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Abstract— Despite of advances in machine learning technolo-
gies, a schema matching result between two database schemas
(e.g., those derived from COMA++) is likely to be imprecise. In
particular, numerous instances of “possible mappings” between
the schemas may be derived from the matching result. In this
paper, we study the problem of managing possible mappings
between two heterogeneous XML schemas. We observe that for
XML schemas, their possible mappings have a high degree of
overlap. We hence propose a novel data structure, called the block
tree, to capture the commonalities among possible mappings. The
block tree is useful for representing the possible mappings in a
compact manner, and can be generated efficiently. Moreover, it
supports the evaluation of probabilistic twig query (PTQ), which
returns the probability of portions of an XML document that
match the query pattern. For users who are interested only in
answers with k-highest probabilities, we also propose the top-k
PTQ, and present an efficient solution for it.

The second challenge we have tackled is to efficiently generate
possible mappings for a given schema matching. While this
problem can be solved by existing algorithms, we show how to
improve the performance of the solution by using a divide-and-
conquer approach. An extensive evaluation on realistic datasets
show that our approaches significantly improve the efficiency of
generating, storing, and querying possible mappings.

I. INTRODUCTION

Schema matching methods, which derive the possible rela-
tionship between database schemas, play a key role in data
integration [1], [2]. In B2B platforms (e.g., Alibaba and
DIYTrade.com), each company involved has its own format
of catalogs, as well as documents of different standards. The
use of schema matching streamlines trading and document
exchange processes among business partners. Moreover, im-
portant integration techniques like query rewriting (e.g., [3])
and data exchange (e.g., [4]) depend on the success of schema
matching. Researchers have therefore developed a number
of automatic tools for generating schema matchings (e.g.,
COMA++ [5], Clip [6], and Muse [7]).

Generally, a schema matching result consists of a set
of edges, or correspondences, between pairs of elements
in each of the schemas. A similarity score, augmented to
a correspondence, indicates the likelihood that the pair of
elements involved carries the same meaning. Figure 1 shows
two simplified schemas used to represent a purchase order in
two common standards: XCBL and OpenTrans 1. A portion
of the schema matching result between these two schemas,
generated by COMA++, is also shown. For example, the
element CONTACT NAME(ICN) in the schema of Figure 1(b)

1XCBL: http://www.xcbl.org, OpenTrans: http://www.opentrans.org
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Fig. 2. A source document for Fig 1(a).

corresponds to three ContactName elements (BCN,RCN, and
OCN) in the schema of (a).

As we can see in Figure 1, the scores of the three corre-
spondences shown are quite close. Intuitively, ICN has similar
chances to correspond to each of the three elements in schema
(a). Then, how should this “uncertainty” of the relationship
among schema elements be handled? A possible way is to
consult domain experts to point out which correspondence is
a “true” one. In the absence of human advice, an alternative
is to pick up the correspondence with the highest score (e.g.,
RCN and BCN), or use some aggregation algorithms (e.g., [8]).
Unfortunately, this can lead to information loss. Consider an
XML query:

Q = //IP //ICN

that is issued on the schema (b) (also called “target schema”).
This query inquires the contact name information of the
invoice party. Let us further suppose that a XML document,
shown in Figure 2, conforms to schema (a) (also called “source
schema”). Using the query rewriting approach [3], Q is first
transformed to a query that can be answered on the source
schema, using the correspondence provided by the schema
matching. The query answer generated on the source schema
is then translated back to the one that conforms to the target
schema. Depending on the correspondence used, the query
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yields different answers. For example, if If IP is mapped to
BP, and ICN to RCN, then the query answer is “Bob”. If
ICN is mapped to OCN instead, then the answer is “Alice”.
Notice that the similarity scores in this example are very close,
and so the query answers obtained by using the any of these
correspondences should not be ignored.

In fact, recent research efforts handle the above problem by
viewing a schema matching as a set of mappings [9], [8]. For
each mapping, an element either has no correspondence, or
only matches to one single element in another schema. For
example, a mapping for Figure 1 contains only one corre-
spondence from ICN to RCN. Each mapping has a probability
value, which indicates the chance that the mapping exists. An
advantage of this approach is that it reduces the need of human
advice. More importantly, it retains the information provided
by different correspondences. For example, the correspon-
dences shown in Figure 1 can yield three different mappings
(with each mapping containing only one of these correspon-
dences). Let us suppose the probabilities for the mappings
that contain the correspondences (ICN,BCN), (ICN,RCN),
(ICN,OCN) are respectively 0.3, 0.3, and 0.2. Then the answer
for Q is {(“Cathy”, 0.3), (“Bob”, 0.3), (“Alice”, 0.2)}.

In this paper, we also consider a schema matching as a
set of mappings with probabilities. We found that a mapping
between typical XML schemas can contain hundreds of cor-
respondences. Thus, a schema matching may have a large
number of XML mappings, and a lot of space for storing
the mappings can be required. Evaluating an XML query on
these mappings can be inefficient, since every mapping may
have to be visited. To tackle this problem, we develop the
block tree, which is a compact representation of a given set of
mappings. For example, suppose that both mappings A and B
contain a correspondence (c, d) (where c and d are elements
from the source and target schemas). Then, a block, which
contains (c, d) for A and B, can be created. Hence, if many
mappings share a large number of correspondences, then a
“large” block can be created to store a single set of these
correspondences, and this saves significant space costs. Our
experimental investigations show that the block tree exploits
the observation that many XML mappings have a high degree
of overlapping in their correspondences, and is thus able to
compress mappings effectively. In one of our experiments,
there are 13 blocks, containing 20 correspondences each,
between two XCBL and OpenTrans schemas. Each set of
correspondences is shared by 20% of all possible mappings.
Moreover, if a query is evaluated in the block tree, the part
of the query relevant to the block needs only be translated
to the source schema once, for all mappings that share the
correspondences in the block. This reduces the time required
to answer a query.

Two technical challenges remain to be resolved for the
block tree. First, given a set of mappings, how do we find
their common correspondences (for generating blocks)? This
is not trivial. A mapping A may share a set x of corre-
spondences with mapping B. Also, A may share another set
y of correspondences with mapping C. Finding out all the

common correspondences can be very expensive, since all
sets of correspondences of varying sizes for each mapping
have to be checked. Keeping these different blocks itself is
space-inefficient. For storage and querying purposes, however,
finding all blocks is not necessary. Instead, we aim at finding
all constrained blocks (or c-blocks in short). A c-block has a
minimum number of mappings that share the correspondences
associated with it. Moreover, the target nodes of the corre-
spondences associated with a c-block must form a complete
subtree of the target schema. We present new pruning rules
for detecting blocks that cannot be c-blocks. We also develop
an efficient algorithm for creating a block tree that contains
c-blocks. Notice that this block tree is a flexible structure,
in which the user can determine the maximum number of c-
blocks to be discovered, as well as their minimum sizes of
shared mappings, depending on the construction time and the
storage space allowed.

The second challenge is about how to use the block tree
to answer XML queries. We perform a detailed case study
on the twig query, which is a query that specifies a “path”
on the target schema, inquiring documents defined on the
source schema [10]. (The query Q that we just illustrated
is an example of this query.) In view of numerous possible
mappings that exist between source and target schemas, we
propose a new definition of twig query, called probabilistic
twig query (or PTQ in short). Conceptually, a PTQ returns a
set of tuples (pat, prob), where prob is the probability that
a pattern in a document (pat) satisfies the twig query. With
the aid of the block tree, we develop an efficient algorithm
to evaluate a PTQ. Our algorithm adopts the query rewriting
approach, a common method used for answering twig queries
under a single schema mapping [3]. Our algorithm recursively
decomposes the given query into subqueries according to the
correspondences specified by the blocks in the block tree. We
further present a variant of PTQ, called top-k PTQ, which
returns answers with k-highest probabilities. This query would
be useful to users who are only interested in answers with high
confidences. We demonstrate a simple and efficient method for
evaluating top-k PTQ.

We also study the issues of generating possible mappings
for a schema matching. There is a growing need in managing
personal data scattered on computer desktops and mobile
devices (e.g., Dataspace [11], [12]), as well as retrieving
information from user-defined databases in the Internet (e.g.,
GoogleBase 2). Due to the existence of numerous types of
schemas, these systems have to handle the integration efforts
of these schemas in a scalable manner. In this paper, we study
the related problem of efficiently deriving possible mappings
from a given schema matching. Since a schema matching
may consist of an exponential number of possible mappings,
a practical approach is to only extract from the schema
matching the h mappings with the highest probabilities. This
problem, as pointed out by Gal [8], is essentially a h-maximum
bipartite matching problem, and can be solved by algorithms

2http://base.google.com



like [13] and [14]. Adopting these algorithms to find the
top-h mappings, however, suffer from the fact that a large-
size bipartite has to be created. To tackle this, we propose
a divide-and-conquer solution, where the bipartite graph is
first decomposed into smaller, disconnected “sub-bipartites”,
before a bipartite-matching algorithm is used. Due to the
sparse nature of XML schema matchings, we found from
our experimental results that the speed of generating possible
mappings can be improved by about an order of magnitude. It
is worth notice that our solution is not limited to any specific
bipartite matching algorithm. Also, although we address this
problem in the context of XML schemas, our technique can
be potentially applied to relational schemas.

To summarize, our contributions are:
● We develop the block tree to represent a set of mappings

in a compact manner;
● We present efficient methods for generating a block tree;
● We propose the probabilistic twig query (PTQ) and use

the block tree to evaluate it;
● We define top-k PTQ, and address its computation issues;
● We improve the possible mapping generation process; and
● We conduct experiments on real data to validate our

methods.
The rest of the paper is as follows. In Section II we discuss

the related work. Section III describes the details of the
block tree structure and how it can be generated. We examine
the evaluation of PTQ and top-k PTQ the probabilistic twig
query in Section IV. We explain our approach in generating
probabilistic mappings in Section V. In Section VI we present
the experimental results. Section VII concludes the paper.

II. RELATED WORK

Let us now examine the related work done in the manage-
ment of schema matching uncertainty, in Section II-A. We
then briefly address the work done in XML integration, in
Section II-B.

A. Handling Uncertainty in Schema Matching

As surveyed in [15], the result of schema matching used
in real-world applications is often uncertain. To handle these
uncertainties automatically, recent works investigate the idea
of representing a schema matching as a set of “probabilistic
mappings”, i.e., each mapping has a probability of being
correct [9], [16], [8], [17]. In [9], Halevy et al. study this model
in the context of relational tables. They also propose the “by-
table” and “by-tuple” semantics. A by-table semantic means
that every tuple in the same source table follows the same
mapping. In the by-tuple semantic, each tuple in the source
table can have its own choice of the mapping. The model used
in our paper is analogous to the by-table semantic, where we
assume each XML document under the source schema uses
the same mapping.

Based on the relational probabilistic mapping model, [9]
studies the complexity of evaluating SPJ queries. Gal et al.
[18] extend their algorithms to answer aggregate queries (e.g.,
COUNT and AVG). Our research differs from these works,

since we consider the evaluation of queries on probabilistic
mappings for XML schemas. We further propose a compact
representation of probabilistic XML mappings called the block
tree, and demonstrate how it can be used to answer XML
queries.

A few work has investigated the derivation of multiple
probabilistic mappings. In [16], Sarma et al. discuss the
generation of the mediate schema, as well as the derivation
of probabilities for the mappings between the mediate and
the source schemas. In [8], [17], the authors point out that
given a schema matching (with a set of correspondence of
scores), finding the mappings with the k-highest probabilities
is essentially a k-maximum bipartite matching problem. These
“top-k mappings” can be used to represent the schema match-
ing. The current fastest algorithms for deriving these mappings
are based on Murty [13] and Pascoal [14]. In Section V,
we explain how Pascoal’s algorithm can be improved by
employing a divide-and-conquer solution. Our experiments
show that this enhancement can be an order of magnitude
faster than that algorithm.

In [12], Salles et al. discussed another approach for man-
aging uncertainty in data integration. They developed trails,
which are essentially probabilistic and scored hints used for
data integration. The trail can be gradually included in the
dataspace integration system [11], in order to have a better
query performance.

B. Data Integration in XML

In [3], Yu et al. present query rewriting approaches for
XML schemas. In [19], the authors discuss the evaluation
of queries using XML views. Berstein et al. [20] present
a set of operators to create and manipulate XML schema
mappings. [21] propose the “nested mapping” semantic for
a XML schema mapping. [4] studies the XML data exchange
problem. To our understanding, none of these work treats a
schema matching as a distribution of mappings. We present an
efficient method for evaluating a twig query over probabilistic
XML mappings. Although the works in [22], [23] discusses
the evaluation of queries over “probabilistic XML documents”,
they address the representation of uncertainty in the elements
of a XML document, rather than the imprecise relationship
between source and target schemas as studied by us.

III. THE BLOCK TREE

The block tree is a compact representation of possible
mappings. We explain the concepts of blocks, c-blocks, and
the block tree, in Section III-A. Section III-B discusses how
to efficiently create a block tree. Let us assume that the schema
matching in Figure 1 is represented by five possible mappings,
as shown in Figure 3. Table I shows the symbols used in this
paper.

A. Blocks, c-Blocks, and Block Tree

Let U be a schema matching, with S and T as its source
and target schemas. Let M = {m1, . . . ,m∣M ∣} be a set
of possible mappings between S and T . We use (x, y) to



m1
Order~ORDER
BP~IP
BCN~ICN
RCN~SCN

...

m2 
Order~ORDER

BP~IP
BCN~ICN
OCN~SCN

...

m3 
Order~ORDER
SP~IP

RCN~ICN
OCN~SCN

BP~SP
...m4 

Order~ORDER
BP~IP  
RCN~ICN
BCN~SCN

...

m5 
Order~ORDER

BP~IP
OCN~ICN
BCN~SCN

...

Fig. 3. Five possible mappings of Fig 1.

Notation Meaning
Schema Matching

S Source schema
T Target schema
U Schema matching between S and T
M Set of possible mappings between S and T
mi The i-th mapping of M , with i ∈ [1, ∣M ∣]
pi The probability of mi

Block Tree
b.C Set of correspondences of block b
b.M Set of mappings of block b
b.a Anchor of c-block
τ Confidence threshold of c-block
X A block tree for M
H Hash table associated with X

Probabilistic Twig Query
qT A probabilistic twig query on T , with l nodes
dS An XML document which conforms to S
R Answers to qT

Ri Matches of qT on dS using mapping mi

pr(Ri) Probability that Ri is correct

TABLE I
NOTATIONS AND MEANINGS.

denote a correspondence of elements x and y, where x and
y belong to S and T respectively. A block is a collection of
correspondences shared by one or more mappings between S
and T , as shown below:

Definition 1: A block b has two components:

● A set b.C of correspondences in U ; and
● A set b.M of IDs of mappings, where b.M ⊆M ; for each
mi ∈ b.M , b.C ⊆mi.

Figure 4(a) shows three blocks (namely b1, b2, b3). Each of
these blocks contains a correspondence with element ICN
in the target schema. For example, b1 contains the corre-
spondence (BCN,ICN), which appears in both m1 and m2

(see Figure 3). In Figure 4(b), b4 contains two correspon-
dences:(BP,IP) and (BCN,ICN), which are owned by both
m1 and m2.

Ideally, if all blocks can be retrieved, then we can obtain
a comprehensive view about how mappings overlap. This is
prohibitively expensive, since a huge number of blocks can
be produced. In fact, as we will discuss in Section IV, it
is not necessary to generate all kinds of blocks; those with
correspondences shared by many mappings and systematically

b7b6b5

b3b2.a: ICNb1.a: ICN

b4.a: IP

ICN

(a) blocks on a leaf node

C: BCN~ICN
M: m1, m2

C: RCN~ICN
M: m3, m4

C: OCN~ICN
M: m5

(b) blocks on a non-leaf node

IP

ICN

C: BP~IP
BCN ~ ICN
M: m1, m2

C: SP~IP
RCN ~ ICN

M: m3

C: BP~IP
RCN ~ ICN

M: m4

...

C: SP~IP
RCN ~ ICN

M: m5

...

Fig. 4. Illustrating blocks and c-blocks (bolded).

organized are already useful for providing low storage cost and
high query performance. We formalize these “useful blocks”
by the notion of constrained blocks (or c-blocks in short):

Definition 2: A c-block, b, is a block such that:
● b is associated with a target schema element b.a (called

anchor);
● For every element y of the subtree rooted at b.a, there

exists source schema element x such that (x, y) ∈ b.C;
● ∣b.C ∣ is exactly the number of elements rooted at b.a; and
● The number of mappings in b, i.e., ∣b.M ∣, must not be less

than τ × ∣M ∣, where τ is called the confidence threshold.
Suppose τ = 0.4. Then, in Figure 4, ∣M ∣ = 5. Block b3 cannot
be a c-block, because the number of mappings in b3 is 1, which
is less than 0.4 × 5=2. However, b4 is a c-block (with anchor
IP) because: (1) In b4.C, there exists a correspondence for
every descendant of IP (here ICN is the only descendant of
IP); and (2) ∣b4.M ∣ ≥ 2. The anchor of b4 is IP. We circle all
the constrained blocks in the figure.

Definition 3: Given a set of c-blocks defined for a schema
matching U , a block tree X has the following properties:

● X is a tree with the same structure as that of T ;
● For every node e ∈ X , e is associated with a linked list

of zero or more c-blocks; and
● For every c-block b linked to e, b.a = e.
Figure 4 illustrates portions of the block tree for the schema

matching of Figure 1. It has the structure of the target schema.
In (a), ICN, a leaf node, contains a linked list of c-blocks (b1
and b2). In (b), IP is a non-leaf node and is linked to block
b4, with an anchor IP.

B. Constructing the Block Tree

To understand how the block tree can be efficiently gener-
ated, we first present two useful lemmas.

Lemma 1: Let t be a non-leaf node, with a c-block bt.
Let (s, t) be the correspondence with target node t in the
correspondence set bt.C, and s is some node in schema
S. Suppose (s, t) is shared by a set Mt of mappings. Let
u1, . . . , uf be child nodes of t. Then, for every ui, there exists
a c-block, bui , with anchor ui, such that:

bt.C = {(s, t)} ∪ (
f

⋃
i

bui .C) (1)

bt.M = Mt ∩ (
f

⋂
i

bui .M) (2)



Proof: We can express bt.C as {(s, t)} ∪ (⋃
f
i ui.C),

where ui.C is the set of correspondences with target nodes
forming a complete subtree rooted at ui (i = 1, . . . , f ), the
i-th child node of t. Since bt is a c-block, (s, t), as well as
ui.C, must be shared by the set bt.M of mappings, where
∣bt.M ∣ ≥ τ × ∣M ∣. Note that Mt (the set of mappings that share
(s, t)) must be a superset of bt.M . Moreover, since each ui.C
is shared by bt.M , a c-block bui can be created with bui .a = ui,
bui .M = bt.M and bui .C = ui.C. Hence, Lemma 1 is correct.

Essentially, if a c-block is found at a non-leaf node t, then
it must be generated by the c-blocks at its child nodes. We
can further deduce that:

Lemma 2: Let t be a non-leaf node. If t has a c-block, then
each of its child nodes must have at least one c-block.

Proof: Let b be a c-block of t. By definition of a c-block,
all correspondences b.C originate from the nodes under the
subtree of t. Also, the number of mappings that share b.C
must not exceed τ × ∣M ∣. Let ui be any one of the child nodes
of t. Then, we can construct a block h with anchor ui, and
with the subset of correspondences in b.C that have target
nodes rooted at ui. The correspondences of h must be shared
by not less than τ × ∣M ∣ mappings. Hence, h must also be a
c-block.

Therefore, if a node does not have any c-block, we can
immediately conclude that its parent must have no c-blocks.
By visiting the block-tree nodes in a bottom-up manner, some
high-level nodes may not need not to be examined.

Algorithm 1 shows the block-tree construction process. Step
1 constructs a block tree, X , which has the same edges and
nodes as that of the target schema T (Step 1). Step 2 uses a
variable, count, to record the number of c-blocks generated so
far. Then, Step 3 initializes a hash table, H , whose hash key is
the path in T , and hash value is that node’s location in X . We
will explain how H is used to answer queries in Section IV.
Step 4 calls construct c block to generate c-blocks for node t.
We then perform “mapping compression” in Step 5. Observe
that a c-block stores mappings that share correspondences, and
so we only need to store a copy of these correspondences.
The function remove duplicate corr performs a pre-order
traversal over X; for each mapping recorded in a c-block,
we replace its correspondences with a pointer to the block in
X . Finally, Step 6 returns X and H .

The recursive function construct c block, which is first
invoked on X’s root, performs a post-order traversal over X .
It takes a node t as input, generates c-blocks for t, and returns
the number of them created. We consider two cases:
CASE 1: t is a leaf node. init block(t) is called (Step
2), whose job is to generate c-block(s) for t according to the
mapping set M . The details of this function are shown in
Algorithm 2. Essentially, init block(t) groups the mappings
in M according to their correspondences, and creates c-blocks
for groups that have enough mapping. If the number of c-
blocks is non-zero, we add t’s path from root and its location
in the block tree to H (Steps 3-5), and return the number of
blocks created.

Algorithm 1 construct block tree
Input: schema T , mapping set M , confidence threshold τ
Output: block tree X , hash table H

1: X ← init block tree(T )

2: count← 0
3: Let H be a hash table of block tree nodes
4: construct c block(X.root)
5: remove duplicate corr(X,M)

6: return X,H
function construct c block(node t)
Return: no. of blocks created for t

1: if t is leaf then
2: num blk count← init block(t)
3: if num blk count > 0 then
4: insert hash entry(H, t)
5: end if
6: return num blk count
7: else
8: // t is a non-leaf node
9: mark ← TRUE

10: for all ui in t’s child nodes do
11: if construct c block(ui) = 0 then
12: mark ← FALSE
13: end if
14: end for
15: if mark = FALSE then
16: return 0
17: else
18: num blk count← gen non leaf(t)
19: if num blk count > 0 then
20: insert hash entry(H, t)
21: end if
22: return num blk count
23: end if
24: end if

CASE 2: t is a non-leaf node. Step 9 initializes mark to
TRUE. Then, Steps 10-14 perform construct c block for each
child node of t, and see if any one of them returns zero. If this
happens, t cannot have any c-block (Lemma 2). So, mark is
set to FALSE (Step 12), and zero value is returned (Steps 15-
16). Otherwise, gen non leaf is executed (Step 18), to generate
all c-blocks for t. We will elaborate on this important function
later. Steps 19-22 create a hash sentry for t, and return the
number of blocks generated.

Algorithm 2 describes the function init block, which con-
ceptually assigns all mappings in M to a set of groups (which
are blocks), such that each group contains a distinct source
node s which matches t. It first uses find node to do a binary
search of the ID of a mapping m in the correspondence set
of b (i.e., b.C). If it is found, m is inserted to the b (Step 5);
otherwise, a new block is created for it (Step 7). Steps 12-19
filters the blocks that contain the number of shared mappings
less then τ , and update the total number of blocks created so



Algorithm 2 Function init block(node t)
Return: no. of blocks created for t

1: for all m ∈M do
2: for all block b at t do
3: s← find node(b,m)

4: if s is found then
5: insert(b,m)

6: else
7: create block(t,m)

8: end if
9: end for

10: end for
11: count new ← 0
12: for all block b at t do
13: if ∣b.M ∣ ≥ τ and count <MAX B then
14: count new ← count new + 1
15: count← count + 1
16: else
17: delete b
18: end if
19: end for
20: return count new

IP

b4

b3

ICN

g2g1

b2

b1
C: BCN~ICN

M: m1, m2

C: RCN~ICN
M: m3, m4

C: OCN~SCN
M: m2, m3

SCN

C: BCN~SCN
M: m4, m5

b5

C: BP~IP
M: m1, m2, m4, m5

C: BP~IP, BCN~ICN
M: m1, m2

SP

...

ORDER

g3
C: Order~ORDER

M: m1, m2, m3, m4, m5

Path Node
ORDER.IP
ORDER.IP.ICN
ORDER.SP.SCN

m1
Order~ORDER

RCN~SCN
...

m2 
Order~ORDER

OCN~SCN
...

b2.C

b3.C

b2.C

b4.C

m4 
Order~ORDER
BP~IP  

...

b4.C

m5 
Order~ORDER
BP~IP

OCN~ICN

...

b5.C b5.C

m3 
Order~ORDER

SP~IP

BP~SP
...

(a)

(b) (c)

Fig. 5. (a) Mappings, (b) Hash table, and (c) Block tree

far, count. The number of newly created blocks is returned in
Step 20.

Figure 5 illustrates the block tree and the supporting data
structure for the sample mappings in Figure 3. The block
tree has the structure of a target schema, with each node
containing a linked list of c-blocks. The dash-lined boxes in
each mapping indicates the part of the correspondences that
are stored in the block tree. For example, the correspondences
{(BP,IP),(BCN, ICN)} of m1 and m2 are stored in block b5.
The hash table stores the name of a target element, and its
link to the corresponding node in the block tree.

Next, we describe gen non leaf , which generates blocks
for a non-leaf node t. This function (Algorithm 3) uses the
result of Lemma 1. First, Step 1 executes init block on t.
Conceptually, we treat t as a “leaf node”, and attempts to

construct c-blocks for t based on its correspondences with the
source schema. If none is found, no c-blocks can be created at
t, and a zero value is returned (Step 2). Otherwise, we copy the
block list created by init block to a temporary list, listt (Step
4), and delete t’s block list in Step 5. Steps 8 and 9 enumerate
combinations of the blocks in listt, as well as the block list at
each of the child nodes of t. The conjunction of the mapping
IDs of these blocks, namely M ′, are computed in Step 11. If
∣M ′∣ ≥ τ ∣M ∣, a new c-block can be found based on the union of
the correspondences of M ′ (Lemma 1). Steps 13-18 construct
a new c-block. In Step 28, if a new c-block is found, a hash
entry is inserted to H . Finally, listt is discarded in Step 30
and the number of new blocks constructed is returned.

To control the number of testings on the block combinations,
we only allow the number of failed attempts (for generating a
c-block) up to MAX F . Since a user may not have enough
time and space to generate and store all the blocks, we limit
the number of c-blocks generated to MAX B (Steps 22-24).
The use of these two parameters implies fewer c-blocks may
be found, which can affect query performance. We evaluate
this effect experimentally in Section VI.

Figure 5 illustrates Algorithm 3. In the IP node, g1 is the
temporary block generated by Step 1, and b5 is the c-block
after considering the block list of ICN, IP ’s child node. For
ORDER, after g3 is created by Step 1, no c-block can be found
after considering IP and SP, and so it is discarded.

Spatial Complexity. Each block has O(∣T ∣) correspon-
dences and O(∣M ∣) mappings, and a size of O(∣T ∣ + ∣M ∣).
Since the maximum number of blocks generated is MAX B,
and the block tree has ∣T ∣ nodes, the block tree size is
O(MAX B(∣T ∣ + ∣M ∣)). In addition, each node in T can have
O(τ−1) c-blocks, then the total number of blocks in the
block tree is O(τ−1∣T ∣). Therefore, the block tree size is
O(min(MAX B, τ−1∣T ∣) ⋅ (∣T ∣ + ∣M ∣)). The hash table size
is O(∣T ∣).

Time Complexity. We first analyze function init block,
which generates c-blocks at a leaf node. A leaf node t can have
O(∣S∣) blocks, and each block can contain O(∣M ∣) mappings.
In Step 3, find node, which finds a given mapping in a block
with binary search, is O(log ∣M ∣). The maximal number of
c-blocks a node can have is O(τ−1). Therefore, function
init block requires:

CL = O(∣M ∣∣S∣ log ∣M ∣ + τ−1
)

Next we analyze function gen non leaf, which produces c-
blocks at a non-leaf node. It attempts to create new blocks
(Step 10-24) at most min(MAX F,MAX B) times; in each
attempt, the cost of computing intersection (Step 11) and
union (Step 15) is O((f + 1)∣M ∣), where f is the maximum
fanout of T , as the mapping IDs stored in each block are
sorted. Therefore the total complexity of creating new blocks
is O(min(MAX F,MAX B) ⋅ (f + 1)∣M ∣). The cost of
inserting all new blocks into the hash table (Step 27-29) is
O(MAX B ⋅ ∣T ∣), as O(MAX B) blocks are created, and
hash table has size O(∣T ∣). Thus, function gen non leaf has a



Algorithm 3 Function gen non leaf(node t)
Return: no. of blocks created for t

1: if init block(t) = 0 then
2: return 0
3: end if
4: Let listt ← c-block-list of t
5: delete c-block-list of t
6: count new ← 0 // no. of new c-blocks
7: num trial ← 0 // no. of failed block-making attempts
8: for all b ∈ listt do
9: for all tuple {bj1 , bj2 , . . . , bjf

} do
10: // bjk

is jk-th c-block of k-th child of t, with a fanout
of f

11: M ′ ← b.M ∩ (⋂
n
k=1 bjk

.M)

12: if (∣M ′∣ ≥ τ × ∣M ∣) and (count < MAX B) then
13: Let new b be new c-block
14: new b.M ←M ′ // new b is new block
15: new b.C ← b.C ∪ (⋃

n
k=1 bjk

.C)

16: attach to node(new b, t)
17: count new ← count new + 1
18: count← count + 1
19: else
20: num trial ← num trial + 1
21: end if
22: if (count ≥ MAX B) or (num trial ≥ MAX F)

then
23: break the for-loop of line 8
24: end if
25: end for
26: end for
27: if count new > 0 then
28: insert hash entry(H, t)
29: end if
30: discard listt
31: return count new

total cost:

CN = O(min(MAX F,MAX B) ⋅ (f + 1)∣M ∣ +MAX B ⋅ ∣M ∣)

Function construct c block uses a postorder traversal, each
node is visited once. Let h = ⌊logf ∣T ∣⌋ be the height of the
block tree, then the total number of leaf nodes is O(fh),
and the total number of non-leaf nodes is O(∣T ∣ − fh).
Therefore, the total cost of construct c block is O(fhCL +

(∣T ∣ − fh)CN), which is less than O(∣T ∣(CL + CN)). The
cost of remove duplicate corr is O(MAX B∣M ∣∣T ∣), as it scans
each c-block, and remove a set of correspondences from each
mapping it contains. Hence, the spatial and the construction
time complexities of the block tree are polynomial.

IV. EVALUATING TWIG QUERY OVER BLOCK TREE

We now study the Probabilistic Twig Query (PTQ), which
provides query answers over possible mappings. We describe
its definition in Section IV-A. Then, Section IV-B explains

how the block tree can be used to answer PTQ efficiently. We
discuss the top-k PTQ in Section IV-C.

A. The Probabilistic Twig Query

Let us briefly review a twig query. A twig pattern, q,
is a tree, where each node has a label (eg., ICN ) and an
optional predicate (eg., ICN = “Alice”). Each node has an
edge labeled either ‘/’ (parent-child edge) or ‘//’ (ancestor-
descendant edge). For example, in Figure 1, a twig query
q = /ORDER//ICN asks for a contact name of the purchase
order. Given a document d and a twig pattern q with l nodes, a
match of q in d is a set of nodes {n1, ..., nl} from d, such that
for each node ni(1 ≤ i ≤ l), the label and the predicate (if any)
of the i-th node in q is satisfied by ni; in addition, the structural
relationship (i.e., parent-child or ancestor-descendant) of the
nodes in q is the same as that of {n1, ..., nl}. 3

In schema matching, the twig pattern qT (called target
query) is posed against target schema T , but the XML docu-
ment of interest, dS , conforms to source schema S. An answer
to qT is then a “match” of qT on dS – which can be obtained by
translating (or rewriting) qT into a source query qS according
to a mapping m. Then, qS is answered on dS by finding all
the matches of qS on dS . Each match to qS is then translated
through m, in order to become an answer of qT .

Now, let the probability that a possible mapping mi ∈M is
true, be pi, where ∑1≤i≤∣M ∣ pi = 1 . The following gives the
semantics of a probabilistic twig query.

Definition 4: Given a set of possible mappings M , and a
document dS conforming to source schema S, a Probabilistic
Twig Query (PTQ) over target schema T , denoted by qT ,
is a twig pattern on T , which returns a set of pairs R =

{(Ri, pr(Ri)}(1 ≤ i ≤ ∣M ∣), where Ri is the set of matches
of q on dS through mapping mi, and pr(Ri) is the non-zero
probability that Ri is correct.

Algorithm 4 (query basic) Basic Query Evaluation
Input: PTQ qT , mapping set M , document dS

Output: Query answers to qT
1: M ′ ← filter mappings(M,qT )

2: return twig query(qT ,M ′, dS)

function twig query(query q,mapping set M ′, document dS)

Return: Answer R to PTQ q

1: R ← ∅

2: for all mi ∈M
′ do

3: qS ← rewrite(qT ,mi)

4: Ri ←match(d, qS)
5: R ← R ∪ {(Ri, pi)}

6: end for
7: return R

Basic Solution. Algorithm 4 illustrates query basic, a
straightforward solution to PTQ. Step 1 prunes all “irrelevant”

3We assume all nodes in q are distinct. If this does not hold, q is converted
into multiple sub-queries, each of which having distinct nodes. We then
combine the answer of each sub-query to form the answer of q.
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mappings. A mapping m is irrelevant if it does not contain
a correspondence for every query node in qT . Hence, there
will not be any match for qT on dS through m with a non-
zero probability. The filter mappings function scans each
mapping, and removes all irrelevant ones. Step 2 then invokes
twig query on the mappings not filtered, i.e., M ′.

In twig query, Step 1 initializes the query result R. For each
mapping mi ∈M

′, we translate q, using mi, to a source query
qS (Step 3), and match the query pattern on dS (Step 4), in
order to obtain a result Ri. Note that the probability that Ri

is correct is exactly the probability that mi is true, i.e., pi.
Hence, we can put (Ri, pi) in R (Step 5), and return R in
Step 7.

Now we analyze the complexity of Algorithm 4. Function
filter mappings is O(∣M ∣∣q∣∣S∣), as for each mapping mi ∈

M , and for each node n in q, it checks if mi contains a
correspondence for n. Function rewrite is O(∣q∣∣h∣), where
h is the maximal depth of a node in q Function match is
O(d ⋅ x + ∣q∣ ⋅ ∣R∣), where d is the maximal fanout of q, x is
the sum of numbers of nodes which matches each node in q,
and ∣R∣ is the size of query answers. Therefore, the total cost
of Algorithm 4 is O(∣M ∣∣q∣∣S∣+ ∣M ∣ ⋅ (∣q∣∣h∣+ d ⋅ x+ ∣q∣ ⋅ ∣R∣)),
which is less than O(∣M ∣∣q∣ ⋅ (∣S∣ + h + d ⋅ x + ∣R∣)).

The problem of query basic is that the result of qT for each
mapping mi has to be obtained independently. Note that this
involves translating the query and results using mi, and also
retrieving the data from a source document. This process can
be expensive if (1) not many mappings are filtered and (2) a
mapping has many correspondences. Let us examine how the
block tree can alleviate these problems.

B. Evaluating PTQ with the Block Tree

The process of supporting PTQ execution with a block tree
is illustrated in Figure 6. Recall that each entry in the hash
table H (generated together with the block tree) contains a
path in the target schema, and a pointer to some block-tree
node corresponding to that path. Suppose a query qT has a
root r. If r is found in H (and hashed to node t), then we
can use the c-blocks stored at t to speed up the evaluation of
qT . Intuitively, we only have to execute qT once for all the
mappings indicated in each block of t, since these mappings
have the same correspondences rooted at r. If r is not found
in H , we decompose q into three subqueries:

● q0, which has a single node r;

Algorithm 5 (twig query tree) PTQ evaluation with block tree
Input: PTQ qT , relevant mappings M ′, document ds, block
tree X
Output: query answers to qT

1: t = find node(qT .root,H) // H is the hash table
2: if t ≠ NULL then
3: return query subtree(qT , t,M ′, dS ,X)

4: else
5: if q is a leaf then
6: return twig query(q,M ′, ds)

7: else
8: R ← ∅

9: (q0, q1, . . . , qf)← split query(q) // q0 is the root of
q, and q1, . . . , qf are q’s children

10: R(q0)← twig query(q0,M
′, dS)

11: for all j ∈ [1, f] do
12: R(qj)← twig query tree(qj ,M

′, dS ,X)

13: end for
14: for all i ∈ [1, ∣M ′∣] do
15: for all j ∈ [1, f] do
16: Ri(q0)← stack join(Ri(q0),Ri(qj))
17: end for
18: R ← R ∪ {(Ri(q0), pi)}

19: end for
20: return R
21: end if
22: end if
function query subtree(query tree qt,node t,mapping set M ′,
document dS ,block tree X)

Return: Answer to qt
1: Let Ms ← ∅ // all mappings involved at t
2: Let Y ← ∅ // query result for blocks at t
3: for all b ∈ blocks at t do
4: y ← twig query(qt,{b.C}, dS)

5: for all mi ∈ b.M do
6: Y ← Y ∪ {(y, pi)}

7: Ms ←Ms ∪ {mi}

8: end for
9: end for

10: Z ← twig query(qt,M
′ −Ms, dS)

11: return Y ∪Z

● q1, which has the subtree rooted at u1; and
● q2, having the subtree rooted at u2.

q0 is simple and is evaluated directly; q1 and q2 are computed
recursively. For example, q2 is decomposed into subqueries
until a node, w, is found in the hash table. Then, the subquery
issued at w can use the two blocks stored in t to speed up
evaluation. The answers to the subqueries are then joined to
form the final query answer.

Let us now study the details of this method. First, we
use filter mappings to remove irrelevant mappings. Then,
we invoke twig query tree (Algorithm 5). First, q’s root is
searched in the hash table H (Step 1). If a node t is found,



then query subtree is invoked in Step 3 to answer q. (We
explain the details of this function later.) Otherwise, there are
two cases:
1) q contains a single node: we answer q by calling twig query
(Steps 5-6);
2) q has one or more children: we call split query(q) to
decompose q into subquery q0, which contains q’s root node
only, and a set of subqueries q1, . . . , qf , each of which is rooted
at q’s i-th (1 ≤ i ≤ f) child, where f is the fanout of q’s
tree (Step 9). The subquery q0 is evaluated using twig query,
while other subqueries is evaluated by recursively calling
twig query tree (Step 11-13). Next, we join the results from
these subqueries. Let R(qj) be the query result for query qj .
Then, for each mapping mi, we combine Ri(q0) with results at
child nodes, i.e., Ri(q1), . . . ,Ri(qf) (Steps 14-19). Note that
a match f0 in Ri(q0) can join with a match fj in Ri(qj) if fj’s
root is a child of f0. Essentially, this is a binary structural join
process, and can be supported efficiently with a stack-based
join algorithm [24] (Step 16). The combined result is included
in R (Step 18), which is returned in Step 20.

The query subtree function uses c-blocks at node t to
support efficient evaluation of query subtree qt (which has
t as the root node). For every c-block b associated with t,
a twig query is issued on a single mapping that comprises
only the correspondence set of b, i.e., b.C (Step 4). The query
result, y, is then replicated for all mappings that share these
correspondences (i.e., b.M ), in Steps 5-6. The set Ms is the
union of all the mappings that appear in the c-blocks at t
(Step 7). This set is used to answer qt for mappings that are
included in a c-block. For other mappings (i.e., M ′ −Ms), we
invoke twig query to evaluate them directly (Step 10). Finally,
we return the answers generated by all mappings in M ′.

Notice that the query performance can be affected by the
number of c-blocks generated. For example, if we use a small
value of MAX B during block-tree construction, then few c-
blocks can be generated. This makes the size of Ms small,
so that Step 10 involves visiting a larger number of mappings
(∣M ′ −Ms∣). However, query correctness will not be affected
by using fewer c-blocks.

Compared with query basic, which treats each mapping
independently, our new approach can achieve faster perfor-
mance for mappings that share correspondences. The price
for this is the cost of decomposing/merging subquery results.
In the worst case, no block is found in the block tree,
and twig query needs to be evaluated for every node of
q. The most expensive function in the decomposition/merge
process, stack join combines the result for each edge in q
in O(maxi=1,...,∣M ∣(∣Ri∣)) [24] times. If q has E edges, the
cost of decomposition-and-join is O(∣E∣maxi=1,...,∣M ∣(∣Ri∣)).
Our experiments show that this worst case is rare, and the
additional overhead does not override the benefit of using the
block tree for query evaluation.

C. Top-k Probabilistic Twig Query

A query user may only be concerned about answers with
high probabilities. To facilitate a user for expressing this

preference, we propose a variant of PTQ, called top-k PTQ,
as follows:

Definition 5: A top-k Probabilistic Twig Query, or
top-k PTQ, is a PTQ, where only k answer tuples
{(Ri, pr(Ri)}(1 ≤ i ≤ ∣M ∣), whose probabilities are among
the highest ones, are returned.

Essentially, this query allows a user to obtain query answers
with the k-highest probabilities. If there are more than k
answers with the k highest probabilities, we assume that any
one subset of these answers need to be returned.

A top-k PTQ can be evaluated by first computing its PTQ
counterpart, and then return the answer tuples with the k
highest probabilities. This is not the faster method, however.
Instead, we insert the following two steps at the end of the
filter mappings function (which prunes mappings before the
twig query tree is evaluated):

1) Sort the mapping set M ′ in ascending order of the
probability of each mapping in M ′.

2) Return the first k mappings in M ′.
This change must be correct, since the answers to a top-k PTQ
must be derived from k distinct mappings with the highest
probabilities. By using this method, the number of mappings
considered by twig query tree can be reduced, thereby achiev-
ing a higher query performance.

V. EFFICIENT POSSIBLE MAPPINGS GENERATION

We now discuss an efficient method for constructing possi-
ble mappings. Section V-A reviews existing methods for pro-
ducing these mappings. Section V-B presents an enhancement.

A. Finding top-h Mappings

Let us first explain how possible mappings can be created.
Recall that a schema matching between source and target
schemas (S and T ) is a set of correspondences with similarity
scores. To obtain possible mappings, an element in S can
choose to match an element in T (based on the correspondence
information), or not match any element at all. By enumerating
these choices, all legal mappings between S and T can be
derived. To generate the probability of a possible mapping mi,
the “score” of mi can be used. This score, which is usually
a function of scores of correspondences that appear in mi

(e.g., the sum of correspondence scores of mi) [8], reflects
the confidence that mi is correct. One simple way to obtain
mi’s probability is to normalize mi’s scores over the total
scores of all mappings between S and T .

However, the number of mappings obtained in this way can
be exponentially large. A more practical method is to represent
a schema matching with h mappings, which have the highest
scores among the possible mappings [8], [18]. These “top-h
mappings” can be obtained with polynomial-time algorithms.
The probability of each top-h mapping is then yielded by
normalizing its score over the total scores of the h mappings.

The retrieval of top-h mappings can be viewed as the h-
maximum bipartite matching [8], which extracts h matchings
with the highest costs. If the score of a mapping is the sum of
its correspondence scores, then a polynomial-time algorithm
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(e.g., Murty [13], [14]) can be used. To use these algorithms,
the schema matching is preprocessed; to model the fact that
a schema element may not correspond to any other elements,
an “image” of each element in S (respectively T ) needs to
be added to T (respectively S). A correspondence between an
element and its image is added, which has a score of zero
or a value specified by the matching semantics). Figure 7
illustrates a schema matching, and the resulting bipartite.
The image nodes are shaded, and their correspondences are
drawn in dotted lines. If a mapping returned by a bipartite
matching algorithm contains an element e that corresponds
to its image, this means e does not correspond to any other
element. Let S.N and T.N be the set of elements of S and
T respectively. Then, the size of the bipartite is the sum of
the number of source and target elements, i.e., ∣S.N ∣ + ∣T.N ∣

(e.g., in Figure 7, the bipartite has a size of 4+3=7). Hence,
the complexity of finding top-h matching, using Murty’s
algorithm, is O(k(∣S.N ∣ + ∣T.N ∣)3).

B. Partitioning a Schema Matching

The real XML schemas used in our study contain up to
hundreds of elements. Thus, ∣S.N ∣ and ∣T.N ∣ can be large, and
the speed of top-h-mappings retrieval can be affected. This can
be a burden for systems like Dataspace [11] and GoogleBase,
which maintain mappings for many user- and application-
defined schemas. We observe that a schema mapping can be
viewed as a set of partitions, which are “sub-matchings” of a
given schema matching. Figure 8 illustrates two partitions de-
rived from Figure 7(a). Notice that these partitions are disjoint,
i.e., they do not have the same elements or correspondences.

Since these partitions are disjoint, deriving a top-h mapping
from a schema matching U can be done in two steps:

1) Obtain the top-h-mappings from each partition.
2) Generate the top-h-mappings by combining the results in

Step 1.

The advantage of this approach is that if partitions are small,
finding top-h-mappings on each partition is faster than on
U . In Figure 8, for instance, the sizes of partitions 1 and 2
are respectively 4 and 3, which are smaller than the size-7
bipartite in Figure 7. As we show next, deriving and merging
the mappings in these partitions is easy.

s3s1

t2t1 s1' s3'

t2't1' s4s2

t3 s2' s4'

t3'

Partition 1 Partition 2

Fig. 8. Partitions of Figure 7, with image elements shown.

Deriving Partitions. We now explain how to generate parti-
tions. Let es and et be elements in S.N and T.N respectively.
We say es and et are connected (denoted by es ↔ et), if
∃e1, . . . , ej ∈ S.N ∪ T.N , such that e1 = es, (el, el+1) exists
(where 1 ≤ l ≤ j − 1), and ej = es.

Definition 6: A partition is a pair ⟨S′, T ′⟩, such that:

● (subset) S′.N ⊆ S.N , T ′.N ⊆ T.N ,
● (connected) ∀ei, ej ∈ S

′.N ∪ T ′.N , ei ↔ ej , and
● (maximum) ∀ei ∈ S.N ∪T.N , if ∃ej ∈ S

′.N ∪T ′.N , such
that ei ↔ ej , then ei ∈ S

′.N ∪ T ′.N .
Essentially, a partition contains a maximum subset of ele-

ments from S and T , which are connected to each other by
correspondences. In Figure 8, for example, the two partitions
are maximal. Definition 6 implies that two partitions cannot
share any elements or correspondences (else they become a
single partition), Moreover, for a given schema matching, there
can only be one single set of partitions. To find a partition,
we randomly pick up an element (called seed) in S. Then,
the partition that contains the seed is generated by inserting
to the partition all elements connected to the seed, and their
correspondences with the seed. This “seed expansion” process
is repeated for the newly discovered elements in the partition,
until no more new elements can be found.

Algorithm 6 Partitioning algorithm
Input: source schema S, target schema T , schema matching
U , no. of mappings h
Output: top-h mappings

1: {P1, . . . , Pl}← partition(U)

2: top h mappings← bipartite match(P1, U)

3: for i = 2 to l do
4: current← bipartite match(Pi, U)

5: merge(top h mappings, current)
6: end for
7: return top h mappings

function partition(schema matching U)

Output: Set of partitions R
1: R ← ∅

2: flag[e]← false, ∀e ∈ S.N
3: while ∃seed ∈ S.N , flag[seed]← false do
4: P ← expand(seed,U) // P is a new partition
5: R ← R ∪ {P}

6: flag[e]← false, ∀e ∈ source node of P
7: end while
8: return R



Algorithm 6 describes the detailed process. First, U is
partitioned in Step 1. Then, the top-h mappings are computed
from each partition using a standard algorithm (e.g., [13],
[14]), and are merged to obtain the top-h mappings for U
(Steps 2 to 6). The top-h mappings are returned in Step 7.

The partition function produces a set of partitions, using the
seed expansion process that we have discussed (Step 4).This
is repeated for every element in S not yet visited, so that
all partitions can be found (Steps 3-7). The complexity of
partition is O(∣U ∣), or O(∣S.N ∣ ⋅ ∣T.N ∣).

The merge function derives top-h-mappings Z from
the combination of two partitions. Since these two parti-
tions are disjoint, Z can be found by considering only
the top-h-mappings obtained from the two partitions, i.e.,
top h mappings and current. If the number of partitions for U
is l, the average size of a partition is ∣U ∣/l. Then, the average
complexity of merge is O((

∣U ∣
l
)2).

On average, a partition has ∣S.N ∣+∣T.N ∣
l

elements. Assum-
ing a fast algorithm like Murty [14] is used, the average
complexity of generating top-h mappings from a partition is
O(k( ∣S.N ∣+∣T.N ∣

l
)3). Since there are l partitions, the average

complexity of Algorithm 6 is O(
k(∣S.N ∣+∣T.N ∣)3

l2
+(
∣U ∣2

l
+ ∣U ∣)),

the former and the latter term being the bipartite-matching and
merging-partitioning costs respectively. Generally, the larger
number the partitions (and thus a smaller average partition
size), the higher is the performance. Next, we examine this
algorithm experimentally.

VI. EXPERIMENTAL RESULTS

We now describe the experimental results. Section VI-A
describes the experimental setup. We present our results in
Section VI-B.

A. Setup

We used a variety of real XML schemas commonly used
in E-Commerce. These include the OpenTrans (OT) and
XCBL schemas (which can be downloaded from their web-
sites), as well as schemas provided by COMA++4. Based
on these schemas, we generate ten matching results, namely,
D1, . . . ,D10 (Table II). Each matching contains a source
schema S, a target schema T , and an option (opt) of the
matching method used in COMA++ (f means fragment and c
means context). The capacity (Cap.) is the number of element
correspondences of the matching.

A document Order.xml, chosen from XCBL sample
autogen full and contains 3473 nodes, is used as our source
document. For the block tree, the default values are: ∣M ∣ = 100,
τ = 0.2, MAX B = 500, MAX F = 500. Unless stated
otherwise, D7 is used for analysis. We also tested ten queries,
about purchase orders, on D7, as shown in Table III 5. These
queries cover different portions of the target schema and have
a wide range of sizes. We implemented the advanced version

4http://dbs.uni-leipzig.de/Research/coma index.html
5BPID and UP represent BuyerPartID and UnitPrice respectively

TABLE II
SCHEMA MATCHING DATASETS

ID S ∣S∣ T ∣T ∣ opt Cap. o-ratio
D1 Excel 48 Noris 66 f 30 0.79
D2 Excel 48 Paragon 69 c 47 0.63
D3 Excel 48 Paragon 69 f 31 0.57
D4 Noris 66 Paragon 69 c 41 0.64
D5 Noris 66 Paragon 69 f 21 0.53
D6 OT 247 Apertum 166 c 77 0.87
D7 XCBL 1076 Apertum 166 c 226 0.84
D8 XCBL 1076 CIDX 39 c 127 0.82
D9 XCBL 1076 OT 247 c 619 0.91
D10 OT 247 XCBL 1076 c 619 0.91

TABLE III
QUERIES USED IN THE EXPERIMENT

ID PTQ on dataset D7
Q1 Order/DeliverTo/Address[./City][./Country]/Street
Q2 Order/DeliverTo/Contact/EMail
Q3 Order/DeliverTo[./Address/City]/Contact/EMail
Q4 Order/POLine[./LineNo]//UP
Q5 Order/POLine[./LineNo][.//UP]/Quantity
Q6 Order/POLine[./BPID][./LineNO][//UP]/Quantity
Q7 Order[./DeliverTo//Street]/POLine[.//BPID][.//UP]/Quantity
Q8 Order[./DeliverTo[.//EMail]//Street]/POLine[.//UP]/Quantity
Q9 Order[./Buyer/Contact]/POLine[.//BPID]/Quantity
Q10 Order[./Buyer/Contact][./DeliverTo//City]//BPID

of Murty’s algorithm [14] in order to efficiently generate top-
h mappings. Our experiments are run on a PC with Intel
Core Duo 2.66GHz CPU and 2G RAM. The algorithms are
implemented in C++. Each data point is an average of 50 runs.

B. Results

1. Mapping Overlap. First, we examine the degree of
overlap among the possible mappings generated from a schema
matching. For this purpose, we define the o-ratio of two
mappings mi and mj as ∣mi∩mj ∣

∣mi∪mj ∣
. We also define the o-ratio of

M as the average of the o-ratio between all pairs of mappings
in M . Table II shows that the o-ratio values for the mapping
sets are between 0.53 and 0.91. Hence, there exists a high
overlap among the mappings. Next, we study how well the
block tree exploits this property.

2. Spatial Efficiency of Block Tree. Given a mapping
set M , let B be the total number of bytes required to store
the block tree and the hash table for M , as well as the
mappings of M (with correspondences removed). Then, we
define the compression ratio as 1− B

∣M ∣
. This metric captures the

amount of space saved by representing M with a block tree.
Figure 9(a) shows the result under different values of τ . At
τ = 0.2, the block tree saves 14.64%. When τ increases, fewer
c-blocks are created (Figure 9(b)). Therefore, the compression
ratio drops.

3. Effectiveness of c-blocks. From Figure 9(b), we can see
that the number of c-blocks drop much slower after around
τ = 0.1. This means that the number of mappings contained
in many c-blocks is much larger than τ × ∣M ∣. Next, Figure
9(c) shows the distribution of c-block sizes, in terms of the
number of correspondences contained in the c-blocks. The
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Fig. 9. Experiment results (1)

x-axis is the fraction of target nodes that are contained in
the correspondence set of the c-block, and the y-axis is the
number of c-blocks of that size. We observe that there is a large
proportion (50%) of c-blocks whose sizes are larger than one.
The largest c-block contains 41 correspondences. This covers
24.7% of all target schema nodes, and is shared by more than
τ = 20% of all possible mappings. The average size of all c-
blocks is 5.33. These reflect that the c-blocks can effectively
exploit the high overlap among mappings.

4. Block Tree Construction. Figure 9(d) shows the time
for creating a block tree (Tc) for each dataset in Table II,
under different values of ∣M ∣. We can see that the block tree
can be created within a few seconds. Hence, our block tree
construction algorithm is efficient. In Figure 9(e), we study
the effect of MAX B on Tc. As expected, Tc increases with
MAX B. When MAX B is larger than 180, Tc ceases to
increase, since the number of c-blocks that can be created is
less than MAX B.

5. Query Performance. Figure 9(f) shows the running
time (Tq) for each PTQ shown in Table III. We denote
Algorithms 4 and 5 as basic and block-tree. We observe that
block-tree outperforms basic for all queries we tested. For
example, the query time of block-tree is 27.18% faster than
that of basic for Q2; and is 78.27% faster for Q5. On average,
block-tree is 54.60% faster than basic. Similar results can also
be observed for a larger set of mappings (i.e., ∣M ∣ = 500),
as shown in Figure 10(a). Hence, our techniques can use the
block tree effectively to improve query performance.

Next, we focus on the query Q10, and consider only the
block-tree query algorithm.

Figure 10(b) studies the effect of τ on query performance.
When τ increases from 0.02 to 0.2, Tq also increases. This
is due to the significant drop in the number of c-blocks (c.f.
Figure 9(b)), and so there are much less c-blocks in the block

tree for facilitating query evaluation. Interestingly, when τ ≥

0.4, Tq becomes smaller. In these situations, although fewer
c-blocks can be generated, these c-blocks tend to be shared by
many mappings. Also, due to the fewer number of c-blocks,
the overhead of decomposing and merging query results is
lower. Hence the PTQ performs well when τ is large.

We also test the effect of the size of M on Tq . As shown in
Figure 10(c), block-tree consistently outperforms basic for a
wide range of possible mapping sizes; an average improvement
47.05% is registered.

6. Top-k PTQ. We then investigate top-k PTQ. Fig-
ure 10(d) shows the performance of top-k PTQ under different
values of k. As k increases, more mappings need to be
considered, and so Tq increases. The normal curve refers to
a PTQ without using the top-k constraint. We can see that by
placing the top-k constraint on the query, its performance can
be significantly improved (e.g., 90.31% when k = 10).

7. Top-h Mapping Generation. We then compare the
performance of top-h mapping generation algorithms: murty,
and our partitioning-based approach partition. Figure 10(e)
shows the time needed (Tg) on each matching in Table II. We
observe that partition consistently outperforms basic. This is
because the bipartite of the schema matching is sparse, and the
number of partitions is large (it ranges from 23 (for D3) to
966 (for D7)). Finally, Figure 10(f) compares the scalability
of murty and partition in terms of h, on dataset D1. The
left y-axis shows that the amount of time needed by partition
is much less than murty. We also show the fraction of time
improvement of partition over murty on the right y-axis. We
observe that the improvement is always larger than 87.97%.
Our approach can therefore improve Tg significantly.



0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

basic

block‐tree

(a) Tq(s) for Table III (∣M ∣=500)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.02 0.12 0.22 0.32 0.42 0.52 0.65

Th
ou

sa
nd

s

(b) Tq(s) vs. τ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

30 40 50 60 70 80 90 100 120 140 160 180 200

basic

block‐tree

(c) Tq(s) vs. ∣M ∣

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

normal

top‐k

(d) Tq(s) vs. k

0.001

0.01

0.1

1

10

100

1000

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Dataset ID

Top‐h mapping generation time (s)

murty

partition

(e) Tg(s) for Table II

40%

50%

60%

70%

80%

90%

100%

0

20

40

60

80

100

100 200 300 400 500 600 700 800 900 1000

h

Top‐h mapping generation time (s)

murty

partition

% of improvement

(f) Tg(s) vs. h

Fig. 10. Experiment results (2)

VII. CONCLUSIONS

The need of managing uncertainty in data integration has
been growing in recent years. In this paper, we studied the
problem of handling uncertainty in XML schema matching.
We exploited the observation that XML mappings have high
degree of overlap, and proposed the block tree to store
common parts of mappings. A fast method for constructing the
block tree was proposed. We also studied how to efficiently
evaluate PTQ and top-k PTQ with the aid of the block-tree.
By noticing that XML schema matchings are often sparse, we
proposed to partition the matchings in order to improve the
performance of the mapping generation process.

In the future, we would consider how the block tree can
facilitate the evaluation of other types of XML queries (e.g.,
XQuery and keyword query). We would consider the querying
of probabilistic XML documents [23], under an uncertain
schema matching. We would also study the effectiveness of
our mapping generation method in relational schemas.
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