approach to improve the efficiency of the schema matching.
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