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ABSTRACT
Schema integration is the problem of creating a unified target schema
based on a set of existing source schemas that relate to each other
via specified correspondences. The unified schema gives a stan-
dard representation of the data, thus offering a way to deal with the
heterogeneity in the sources. In this paper, we develop a method
and a design tool that provide: 1) adaptive enumeration of mul-
tiple interesting integrated schemas, and 2) easy-to-use capabili-
ties for refining the enumerated schemas via user interaction. Our
method is a departure from previous approaches to schema integra-
tion, which do not offer a systematic exploration of the possible
integrated schemas.

The method operates at a logical level, where we recast each
source schema into a graph of concepts with Has-A relationships.
We then identify matching concepts in different graphs by taking
into account the correspondences between their attributes. For ev-
ery pair of matching concepts, we have two choices: merge them
into one integrated concept or keep them as separate concepts. We
develop an algorithm that can systematically output, without dupli-
cation, all possible integrated schemas resulting from the previous
choices. For each integrated schema, the algorithm also generates a
mapping from the source schemas to the integrated schema that has
precise information-preserving properties. Furthermore, we avoid
a full enumeration, by allowing users to specify constraints on the
merging process, based on the schemas produced so far. These con-
straints are then incorporated in the enumeration of the subsequent
schemas. The result is an adaptive and interactive enumeration
method that significantly reduces the space of alternative schemas,
and facilitates the selection of the final integrated schema.

Categories and Subject Descriptors
H.2.1 [Logical Design]: Schema and subschema; H.2.5 [Heteroge-
neous Databases]: Data translation
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1. INTRODUCTION
Schema integration is the problem of creating a unified target

schema from a set of existing source schemas that relate to each
other, possibly via correspondences between their elements or via
some other forms of schema mappings such as constraints or views.
By providing a standard representation of the data, the integrated
target schema can be viewed as a means for dealing with heteroge-
neous data sources.

The schema integration problem is encountered in data integra-
tion and in several other related contexts. In data integration [12],
the unified schema yields a single access point against which queries
are posed to access a set of heterogeneous sources. Other appli-
cations include consolidating data sources of merged organizations
into one database or warehouse, and integrating related application
silos to create aggregated intelligence. In general, schema integra-
tion is a form of “metadata chaos” reduction: quite often, many
overlapping schemas (variations or evolutions of each other) ex-
ist, even in the same computer, and need to be consolidated into
one. Schema integration is recognized as one of the building blocks
for metadata applications in the model management framework of
Bernstein [3].

Schema integration is a long-standing research problem [2, 6,
14, 18, 21] and continues to be a challenge in practice. All the
approaches that we know require a substantial amount of human
feedback during the integration process. Furthermore, the outcome
of these approaches is only one integrated schema. In general, how-
ever, there can be multiple possible schemas that integrate the data
in different ways and each may be valuable in a given scenario. In
some of the previous approaches, some of these choices appear im-
plicitly as part of the design process, while interacting with the user.
However, there is no principled approach towards the enumeration
of these choices. In this paper, we develop a method and a design
tool that provide: 1) adaptive enumeration of multiple interesting
integrated schemas, and 2) easy-to-use capabilities for refining the
enumerated schemas via user interaction. Furthermore, the method
operates at a logical, conceptual level that abstracts away the phys-
ical details of relational or XML schemas and makes it easy to ex-
press user requirements.
Overview of our approach We assume that we are given a set
of two or more source schemas (describing data in a common do-
main) together with a set of correspondences that relate pairs of
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Figure 1: Overview of our method.

elements in these schemas. Correspondences signify “semantically
equivalent” elements in two schemas. They can be user-specified or
discovered through schema matching techniques [20]. Given such
input (source schemas and correspondences), our enumeration ap-
proach generates many possible meaningful design choices for the
integrated target schema. At the same time, we also generate, for
each choice of an integrated schema, the mapping that specifies
how the data in each of the source schemas is to be transformed to
the integrated schema.

A high-level overview of how a user can operate our system is
schematically illustrated in Figure 1, for the case of two source
schemas. We note that we are able to handle any number of source
schemas, in general. The architecture is the same except that we
require correspondences between multiple pairs of schemas.

As an initial step in our approach (Step 1 in Figure 1), each
source schema, with its constraints and nesting, is recast into a
higher-level graph of concepts with HasA relationships. Each con-
cept is essentially a relation name with an associated set of at-
tributes. A concept intuitively represents one category of data (an
entity type) that can exist according to a schema (e.g., “depart-
ment”, “employee”, etc.). Concepts in a schema may have refer-
ences to other concepts in the schema and these references are cap-
tured by HasA edges (e.g., “employee” contains a HasA reference
to “department”). For the most part, our subsequent integration
method operates at the higher level of abstraction that is offered by
the concept graphs.

Next, we identify matching concepts in different graphs by tak-
ing into account correspondences between their attributes. For ev-
ery pair of matching concepts we then have the alternative of merg-
ing them into one integrated concept or of leaving them as separate
concepts.

At the core of our method for exploring the integrated schemas
that result from the above choices (Steps 2 and 3 in Figure 1), there
are three novel components that we develop. First, we give an al-
gorithm for generating one integrated schema, given a fixed choice
of which matching concepts to merge. We then define the space
of candidate schemas via an enumeration procedure that takes into
account all possible merging choices (rather than a fixed one). This
enumeration procedure provides the basis for more efficient and
more directed ways of exploring the space of candidate schemas.
In this paper, we provide one such directed method (our third com-
ponent) that explores only a selected set of candidate schemas, in-
teractively, based on user-specified constraints, ultimately leading
to the desired integrated schema.
Generating one integrated schema Given a fixed choice of which
concepts to merge, we develop an algorithm (ApplyAssignment)
that produces a single integrated schema. This schema preserves,
in a precise sense, all the attributes and relationships of the source
schemas. The algorithm includes an interactive feature that allows
the users to specify how to merge redundant relationships that may
arise in the process. At the same time, the algorithm generates a

mapping from the source schemas to the integrated schema that
has precise information-preserving properties. The mapping gen-
eration component is in the spirit of the more general algorithms
of mapping systems such as Clio [17], which construct mappings
between independently designed source and target schemas. How-
ever, our mapping algorithm is more direct and has no ambiguity,
by taking full advantage of how the integrated schema is generated
from the source schemas.
Conceptual enumeration of the candidate schemas We develop
an enumeration algorithm that can systematically generate all pos-
sible integrated schemas (and the associated mappings), by consid-
ering all possible choices of which concepts to merge. An essential
feature of the enumeration algorithm is that it avoids exploring dif-
ferent configurations that yield the same schema. This duplication-
free algorithm makes use, as a subroutine, of a polynomial-delay
algorithm by Creignou and Hébrard [8] for the enumeration of
all Boolean vectors satisfying a set of Horn clauses. Polynomial-
delay [11] means that the delay between generating any two con-
secutive outputs (satisfying assignments in this case) is bounded by
a polynomial in the size of the input. In a precise sense, this is the
best one can hope for when the number of outputs is exponential in
the size of the input.
Interactive exploration of the space The users of our tool do not
need to see all the candidate schemas. Moreover, the tool does
not need to generate (a priori) all the candidate schemas. The full
enumeration of all such schemas is not viable, even if duplicates
are avoided. Thus, we devise an adaptation of the enumeration
algorithm described above so that schemas are generated on de-
mand and in combination with user interaction. Users can browse
through the schemas that were generated so far and can also request
the generation of the next integrated schema. More interestingly,
users can specify constraints on the merging process itself, based
on the schemas they have already seen. Although constraints are
added primarily for semantic reasons (to incorporate the domain
knowledge of the expert), they also have the benefit of greatly re-
ducing the space of candidate schemas. Each constraint can cut the
space by as much as half. The result is an adaptive enumeration
procedure that can quickly converge to a final integrated schema.

User constraints can be given through a visual interface, directly
in terms of the concepts and of the matchings between them. For
example, the user can enforce a pair (or a group) of matching con-
cepts to be always merged or never merged. Additionally, the user
can give constraints that enforce the preservation of certain struc-
tural patterns in the input schemas. We show via a series of ex-
periments how user interaction can easily, and in a principled way,
narrow down the set of candidate schemas to a few relevant ones.

Furthermore, our experiments show that our algorithm for ex-
ploring schemas has also good performance, in the sense that the
time to generate the next schema is low (sub-second for all the ex-
periments we ran). Thus, a user of our tool experiences only a small
delay before seeing a different schema.

We note that the users of our tool are intended to be domain ex-
perts with good familiarity with database and schema design. Thus,
they are not end-users but rather developers or data architects.

2. INTEGRATION THROUGH CONCEPTS
In this section, we explain the basic ingredients in our frame-

work, namely the graphs of concepts, and show how the schema
integration problem is recast into a problem of merging graphs of
concepts.

We first describe the schemas and correspondences that can be
input to our method. We shall use the following example through-
out the paper. Consider the source schemas S1 and S2 depicted
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Figure 2: Two input schemas and their correspondences.

in Figure 2. The schemas are shown in a nested relational repre-
sentation that is used as a common abstraction for both relational
and XML schemas. This representation is based on nested sets and
records.

Formally, a nested relational schema [17] consists of a set of la-
bels (or roots), each with an associated set type Set τ , where τ

is defined by: τ ::= b | [l1 : τ1, . . . , ln : τn] | Set τ . Here,
b represents an atomic type such as string or integer, while [l1 :
τ1, . . . , ln : τn] is a record type where l1, . . . , ln are labels (or el-
ements)1. Note that the definition is recursive and sets and records
can nest in arbitrary ways. In Figure 2 we do not show any of the
atomic types (i.e., the types of the leaf-level elements), for sim-
plicity. We shall often use the term attributes for the atomic type
elements.

In general, attributes in a source schema are all assumed to have a
unique identity (for example, we can use the full path in the schema,
for the purpose of identification). However, in examples, we shall
often just use the name of the leaf-level element to refer to an at-
tribute, whenever there is no confusion.

The first schema represents departments with their employees
and grants, as well as the projects for which grants are awarded.
The depts root is a set of department records, each with three atomic
components and a set-valued component, managers, which repre-
sents a (nested) set of manager records. The arrows in schema S1

represent foreign key constraints: a grant has references to both
a department and a project, while an employee has a reference to
a department. The second schema includes a set of organization
records with nested sets of locations, employees and funds. The
information about managers has been condensed in this schema to
one field (mgr eid in a fund record). Moreover, in this schema, em-
ployees have phones and each fund has a sponsoring organization
(represented by a foreign key constraint) which may be different
from the parent organization.

Figure 2 also shows correspondences between atomic type el-
ements (attributes) of the schemas S1 and S2. These correspon-
dences are bi-directional and signify “equivalent” attributes (i.e.,
that can carry the same data) in the two schemas. They can be
specified by the user or discovered through schema matching tech-
niques. We only consider correspondences between attributes, since
these are the elements that carry actual data. Note that there can be
attributes with no correspondences and also attributes with mul-
tiple correspondences. For example, mgr eid in S1 matches both

1This is only a simplified abstraction: choice types, optional and
nullable elements are also supported in our system implementation.

mgr eid and eid in S2 (possibly with less confidence for the sec-
ond one; in this paper, we ignore weights on correspondences and,
instead, treat all correspondences the same).
Schema integration desiderata Assume that we are given n source
schemas S1, . . . ,Sn and a set of correspondences that relate pairs
of attributes in these schemas. We would like to compute an inte-
grated target schema T and a set M of mappings from the source
schemas to the integrated schema, such that T and M satisfy the
following informal requirements:

1. The integrated schema T is capable of representing all the atomic-
type information in the source schemas, in the sense that ev-
ery attribute occurring in S1, . . . ,Sn must be represented in T.
However, and this will often be the case, it is possible that one
target attribute may represent multiple source attributes that are
“equivalent” according to the correspondences.

2. The integrated schema T does not represent any extra atomic-
type information not present in the sources, in the sense that ev-
ery attribute of T must represent some attribute of S1, . . . ,Sn.

3. Every tuple and every join2 of tuples that can be present in a
source database conforming to a source schema is “transferred”
via M into a similar tuple or join of tuples in the target. In a
sense, we require the preservation of all the basic relationships
that can exist in each of the sources. (All the necessary no-
tions shall be formally defined when we describe our mapping
generation component.)

We now embark on the exposition of the main steps towards
achieving such integrated schema T and set M of mappings.

2.1 Concepts
The first key idea is to abstract the concrete physical layout of

schemas into a more logical view that is based on concepts. Each
schema (with constraints and with nesting) can be replaced by a
graph of flat concepts where the edges represent HasA relation-
ships. Formally, a concept graph can be defined (independently
of a schema) as follows. We fix U to be a universe of attributes. We
also fix L to be a universe of labels (different from attributes).

DEFINITION 2.1 (CONCEPT GRAPH). A concept is a relation
name C associated with a subset att(C) of U (these are the at-
tributes of C). A concept graph is a pair (V, HasA) where V is a
set of concepts and HasA is a set of directed edges between con-
cepts, such that each edge has a label from L. We write A HasA B

[L] whenever there is a HasA edge with label L from concept A to
concept B.

Intuitively, the meaning behind A HasA B [L] is that every in-
stance of concept A has a reference (of type L) to exactly one in-
stance of concept B. The role of the HasA edges is to express that
certain concepts cannot exist without other concepts (they extend
or depend on those concepts). Also, another way to view an edge
A HasA B [L] is that it represents a many-to-one relationship from
A to B: there can be zero or more A instances with references to
the same B instance. We also note that, in general, there could be
more than one HasA edge between two concepts and, moreover, the
graph can have cycles.

To illustrate, we show in Figure 3 two concept graphs that “cor-
respond” to the schemas S1 and S2. Although each edge has a
label (which we assume is either system generated or given by the
user), we sometimes drop the label whenever it is not important.
Note that in the case of parallel HasA edges, we always need to
display the labels in order to distinguish between them (see, for
example, the two HasA edges labeled sponsor and owner in the
second concept graph).
2Either parent-child type of join or foreign key / key type of join.
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Figure 3: Concept graphs corresponding to schemas S1 and S2.

To give the intuition of how these concept graphs relate to the
schemas, consider the concept graph for S1. There, dept and project
are top-level concepts (i.e., have no outgoing HasA edges), corre-
sponding to the top-level sets depts and projects. These are stan-
dalone concepts that do not depend on anything else. In contrast,
there is a HasA edge from manager to dept, since a manager ele-
ment cannot exist independently of a department (according to the
nesting in S1).

Similarly, there is a HasA edge from emp to dept, reflecting the
fact that, in S1, an employee has a foreign key to a department.
Also, grant has edges to both dept and project, since a grant has
foreign keys into both department and project. More interestingly,
the concept graph for S2 includes two parallel HasA edges from
fund to org, reflecting the fact that a fund is nested under a parent
organization (the “owner”) and also a fund has a reference to a
sponsoring organization (the “sponsor”). Thus, org plays a dual
role with respect to fund.

Note that concepts in one concept graph are not intended to rep-
resent absolute concepts. For example, location in the second con-
cept graph in Figure 3 represents the “location of an organization”
and not a general notion of location. Similarly, emp represents the
notion of an “employee within an organization” and not a general
employee. Thus, concepts within one concept graph reflect a partic-
ular way of modeling the data. However, as schemas are integrated,
concepts from different schemas can be merged and, thus, accumu-
late features (e.g., attributes and relationships) from the different
schemas.

2.2 Extracting Concepts from Schemas
In order to extract the concepts and the relationships that are

implicit in a schema, we use a simple algorithm that creates one
concept for each set-type element in the schema and then uses the
structure and the constraints in the schema to establish the relation-
ships (HasA edges) between concepts.

More concretely, for each set-type (collection) element S in the
schema, we compute a concept CS such that: (1) CS includes all
the attributes under S (without attributes from any other set type
elements that may be nested under S), (2) CS has a HasA edge to
the concept CS1

encoding the parent collection S1 (if such parent
exists), and (3) CS has a HasA edge to CS2

whenever CS has an
attribute that is a foreign key referring to one of the attributes (the
key) of CS2

. Furthermore, whenever we apply case (3), we drop
the foreign key attribute from the list of attributes of CS (since it is
represented at CS2

). In both cases (2) and (3) a fresh label is com-
puted for the HasA edge. We note that case (3) applies also, without
much change, when the foreign keys (and keys) are composite.

The concept graphs resulting from the two source schemas S1

and S2 are shown in the earlier Figure 3. Note that the name that
we give to a concept or to a HasA edge is not essential. A possible
choice for concepts is to generate a name based on the set-type
element from which the concept is constructed. For HasA edges
that are derived from foreign keys, we can use the name of the
foreign key attribute.

We also note that it is necessary to keep track of the implicit
mapping from a schema to its concept graph. In particular, for

each concept, we remember which set type element it corresponds
to, and for each HasA edge, we remember either the parent-child
relationship or the foreign key constraint it was generated from.
This mapping is necessary to be able to translate any subsequent
mappings that are expressed in terms of the concepts back in terms
of the input schemas.

Finally, the algorithm can deal with cyclic integrity constraints
by simply transferring them into cycles over the HasA edges. (For
example, the resulting concept graph may include Dept HasA Emp
[manager] and Emp HasA Dept [works for]).

Once the extraction of concepts is achieved, most of the subse-
quent processing (including user interaction) is performed at the
level of concepts and not schemas. This is beneficial since con-
cepts are simpler and also reflect better the logical meaning behind
the schemas. Nonetheless, once we integrate the concepts, we can
go back to create an integrated schema (see Section 3.3). We also
note that our subsequent integration method can take as input arbi-
trary concept graphs that are not necessarily the result of extraction
from schemas. Thus, it can be applied directly to any logical mod-
els for as long as they can be expressed as concept graphs with
HasA relationships.

2.3 Matching the Concepts
We now show how the input correspondences that are given in

terms of schemas are translated into “matching” edges between the
concepts that correspond to the schemas. The result of this transla-
tion is a matching graph that will be the main object of the subse-
quent processing (i.e., the actual merging and enumeration).

DEFINITION 2.2. Let S1 and S2 be two source schemas and
let C be a set of correspondences between attributes of S1 and S2.
Let A be a concept of S1 and B be a concept of S2. We say that
A and B match if there is at least one attribute a in A and one
attribute b in B such that there is a correspondence at the schema
level between attribute a and attribute b.

Matching concepts will be our candidates for merging. We next
define the notion of a matching graph, where the nodes are the
concepts (in all the schemas) while the edges indicate matching
concepts. Additionally, the matching graph also records the HasA

edges, but they will be distinguished from the matching edges.

DEFINITION 2.3 (MATCHING GRAPH). Let S1, . . ., Sn be sche-
mas and let C be a set of correspondences between attributes of
these schemas. The matching graph associated with S1, . . . ,Sn

and C is an undirected graph G = (V, HasA, E) where:

• The set V of nodes is the set of concepts of S1, . . . ,Sn;

• The set HasA is the union of the sets of HasA edges obtained
from the individual schemas;

• The set E of edges contains exactly one edge for each pair of
matching concepts in V .

Figure 4 shows the matching graph G for our example. (Note
that for two schemas, the matching graph is a bipartite graph.) For
simplicity, we do not show the HasA relationships as edges, to avoid
cluttering, but write them as part of the concepts themselves. For
example, we add a statement HasA dept to the manager concept
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Figure 4: A matching graph.

definition to denote that there is a HasA edge from manager to dept.
(Notice that, at this point, a HasA edge never relates concepts that
come from different schemas.) In the figure, we aligned concepts
in the two schemas so that matching concepts are close to each
other. The layout used in the figure is in fact very similar to the way
matching concepts are illustrated in the actual tool [7], where we
also use specialized graph-displaying packages to help visualizing
the matching.

The matching edges in our example are denoted as x0 to x7. In
general, an edge x between concepts A and B may exist because
of multiple pairs of attributes (a, b) that satisfy the condition in
Definition 2.2. For example, x0 exists due to the pairs (dno, oid)
and (dname, oname). Nevertheless, we add only one edge between
such concepts.

In general, one concept may match with multiple concepts in
other schemas. For example, dept matches with org but also with
location, since the attribute country in dept has a correspondence
to attribute country in location. A priori, we should not assume
that dept may match “better” with org than with location. In fact,
it may happen that location is meant to represent a branch of an
organization, and dept in the first schema also has the meaning of a
branch, in which case dept matches better with location. As another
example of multiple matchings, the concepts of manager and emp
in the first schema match with both emp and fund in the second
schema.

The enumeration algorithm (Section 5) will take into account all
choices of merging and will explore all possible ways of integra-
tion. Note that there may also be concepts that do not match with
any concept. For example, phone is specific to the second schema.
Even though they have no matches, such concepts are still involved
in the merging process, since they may have HasA edges to other
concepts.

3. MERGING THE CONCEPTS
Assignments We can obtain different ways of merging the concepts
by considering different subsets of edges in the matching graph G.
Let A and B be two matching concepts and let x denote the edge
between these concepts in G. We can think of the edge x as having
a value of 0 or 1: x = 0 means that A and B need not be merged
(i.e., the edge can be ignored), while x = 1 means that A and B

must be merged (i.e., the edge must be applied). Every Boolean
assignment X to the set E of edges in G will yield an integrated
concept graph which in turn will result in an integrated schema.
The following are two assignments for the edges in our example:

ApplyAssignment(G, X)
Input: Matching graph G = (V, HasA, E), Boolean assignment X for E.
Output: Integrated concept graph G′ = (V ′, HasA′), mapping M be-
tween source and integrated concept graphs.
Let EX be the subset of edges that have been assigned the value 1.

1. Create the integrated concepts.

(a) Compute the connected components in the graph GX = (V, EX).
(b) For every connected component [A1, . . . , Ak] of GX , where

A1, . . . , Ak are concepts in V , create an integrated concept C
(i.e., a node in V ′). Let att(C) be the union of the attributes in
A1, . . . , Ak , where corresponding attributes are considered dupli-
cates and are represented only once.
For every Ai among A1, . . . , Ak , define fX(Ai) = C. Fur-
thermore, for every attribute a of Ai, define fX(Ai.a) = C.a∗,
where a∗ is the representative for the group of duplicates of a.

2. Construct HasA edges between integrated concepts. For every A HasA

B [L] in G, create fX(A) HasA fX(B) [L] in G′ (i.e., an edge in
HasA′) and define fX(A HasA B [L]) = fX(A) HasA fX(B) [L].

3. [Interactive] Merging of parallel HasA edges and removal of HasA loops
in G′. Affects fX .

4. Create mapping M = MapGen(G, G′, fX).

Figure 5: The algorithm ApplyAssignment.

X1 : { x1 = x2 = x3 = x5 = 0 , x0 = x4 = x6 = x7 = 1 }
X2 : { x0 = x3 = x5 = 0 , x1 = x2 = x4 = x6 = x7 = 1 }

The first assignment requires dept in the first schema to be merged
with org in the second schema, emp in the first schema to be merged
with emp in the second schema, and grant and project in the first
schema to be merged with fund in the second schema. Under the
second assignment, we must merge dept with location, manager
with the two emp concepts, and grant and project with fund.

We shall sometimes identify an assignment X with the subset
EX of edges that have the value 1 under the assignment X .

In this section, we give an algorithm, ApplyAssignment, that takes
a matching graph and one assignment for the edges, and produces
one integrated concept graph. At the same time, we also generate
the mapping from the source concepts to the integrated concepts
that specifies how source data has to be transformed into the inte-
grated data. In Section 5 we shall elaborate on how to enumerate
multiple, distinct, integration results, by repeatedly invoking Apply-
Assignment on different assignments.

3.1 The ApplyAssignment Algorithm
At the high-level, the algorithm, shown in Figure 5, applies first

(in Step 1) all the mergings between concepts that are required by
the input assignment. Step 2 creates HasA relationships among the
integrated concepts, based on the source HasA relationships. The
user is then allowed to refine the resulting integrated concept graph
in Step 3. In the process, ApplyAssignment maintains an integration
function fX (for the given assignment X) that specifies how each
individual attribute, concept or HasA edge in a source concept graph
relates to a corresponding attribute, concept, and, respectively, path
of HasA edges, in the integrated concept graph. We shall elabo-
rate on the use of the integration function in Section 3.2, where
we explain how we construct the mapping between the source and
integrated concept graphs in Step 4 of ApplyAssignment.

3.1.1 Step 1: Connected Components
First, we compute the connected components in the graph GX =

(V, EX) that is induced from the matching graph G by consider-
ing only the edges in X with value 1. For each connected compo-
nent, an integrated concept is obtained by taking the union of the at-
tributes of the source concepts in that connected component, while
at the same time collapsing duplicate attributes. Two attributes a
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Figure 6: (a) An integrated concept graph after Step 2 of ApplyAssignment; (b) The integrated concept graph after Step 3.

and b of source concepts in a connected component are considered
duplicates if: (1) there exists a correspondence between a and b at
the schema level, or (2) there exists another attribute c of a source
concept in the same connected component such that c is a duplicate
of both a and b. For every group of duplicates we then pick, ar-
bitrarily from the group, a representative that will be subsequently
used, in the integrated concept, in place of the individual attributes
in the group. As a convention (to signify that a choice was made),
we suffix the name of the representative with “*”, whenever there
are at least two duplicates in the group.

Figure 6(a) shows the integrated concepts that result after Step
1 of ApplyAssignment, when given the earlier assignment X1. (Ig-
nore the HasA edges between these concepts for now.) There are
six integrated concepts, corresponding to the six connected compo-
nents in the graph GX1

= (V, EX1
), where EX1

= {x0, x4, x6, x7}.
For example, the integrated concept denoted as [dept,org] corre-
sponds to the connected component consisting of the source con-
cepts dept and org. The union of the attributes in dept and org is
{dno, dname, country, oid, oname}. However, dno and oid are du-
plicates and are replaced by a unique occurrence of their represen-
tative (chosen as dno*). Similarly, dname and oname are replaced
by the representative dname*.

The relationship between the source concepts and the integrated
concepts is recorded via the integration function fX . For simplic-
ity, we may write f instead of fX , if the assignment X is un-
derstood from the context. Concretely, each source concept C is
mapped into the integrated concept that C is merged into. For ex-
ample, we have:

f (dept) = f (org) = [dept,org], f (location) = [location],
f (grant) = f (project) = f (fund) = [grant,fund,project], . . .

Moreover, each attribute of C is mapped into the representative
attribute in f(C). For example, we have:

f (dept.dno) = f (org.oid) = [dept,org].dno*,
f (dept.dname) = f (org.oname) = [dept,org].dname*,
f (location.country) = [location].country, . . .

3.1.2 Step 2: Copying the Relationships
In this step, ApplyAssignment “copies” all source HasA edges

into HasA edges on the integrated concepts. Specifically, for each
source relationship A HasA B [L], we create the edge f(A) HasA
f(B) [L] between the integrated concepts f(A) and f(B). At the
same time, we record the correspondence between the source HasA
edge and the integrated one as f (A HasA B [L]) = f(A) HasA

f(B) [L].
Figure 6(a) shows the integrated concept graph resulting after

Step 2 of the algorithm with assignment X1. We can see that every
source HasA edge has a distinct corresponding HasA edge in the

integrated graph. The integration function is now enriched with
entries such as:

f (location HasA dept) = [location] HasA [dept,org]
f (emp1 HasA dept [default2]) = [emp1, emp2] HasA [dept, org] [default2]
f (emp2 HasA org [default5]) = [emp1, emp2] HasA [dept, org] [default5]

where we write emp1 for the emp concept in the first schema and
emp2 for the emp concept in the second schema.

As a result of Step 2, the integrated graph may contain parallel
HasA edges (see the edges between [emp1,emp2] and [dept,org])
as well as HasA loops (see the self-loop on [grant,fund,project]). In
general, parallel edges must be considered different, since we can-
not assume, without additional knowledge, that the relationships
encoded by them are the same. For example, we cannot automat-
ically assume that the relationship between an employee and a de-
partment that is coming from the first schema is the same as the
relationship between an employee and an organization that is com-
ing from the second schema. (See also owner and sponsor as
an example of two parallel edges that represent different relation-
ships.)

A similar argument prevents us from automatically removing
loops: the relationship between the grant part of [grant, fund, project]
and the project part of [grant, fund, project] that is now implicit in
the fact that the two concepts have been merged may not be the
same as the original source relationship between grant and project.
We may need both, in which case we have to keep the original edge
as a loop.

Hence, Step 2 of the algorithm will include by default all the
HasA relationships between integrated concepts that can be derived
from the source HasA relationships.

3.1.3 Step 3: Removal of Redundant Relationships
This step of ApplyAssignment allows the user to interactively

merge parallel edges and remove loops in the integrated graph,
whenever the user deems them as redundant. To represent the user
feedback, we use a special form of constraints that allows us to re-
member the information and re-apply it in subsequent invocations
of ApplyAssignment (for different assignments). Since these con-
straints are used to specify redundant information, we call them
redundancy constraints. These are constraints on the design of the
integrated schema (and not constraints on the data).

Parallel HasA edges can be merged by using redundancy con-
straints of the form:

if f(A) = f(A′), f(B) = f(B′)
then f(A HasA B [L]) = f(A′ HasA B′ [L′])

where A HasA B [L] and A′
HasA B′ [L′] are two source HasA

edges. The meaning of such constraint is that, in any integrated
graph where we merge A and A′ (i.e., f(A) = f(A′)) and we also
merge B and B′ (i.e., f(B) = f(B′)), the two parallel HasA edges



with labels L and L′ that result in the integrated graph must be
considered equal. In a sense, the constraint says that the two source
relationships A HasA B [L] and A′

HasA B′ [L′] are equivalent,
whenever the concepts involved in the relationships are merged,
pairwise.

To enforce such constraint, one of the two parallel edges must
be removed. We take the convention that the first edge will always
be removed in favor of the second. As a result of applying the
constraint, the integration function f is also updated so that the two
source edges map both into the surviving edge in the integrated
graph.

For the integrated concept graph in Figure 6(a), a user may state
the following constraint:

(C1) if f (emp2) = f (emp1), f (org) = f (dept)
then f (emp2 HasA org [default5]) = f (emp1 HasA dept [default2])

to remove the edge from [emp1,emp2] to [dept,org] that is labeled
default5 in favor of the edge labeled default2 (see Figure 6(b)).
A similar constraint can express the merging of the two parallel
edges between [grant,fund,project] and [dept,org] that are labeled
default3 and owner into one edge labeled owner.

Note that such constraints will also apply in other integrated con-
cept graphs, as long as the premises of the constraints are satisfied.
For example, assume that later on, the system generates, based on
some other assignment, a different integrated graph where emp1

and emp2 are still merged (possibly with some other concepts, like
manager), and where dept and org are still merged (possibly with
some other concepts, like location). Then the user does not have
to restate that emp1 HasA dept and emp2 HasA org are the same
relationship.

Loops in the integrated graph can be eliminated by means of
redundancy constraints of a slightly simpler form:

if f(A) = f(B)
then f(A HasA B [L]) = f(A)

In the above, A HasA B [L] is a source HasA edge. The meaning
of the constraint is that, in any integrated graph where we merge A

and B (i.e., f(A) = f(B)), the resulting loop f(A) HasA f(A) [L]
must be removed from the integrated graph, and the source HasA
edge must be represented by f(A).

Based on the integrated concept graph in Figure 6(a), a user may
state the following constraint:

(C2) if f (grant) = f (project)
then f (grant HasA project [default4]) = f (grant)

to remove the loop labeled default4 (as in Figure 6(b)). As a re-
sult, the relationship between grant data and project data is encoded
directly within the integrated concept [grant,fund,project] (within
one tuple). The integration function is changed accordingly so that
the source HasA edge from grant to project is mapped into the single
concept [grant,fund,project].

From a user interaction point of view, we note that the constraints
can be discovered by visualizing the parallel edges or loops that
arise in an integrated concept graph. In the visual interface of the
tool, the cause for such parallel edges or loops is traced back to the
sources (via the integration function f ). The user can then imme-
diately state the “desired” constraints in terms of the source edges
(e.g., state that two source edges are equivalent, or that one source
edge should be collapsed whenever it becomes a loop). We view the
mechanism of user constraints (redundancy constraints here, and
enumeration constraints later in Section 5) as a form of learning
domain knowledge from a user. Once such knowledge is learned, it
is automatically reapplied in other configurations, during the same
run of the tool.
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Figure 7: Another integrated concept graph.

3.1.4 The General Form of Redundancy Constraints
More generally, we allow users to specify constraints that map a

source HasA edge into a path of zero, one or more HasA edges in the
integrated concept graph. We have seen examples where a source
HasA edge is mapped into a path of length zero (e.g., C2) or of
length one one (e.g., C1). The following example illustrates a case
where a source HasA edge needs to be mapped into a path of two
edges in the integrated graph. For brevity, we shall use the notation

A
L1−→ B

L2−→ C to represent a path of edges A HasA B [L1] and
B HasA C [L2].

Consider the integrated graph in Figure 7, which is obtained by
ApplyAssignment when given the earlier assignment X2 (instead of
X1) and the constraints in Section 3.1.3. The following constraint:
if f (emp2) = f (emp1), f (dept) = f (location)

then f (emp2 HasA org [default5]) = f (emp1)
default2−→ f (dept) → f (org)

implies that the edge from [manager,emp1,emp2] to [org] that is la-
beled default5 is made redundant by the path [manager,emp1,emp2]
default2−→ [dept,location] → [org] and can be removed. The con-
straint asserts that, in general, whenever we merge emp2 with emp1,
and dept with location, the source relationship emp2 HasA org [default5]
is equivalent to the relationship implied by the two source edges
emp1 HasA dept [default2] and location HasA org. Note that the
latter source edges are not in the same source schema and do not
form a path. However, the condition f(dept) = f(location) in the
premise of the constraint implies that their images (under f ) form
a path in the integrated graph.

The general definition of redundancy constraints, allowing to
map one edge into a path of n edges, where n ≥ 0, is immedi-
ate and we leave it out due to space limitations.

3.2 Mapping Generation
Figure 8 illustrates MapGen, our mapping generation algorithm.

MapGen takes as input the matching graph G, the integrated con-
cept graph G′ and the integration function f resulting after Step
3 of ApplyAssignment, and outputs a mapping M between source
and integrated concepts. Specifically, for every source concept C,
we create a mapping MC in M, which specifies how an instance
of C, together with all its relationships, is to be transformed into an
instance (possibly associated with other instances) of an integrated
concept C ′. The mappings that we generate are constraints in the
spirit of schema mapping tools such as Clio [17]; these constraints
represent a logical specification of what the lower-level, executable,
data migration code needs to implement.

We use our running example to illustrate MapGen and the map-
pings it produces. Consider the integrated graph from Figure 6(b).
In Step 1 of MapGen, we construct a mapping from one single
source concept to one single integrated concept. The following is



MapGen(G, G′, f )
Input: Matching graph G = (V, HasA, E), integrated concept graph G′ =
(V ′, HasA′), and integration function f .
Output: Mapping M from G to G′.
For every source concept C of G do:

1. Initialize MC to be

for c in C exists c′ in C′ where
∧

a∈att(C)

(c.a = c′.a∗),

provided that f(C) = C′ and f(C.a) = C′.a∗, for each a ∈ att(C).
Initialize queue Q = {(c in C, c′ in C′)}.

2. Extend MC by doing a “parallel chase” with HasA edges starting from
C. Repeat steps (a)–(b) until Q is empty.

(a) Take out (u in Ci, u
′ in C′

i) from the first position in Q.

(b) For every edge Ci HasA Cj [L] do:

• Let f (Ci HasA Cj [L]) = C′

i

L1−→ D1
L2−→ . . .

Ln−→ C′

j .
• Chase u in Ci of MC with the edge Ci HasA Cj [L] by adding,

in the for clause, a new variable w in Cj and join condition
u HasA w [L].

• If n > 0, chase u′ in C′

i of MC with the path C′

i

L1−→D1
L2−→ . . .

Ln−→ C′

j . by adding, in the exists clause, a sequence of variables
w1 in D1, . . ., wn in C′

j , and join conditions u′ HasA w1 [L1],
. . ., wn−1 HasA wn [Ln].

• If n > 0, add
∧

b∈att(Cj)
(w.b = wn.b∗) to the where clause of

MC , provided that f(Cj .b) = C′

j .b∗, for each b ∈ att(Cj).
Otherwise (n = 0 and C′

i = C′

j ), add
∧

b∈att(Cj)
(w.b = u′.b∗)

to the where clause of MC , provided that f(Cj .b) = C′

i.b
∗, for

each b ∈ att(Cj).
• Insert (w in Cj , wn in C′

j) (if n > 0) or (w in Cj , u in Ci) (if
n = 0) in Q.

Return M = {MC | C is a source concept in G}.

Figure 8: The algorithm MapGen.

the mapping Mgrant constructed for the source concept grant:

for g in grant exists g′ in [grant,fund,project]
where g.amount = g′.amount*

This assertion specifies that for each instance g of grant, there
must exist an instance g′ of [grant,fund,project] (which is f (grant))
where the value for the attribute amount* is copied from the source
attribute amount (since f (grant.amount) = [grant,fund,project].amount*).

Step 2 is the main component of MapGen and its role is to en-
rich the concept-to-concept mapping established in Step 1 so that
it maps groups of related instances rather than isolated instances.
To illustrate, according to the first source schema, a grant instance
is associated with department and project information through the
two HasA relationships labeled default3 and default4. In gen-
eral, it is desirable to carry over such data associations from the
source and preserve them in the integrated data. Consequently,
Mgrant is extended in Step 2 of MapGen in order to transfer, in
the integrated data, all the instances that are directly or transitively
associated with a grant instance.

This extension is done by a parallel chase in both the for and
exists clauses of the mapping, by recursively joining in all the con-
cepts that are related via HasA relationships. At the same time we
extend the mapping on the joined concepts by using the function f .

For our example, in one iteration of Step 2(b), for the edge grant

HasA dept [default3], we obtain the following updated mapping:

for g in grant, d in dept; g HasA d [default3]
exists g' in [grant,fund,project], d’ in [dept,org]; g’ HasA d’ [owner],
where g.amount = g’.amount* and d.dno = d’.dno* and 

d.dname = d’.dname* and d.country = d’.country

As it can be seen, the for clause is extended by adding a join with the
dept concept. We use the notation g HasA d [default3] to express
the join at the instance level between g (an instance of grant) and
d (an instance of dept). At the same time, we add a corresponding
join in the exists clause. We use the fact that f (grant HasA dept
[default3]) = [grant,fund,project] HasA [dept,org] [owner]. Based on
the integration function, we then add to the where clause of Mgrant

all the equalities between the attributes of the instances d of dept
and d′ of [dept,org].

Next, in a second iteration of the same Step 2(b) of the algorithm,
Mgrant is extended along the default4 relationship as follows:

for g in grant, d in dept, p in project; g HasA d [default3], g HasA p [default4]
exists g' in [grant,fund,project], d’ in [dept,org]; g’ HasA d’ [owner],
where g.amount = g’.amount* and d.dno = d’.dno* and 

d.dname = d’.dname* and d.country = d’.country and 
p.pid = g’.pid and p.pname = g’.pname* and p.year = g’.year

Here, we used the fact that f (grant HasA project [default4]) = [grant,
fund, project]. While the for clause is extended with a join with
project on default4, there is no need for such extension in the exists
clause. The same instance g′ of [grant,fund,project] that the grant
instance g maps into is also used to map the associated project in-
stance p. We only need to add the equalities between the attributes
of p and the corresponding attributes of g′ (again, using f ).

In the next two iterations of Step 2, the algorithm tries to extend
Mgrant along any HasA edges that may be outgoing from the dept
and project instances that were added to the for clause. However,
dept and project are top-level concepts without any such outgoing
HasA edges. Hence, Step 2 finishes at this point and Mgrant is
completed.

We note that the parallel chase procedure described above does
not terminate in the case of cyclic sets of constraints. To ensure that
MapGen terminates (and outputs a finite mapping), we add a simple
cycle detection condition that avoids further expansion based on
HasA edges of concepts that have been expanded before.
Further remarks on mapping generation The parallel chase we
use here is a variation on the known chase technique [1]. The chase
in the for clause of the mapping is essentially the same as the stan-
dard chase. The additional part is that we extend this chase, in par-
allel, by using the function f , on the exists clause. Therefore, the
mappings transfer all the relationships that can exist in the source
into corresponding relationships on the integrated schema.

Our mapping generation algorithm is directed by the function f

computed in the ApplyAssignment algorithm. This function dictates
which concepts map to which concepts and also dictates what join
conditions to use. This is in contrast with more general mapping
generation algorithms of schema mapping tools such as Clio [17],
which construct mappings between independently designed source
and target schemas and, as such, have to consider all possible can-
didate mappings between all pairs of concepts, and with all possible
choices of join conditions. The users of such systems would then
have to specify which choices to actually use (e.g., a join on owner

or one on sponsor). In contrast, in our schema integration context,
the function f has already encoded in it which concepts and which
joins to pick. Hence, mapping generation is more direct.

Although similar to the source-to-target tuple-generating depen-
dencies [17] used for schema-based mappings (i.e., mappings be-
tween relational, nested relational, or XML schemas), the mapping
constraints described in this section operate at the level of concept
graphs rather than schemas. As such, they can potentially have a
wider range of applications that go beyond schema-based integra-
tion (e.g., they could represent mappings between the objects in
two different applications).



3.3 From Concepts to Integrated Schema
From an integrated concept graph we can generate two types of

integrated schemas: relational or nested (XML). In the relational
version, each concept is implemented in a standard way, as a re-
lation that includes all the attributes of the concept together with
an additional key attribute. The HasA edges are then encoded by
adding appropriate foreign keys in the concepts that have outgoing
HasA edges.

In the nested version, each concept is implemented using a set-
type of records containing the attributes of the concept, plus a key
attribute. The set-types are then nested, by using the fact that a
HasA edge represents a many-to-one relationship. More concretely,
if A HasA B [L], then there are zero or more instances of A that
each have one reference (of type L) to one instance of B. We can
then choose such edge as an “anchor” for nesting: we nest the A’s
under B’s by nesting the set-type element for A under the set-type
element for B. The remaining HasA edges, not used for nesting,
are then encoded through key / foreign key relationships (as in the
relational case).

After creating the integrated schema, we also create the final
mapping from the input schemas to the integrated schema. Al-
though the mappings that are generated by MapGen are formulated
in terms of concepts, translating such mappings back in terms of the
concrete schemas (source and integrated) is straightforward. Essen-
tially, all the HasA joins have to be reformulated in terms of either
parent-child navigation or key / foreign key joins (depending on
how the relationships are encoded in the concrete schemas).

Mapping generation is the main step towards generating the ac-
tual data transformation script (or view) from the sources to the
integrated schema. Once the mappings are generated, we can apply
any of the existing techniques [10, 4] for compiling the mappings
into the run-time queries (XQuery, SQL, XSLT) that are needed to
migrate the data.

4. PRESERVATION PROPERTIES
The following proposition summarizes the main features of the

ApplyAssignment algorithm (which includes the MapGen algorithm).

PROPOSITION 4.1. Let G = (V , HasA, E) be a matching graph
and let G′ = (V ′, HasA′) be the integrated graph produced by
ApplyAssignment(G,X), for some assignment X to E. Let f be the
integration function produced for X .

1. Let A be a source concept. Then for every attribute a of A

there is an attribute a∗ in the integrated concept f(A) such
that f(A.a) = f(A).a∗. Conversely, let C be an integrated
concept. Then for every attribute c of C there is some source
concept A and some attribute a of A such that f(A.a) = C.c.

2. Let A HasA B [L] be a HasA edge in G. Then there is a path
of zero or more HasA edges in G′ such that f (A HasA B [L])

= f(A)
L1−→ . . .

Ln−→ f(B). Conversely, let C HasA D [L] be
a HasA edge in G′. Then there is an edge A HasA B [L] in
G such that f(A) = C, f(B) = D and f (A HasA B [L]) = C

HasA D [L].

3. Let I be a data instance for the graph of source concepts, and
let J be a data instance for the integrated concept graph that
is generated by enforcing, in a canonical way, all the mapping
constraints produced by MapGen. Moreover, assume that there
are no cycles of HasA edges among the source concepts.

For every instance t in I of a source concept C, there is a cor-
responding instance t′ of f(C) that is generated in J , such that
for each attribute a of t, the value t.a equals t′.f(a). Moreover,
whenever such t in I generates a corresponding t′ in J , then for

each instance u in I that t refers to (via a HasA edge) there is
a corresponding instance u′ that is generated in J . Further-
more, t′ and u′ are related in J by a path of HasA edges that
corresponds (via f ) to the HasA edge from t to u.

The proposition is an immediate consequence of the way the al-
gorithms ApplyAssignment and MapGen work. The first part states
that all the attributes in source concepts are transferred to attributes
of integrated concepts and, moreover, there are no “new” attributes
in the integrated schema. Thus, the first two informal requirements
stated in Section 2 are satisfied in a precise sense. The second part
of the proposition states that all the HasA edges between the source
concepts are transferred to paths of HasA edges in the integrated
schema and, moreover, every HasA edge in the integrated schema
comes from an edge (with the same label) in the source schema.

Finally, the third part of the proposition states a stronger preser-
vation property that holds at the data level, and captures the third
informal requirement in Section 2. It states that every instance t

of a source concept maps to a corresponding integrated instance t′.
Moreover, whenever such mapping of t into t′ takes place, we also
map all the instances related to t into instances related to t′.

Note that the generation of a canonical integrated instance J

based on the mapping constraints produced by MapGen is always
possible (and in polynomial time).3 This is due to the fact that the
mappings themselves have no cyclicity. However, in the case of
cycles of HasA edges among the source concepts, not all the rela-
tionships can be preserved. In particular, the paths of HasA edges
between source instances can be of unbounded length. Some form
of recursive mappings will be needed to preserve such paths.

5. ENUMERATION OF ALTERNATIVES
We now focus on the problem of enumerating all possible as-

signments X that will result in different integrated concept graphs.
We start by discussing the full enumeration algorithm (Sections 5.1
and 5.2), and then we explain how we make this algorithm inter-
active and adaptive so that only a partial enumeration is needed
(Section 5.3).

5.1 Duplicates and Cycles
As we have seen in Section 3, different assignments (such as

the earlier X1 and X2) encode different ways of merging the in-
put concept graphs and therefore, may give different results for the
integration. A naive enumeration algorithm would exhaustively go
through 2n Boolean combinations, if n is the size of X (i.e., the
number of matching edges), and then, for each combination, would
run the ApplyAssignment algorithm. Besides the potential infea-
sibility of enumerating a large number of combinations, the naive
enumeration algorithm also has the drawback that there may be
many assignments that give the same integrated schema (i.e., du-
plicate assignments). A better approach, which we shall follow, is
to avoid, from the beginning, the enumeration of duplicate assign-
ments. As a result, a significant portion of the space of assignments
can be pruned.

We now describe how duplicates can arise in a naive enumera-
tion algorithm. Recall that, given an assignment X , Step 1 in the
ApplyAssignment algorithm merges together all the source concepts
that are connected by the edges selected by X . Thus, there is one
integrated concept for each connected component in the subgraph
of G induced by X . Suppose now that we include one extra edge x

in the set of edges that are selected by X . It is then possible that the

3In fact, as we mentioned in Section 3.3, we can generate concrete
queries that efficiently implement the mapping constraints.



effect of this extra edge x is subsumed by edges that are already se-
lected by X . In other words, x specifies that two concepts A and B

should be merged but this merge is already a consequence of other
selected edges (i.e., there is already a path of edges selected by X

that connects A and B). Thus, applying the assignment X ∪ {x}
will result in the same configuration (same connected components)
as applying X .

We say that X and Y are duplicate assignments whenever the
sets of connected components induced by X and Y , respectively,
coincide. Duplicate assignments always result in duplicate inte-
grated graphs. Furthermore, duplicate assignments always arise
due to cycles in the matching graph G = (V, HasA, E).4 For ex-
ample, in the earlier argument with the two duplicate assignments
X and X ∪{x}, the extra edge x closes a cycle, since A and B are
already connected by edges from X . If G has no cycles then it can
be easily shown that there are no duplicate assignments.

To illustrate, consider our earlier matching graph G, shown in
Figure 4. The graph consists of 10 concepts, with 8 matching
edges, four of which form a cycle: x2, x4, x5, and x3. It can
be seen that if an assignment contains any three edges along this
cycle, then adding the fourth edge yields a duplicate assignment.
Equivalently, if X is an assignment that contains all four edges in
the cycle, then the following assignments are all duplicates of X:
X−{x2}, X−{x4}, X−{x5}, X−{x3}. Note that this duplica-
tion is independent of the assignments to the other edges (not in the
cycle). Thus, for each of the 24 = 16 (partial) assignments to the
four edges not in the cycle, we will have 5 assignments that have
the same effect (thus, four of them are unnecessary). Accordingly,
we can count 16 (partial assignments for edges not in the cycle)
× 4 (duplicate partial assignments to edges in the cycle) = 64 as-
signments that should not be considered (out of the 28=256 total
number of possible assignments). This duplication is even higher if
there are more edges outside the cycle. Also, note that duplication
happens in this example because of one cycle only.

In general, cycles appear more naturally and with higher fre-
quency in n-way schema integration. In such scenarios, matching
concepts will appear in multiple schemas. Furthermore, we may
have mappings between multiple pairs of these schemas, thus easily
forming cycles in the resulting graph of concepts. This increased
number of cycles will result in an even larger number of duplicate
assignments. In the experimental section we give synthetic exam-
ples of n-way schema integration and further illustrate the impact
that cycles have.

5.2 Duplicate-Free Enumeration Algorithm
We now give our algorithm for duplicate-free enumeration of

assignments. As we shall show experimentally in Section 6, this
algorithm is a significant improvement over the the naive enumera-
tion algorithm. In Section 5.3, we show how to make the algorithm
adaptive, by taking user constraints into account. This will further
reduce the size of the space that actually needs to be explored.

The main idea behind the algorithm, as alluded to earlier, is to
avoid enumerating assignments that contain exactly k − 1 edges of
a cycle of length k in the matching graph. Each such assignment
is a duplicate of the assignment obtained by adding the remaining
k-th edge in the cycle. We can formalize the “removal” of the as-
signments with k − 1 edges by imposing a set of constraints that
the assignments must satisfy. Specifically, we use a Horn clause of
the form

x1 ∧ x2 ∧ . . . ∧ xk−1 → xk

to specify that every assignment that assigns 1 to x1, x2, . . ., xk−1

4Here, the HasA edges are not relevant; we mean cycles in (V, E).

CH-Enum(G)
Input: Matching graph G = (V, HasA, E)
Output: Enumeration of all the distinct integrated graphs (together with
their mappings) that can be obtained from G via ApplyAssignment.

1. Compute all cycles of G (considering only the edges in E).

2. Construct a set Γ of Horn clauses as follows: for each cycle C =
x1, . . . , xk of edges in E, add the following k Horn clauses to Γ:

x1 ∧ x2 ∧ . . . ∧ xk−1 → xk

x2 ∧ x3 ∧ . . . ∧ xk → x1

. . .
xk ∧ x1 ∧ . . . ∧ xk−2 → xk−1

3. [Creignou & Hébrard]: Generate all satisfying assignments X of Γ.

4. For each assignment X , output the result of ApplyAssignment(G,X).

Figure 9: Duplicate-free enumeration algorithm.

must also assign 1 to xk. We also take into account all “permu-
tations” of such clauses, and we do this for all the cycles in the
matching graph.

The net effect of this is that we reduce the problem of duplicate-
free enumeration of assignments needed in our schema integration
context to the problem of enumerating all the satisfying assign-
ments for a set of Horn clauses. The latter problem has already
been studied in the literature, and there is a good algorithm for it.
Indeed, Creignou and Hébrard [8] devised a polynomial-delay al-
gorithm for generating all Boolean assignments that satisfy a set
of Horn clauses. Polynomial-delay [11] means that the delay un-
til the first satisfying assignment is generated, and thereafter the
delay between the generation of any two consecutive satisfying as-
signments, is bounded by a polynomial in the input size (i.e., the
total size of the input Horn clauses). This formalizes the notion of
a tractable algorithm for an enumeration problem with a possibly
exponential set of outputs.

Our resulting algorithm (CH-Enum) for duplicate-free enumera-
tion of assignments (and the corresponding integrated concept graphs)
is given in Figure 9. Note that, even though our algorithm uses a
polynomial-delay algorithm as a subroutine, it is not itself a polyno-
mial-delay algorithm, since, in the worst case, the number of cycles
(and, hence, the number of Horn clauses) may be exponential in the
size of the matching graph. Nonetheless, as detailed in Section 6,
our algorithm performs well on both synthetic and real-life integra-
tion scenarios, and clearly outperforms naive enumeration.

We now briefly describe the Creignou & Hébrard procedure it-
self, as applied to our scenario. Let Γ be a set of Horn clauses as
above, and let x1, . . . , xn be the variables that occur in Γ. Given
such input, the algorithm proceeds by recursively considering the
variables x1, . . . , xn in order, as follows. Initially, all variables are
unassigned. In step i (1 ≤ i ≤ n), if the variable xi is unassigned,
then its value is set first to 1. Otherwise, the variable already has a
value (see next), and the algorithm continues with step i + 1.

When xi is set to 1, some of the Horn clauses in Γ may now have
all 1’s in the left-hand side of the implication. For each such Horn
clause, the algorithm tries to propagate the value 1 to the variable
in the right-hand side of the implication, in an attempt to satisfy the
Horn clause. If the variable on the right-hand side is not already as-
signed a value of 0 (from a previous step), then we set it to 1 (if not
already 1) and continue to the next step (i + 1). Otherwise, clearly,
the clause cannot be satisfied with the current partial assignment.
So, we abandon the branch with xi = 1 and set xi = 0. The al-
gorithm continues with step i + 1. Whenever a full assignment is
found, we output it and then backtrack to the last variable, xi, that
was assigned 1. If no such xi exists, we are done. Otherwise, we
set that variable xi to 0 and proceed to explore, again, xi+1.



The main advantage of this algorithm (over an exhaustive enu-
meration of satisfying assignments) is that as soon as a partial as-
signment is discovered to be unsatisfiable, none of its supersets
are further considered. Hence, the algorithm prunes, early in the
search, all the assignments that are guaranteed not to satisfy Γ.

5.3 Adaptive Enumeration
Our tool does not enumerate all integrated schemas at once. In-

stead, target schemas are output one by one and the user is allowed
to browse through the schemas generated so far, as well as request
the generation of a new schema. As a result of this interaction, after
examining a few integrated schemas, a user may gain more insight
on the structure of the desired final schema. For example, the user
may see things that are “wrong” and should be corrected. Based
on this insight, the user can express additional constraints on how
concepts should be merged. These constraints are then used to filter
the set of schemas generated so far, and, more interestingly, can be
incorporated in the enumeration of the subsequent schemas. The
result is an adaptive enumeration procedure that significantly re-
duces the search space with every constraint learned from the user.

User constraints can be given through a visual interface, directly
in terms of concepts or of the matching edges between them. In
contrast to the redundancy constraints in Section 3.1 which are ap-
plied to merge HasA edges between concepts, the constraints we
define in this section express conditions on how to merge the con-
cepts themselves. Furthermore, these constraints directly affect the
enumeration procedure. Thus, we shall call them enumeration con-
straints.

We allow two types of enumeration constraints. First, the user
can require a matching edge x to be always applied or never ap-
plied, expressed as Apply(x) and respectively, ¬Apply(x). When-
ever such constraint is applied, the space of possible assignments is
reduced in half, since one variable is eliminated (set to either 1 or
0). Second, the user can require constraints of the form Merge(A1,
. . ., An) or ¬Merge(A1, . . ., An), where A1, . . ., An are arbi-
trary concepts in the matching graph (some could be from the same
schema). These constraints also reduce, significantly, the space of
possible assignments.

The meaning of ¬Merge(A1, . . ., An) is that, for every pair of
distinct concepts Ai and Aj , i, j ∈ [1, n], Ai and Aj should never
be merged. Thus, each Ai will be in a different connected compo-
nent. Constraints of the form ¬Merge(A1, . . ., An) are useful for
enforcing certain structural patterns in the integrated schema. As
an example, the user can add the constraint ¬Merge(org, location,
emp, phone, fund) which essentially requires the structure of the
second schema S2 to be preserved. There is no merging among the
five concepts, and their relative structure will stay the same in the
integrated schema. However, the concepts of the first schema can
be freely merged into the concepts of the second schema, based on
the matching edges.

The semantics of Merge(A1, . . ., An) is slightly more complex.
This is due to the fact that it may not be possible to merge all the n

concepts, simply because there may not be enough matching edges.
For example, Merge(dept, fund) cannot result in any merging, since
there is no matching edge between dept and fund. The semantics
we take is that we group the n concepts into connected components
based on all the matching edges in the matching graph. If two con-
cepts are in different components, we do not attempt to merge them.
However, if two concepts are in the same connected component, we
shall only enumerate integrated graphs that keep them connected.
For example, the effect of Merge(dept, org, grant, fund, project) is
that the subsequent enumeration shall only consider assignments
that merge dept and org, and merge grant, fund, and project.

When a new enumeration constraint F is specified, the already
generated schemas that do not satisfy F are filtered out. More inter-
estingly, we adapt the CH-Enum algorithm so that it only generates,
from that point on, only schemas that satisfy F (and the other ex-
isting enumeration constraints). We explain next how this is done.
The main idea is to encode the enumeration constraints, whenever
possible, with Horn clauses (similar to how we encode cycles in
CH-Enum).

If F is of type Apply(x), where x is a matching edge, we add the
Horn clause → x to the set of clauses that are considered by CH-
Enum, to encode the fact that every assignment must satisfy x = 1.
In the implementation, if x is unassigned, then we fix x = 1 and
continue the enumeration procedure. Here, fixing the value of x

means that x will never be subsequently changed during the enu-
meration procedure. If x is currently assigned 1, then we proceed
with the enumeration until we reach the point when x has to be
switched from 1 to 0. At this point, we fix x = 1 and backtrack
to the variable before x. If x is assigned 0, then we fix x = 1
and backtrack to the variable before x. Hence, we eliminate any
assignment that has x = 0. Similarly, if F is of type ¬Apply(x),
we add the Horn clause → ¬x to encode the fact that every as-
signment must satisfy x = 0. The implementation is similar (but
complementary) to the case of Apply(x).

If F is of type ¬Merge(A1, . . ., An), then for every two dis-
tinct concepts Ai and Aj , i, j ∈ [1, n] we enforce the constraint
¬Merge(Ai, Aj) as follows. For each simple path x1, . . . , xk be-
tween Ai and Aj in the matching graph, we use Horn clauses of the
form x1 ∧ . . .∧ xk−1 → ¬xk (together with all the permutations).
This encodes the fact that every assignment that assigns 1 to any
k − 1 variables (edges) along the path x1, . . ., xk must assign 0 to
the kth variable. Thus, we make sure that no path of edges connects
Ai and Aj .

Finally, the case of Merge(A1, . . . , An) is trickier. There is no
apparent way to encode such constraint, in general, as a set of Horn
clauses. Hence, in the implementation, we cannot direct the CH-
Enum algorithm to avoid the generation of violating assignments.
However, once an assignment is generated, we can check whether
it violates the constraint and then discard any such assignment. Al-
though Merge constraints cannot be used to reduce the space ex-
plored by CH-Enum, they are still useful from the user interaction
point of view.

6. EXPERIMENTAL EVALUATION
We evaluated the performance of our integration method on syn-

thetic schema integration scenarios, as well as on a few real world
scenarios. We show that CH-Enum is much faster compared to
the naive enumeration and that it scales well with the increasing
complexity of schemas and mappings. In particular, the average
time to output the next integrated schema, when using CH-Enum, is
fairly low. Furthermore, experiments with enumeration constraints
indicate that the space of candidate schemas drastically reduces
after adding even a small number of constraints. The system is
implemented in Java and all experiments are performed on a PC-
compatible machine, with two 2.0GHz P4 CPUs and 4Gb RAM,
running Linux and JRE 5.0.

6.1 Synthetic Scenarios
The goal of our experiments with synthetic scenarios is to mea-

sure the performance of our integration method along three dimen-
sions: 1) the number N of input schemas, 2) the complexity of each
schema, measured by its root fanout F (i.e., the number of top level
sets) and nesting depth D (i.e., the number of levels of nested sets),
and 3) the degree I of interconnection between the input schemas.



Schema 2
Root2:

R1: Set [
K1
B1

Rd: Set [
Kd
Bd

]
]

Schema 1
Root1:

R1: Set [
K1
B1

Rd: Set [
Kd
Bd

]
]

… Schema n
Rootn:

R1: Set [
K1
B1

Rd: Set [
Kd
Bd

]
]

V12

Figure 10: Synthetic schemas used in our experiments.

Figure 10 shows N = n synthetic schemas with root fanout F = 1
and nesting depth D = d, and a mapping that connects S1 and S2.
Given input schemas Si and Sj , either Si and Sj are not connected,
or they are connected through a set of correspondences Vij relating
each attribute Bk of Si with the attribute Bk of Sj . For F = f ,
the configuration shown in the figure repeats f times (since there
are f top-level sets in each schema). The degree I of interconnec-
tion between input schemas is the number of schemas Sj that are
connected to an input schema Si, averaged over all input schemas.

Figure 11(a) shows a comparison in performance between the
naive enumeration and CH-Enum. In the experiment we fixed the
degree of interconnection to I = 3 (i.e., each input schema relates
on average to three other schemas). The complexity of each schema
was fixed to D = 3 and F = 1 and we varied the number N of
input schemas from 4 to 10. We report the average time to generate
the next integrated schema, for both strategies. (In each scenario
and for each strategy, we stopped after generating the first 1000
integrated schemas.)

The results show that CH-Enum performs much better than the
naive enumeration strategy. For example, in the scenario with N =
8 CH-Enum took 2 milliseconds, on average, while the naive algo-
rithm took around 370 milliseconds, to output the next integrated
schema. The difference in performance is not unexpected, since the
naive algorithm exhaustively enumerates all possible assignments,
a large portion of which are duplicate assignments (i.e., leading
to the same set of connected components in the matching graph).
These duplicates are explicitly removed by checking whether the
set of connected components generated in Step 1 of ApplyAssig-
nment has already been encountered. The space needed to store the
previously seen sets of connected components is in itself a problem.
(In fact, for the scenarios with N = 9 and N = 10, the naive algo-
rithm ran out of memory, which is why the times are not reported
in Figure 11(a).) To illustrate the savings obtained with CH-Enum,
consider the scenario with N = 4, where there are 3375 distinct
integrated schemas. In this scenario, the matching graph consists
of 12 concepts and 18 matching edges, and has 21 cycles. The
naive enumeration strategy performs duplicate elimination on 218

possible sets of connected components, while CH-Enum directly
generates the 3375 distinct ones.

For the rest of the experiments, we report only the times obtained
with CH-Enum, since it outperforms the naive enumeration strategy.

In a second experiment, we tested the scalability of CH-Enum
with the complexity of the input schemas. Implicitly, this also tests
the scalability of the ApplyAssignment algorithm, which is invoked
to generate each integrated schema. We used scenarios with two
input schemas (i.e., we fixed N = 2 and I = 1) and generated
the first 1000 integrated schemas. Figure 11(b) illustrates the influ-
ence of the root fanout (F ) and the nesting depth (D) of the input
schemas on the average time to output the next integrated schema.
As expected, the performance decreases with the increase in the
complexity of the schemas.

(a)   Schemas with nesting depth 3 and root fanout 1
Every schema has mappings to 3 others
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Figure 11: (a) Comparison of CH-Enum with naive enumera-
tion. (b) Time of CH-Enum vs. increasing schema complexity.

6.2 Real Scenarios
We tested the performance and usability of our method in several

real-life integration scenarios. The schemas used in these scenar-
ios are: a relational and an XML schema, each representing gene
expression experimental results (GENEX); a fragment of the Ge-
nomics Unified Schema (GUS) [9] and the BioSQL schema for ge-
nomic sequences and features [5]; two XML schemas representing
enterprise business objects related to orders, one from SAP and
the other one in use with the IBM WebSphere Business Integra-
tion (WBI) suite; a relational and the DTD version of the Mondial
database [15]; two relational schemas from the Amalgam integra-
tion benchmark [13] for bibliographic data; two variations of the
XML schema for the DBLP bibliography; the first schema in the
Amalgam benchmark and one of the previous DBLP schemas; and
three XML schemas, each with a different nesting structure, rep-
resenting information about departments, projects and employees.
Figure 12 shows, for each case, the number of schemas, as well as
the number of concepts, matching edges and cycles in the matching
graph.

The running times for CH-Enum as well as the size of the space
of candidate schemas in each scenario are also shown in Figure 12.
CH-Enum performed well in all cases, taking up to 35 milliseconds
to generate the next integrated schema, on average. The size of
the space of candidate schemas (shown in the Integrated Schemas
column) may be large (around or above 1000 schemas in the cases
of Mondial, Amalgam, DBLP, Amalgam-DBLP). However, our ex-
periments with user constraints, which we describe next, show that
the number of schemas that a user actually explores (and the tool
generates) before arriving at the desired schema is much smaller.

The last three columns measure the user interaction effort in



Integration Input Value Source MatchingCycles Initialize Avg. time Integrated Integrated schemas after adding EnumerationRedundancy
Scenario SchemasCorresp.Concepts Edges (sec) /schema (ms) Schemas the nth enumeration constraint Constraints Constraints

Enforced

Genex 2 31 13 6 0 0.014 4.80 64 1st ⇒ 32; 3rd ⇒ 8, 6th ⇒ 1 1 4
GUS-BioSQL 2 34 238 9 0 2.667 34.24 512 1st ⇒ 8; 3rd ⇒ 2, 4th ⇒ 1 0 6
WBI-SAP 2 46 22 7 0 1.125 8.29 128 2nd ⇒ 8; 3rd ⇒ 4, 5th ⇒ 1 1 4
Mondial 2 53 52 19 0 0.056 1.62 >3000 7th ⇒ 1024; 11th ⇒ 64; 14th ⇒ 8 2 12
Amalgam 2 30 24 29 3486 92.089 4.83 >3000 5th ⇒ 250; 7th ⇒ 10; 9th ⇒ 1 8 0
DBLP 2 18 14 12 10 0.008 27.74 1096 1st ⇒ 144; 3rd ⇒ 4; 4th ⇒ 1 1 1
Amalgam-DBLP 2 26 29 10 0 0.014 1.04 1024 1st ⇒ 64; 2nd ⇒ 8; 5th ⇒ 1 1 1
Proj-Dept-Emp 3 15 11 10 3 0.005 0.19 250 2nd ⇒ 100; 3rd ⇒ 20; 5th ⇒ 2 2 3

Figure 12: Evaluation of CH-Enum on real schema integration scenarios.

Integration Enumeration Constraints
Scenario

GUS-BioSQL Merge(BioEntry, GOTerm, GOSynonym, Gene,
GeneSynonim, Term, TermSynonym)

Apply(GORelationship ↔ TermRelationship)
Apply(Taxon1 ↔ Taxon2)
Apply(TaxonName1 ↔ TaxonName2)

WBI-SAP ¬Apply(Address ↔ SAP Order)
Merge(Order, PaymentInformation, SAP Order,

SAP OrderDateData)
Apply(OrderLineItem ↔ SAP OrderLineItem)
Apply(Adjustment ↔ SAP OrderLinePricing)
Apply(DeliverySchedule ↔ SAP ScheduleLines)

Amalgam-DBLP ¬Merge(masterthesis1, phdthesis1, author1,
techreport1, book1)

Merge(author1, author2, author3, author4)
Apply(article1 ↔ article2)
Apply(inproceedings1 ↔ inproceedings2)
Apply(book1 ↔ book2)

Proj-Dept-Emp ¬Apply(dept1 ↔ project2)
¬Apply(project2 ↔ dept3)
Merge(emp1, emp2, emp3)
Apply(dependent2 ↔ dependent3)
Merge(project1, project2, project3)

Table 1: Some of the enumeration constraints used in experi-
ments with real schema integration scenarios.

terms of the number of enumeration and redundancy constraints
that need to be added. In the case of enumeration constraints, we
show the impact that such constraints have on the overall conver-
gence of our schema integration method. Specifically, the space of
remaining candidate schemas (i.e., the space of schemas that satisfy
the enumeration constraints added so far and, hence, are of interest
to the user) is significantly pruned after adding just a few enumera-
tion constraints. In the DBLP scenario, for example, the number of
schemas of interest is decreased from 1096 to 144 after adding the
first constraint, then further decreased to 4 after the third constraint,
and then decreased to just one after adding the fourth constraint.
In the figure, these facts are denoted as 1st ⇒ 144; 3rd ⇒ 4;
4th ⇒ 1.

To illustrate the enumeration constraints that were added, the fol-
lowing are the four enumeration constraints for the DBLP scenario:
1) do not merge concepts in the second DBLP schema (thus, the
second DBLP schema is taken as a reference schema and the other
schema is merged into it), 2) merge Article with Pub, 3) merge In-
proceedings with Pub, and 4) merge Author (in the first schema)
with Author (in the second schema). For Mondial, we used enumer-
ation constraints to enforce the merging of matching concepts such
as Sea, Mountain, Lake and others, occurring in the two schemas.
As another example, just four enumeration constraints sufficed to
reduce the space of candidate schemas to only two integrated schemas
of interest in the WBI-SAP scenario. The enumeration constraints

we have added in the WBI-SAP scenario, as well as in some of the
other scenarios, are shown in Table 1.

We further note that the number of enumeration constraints re-
quired to prune the search space to a few schemas of interest can be
seen as a pessimistic upper bound on the number of enumeration
constraints that the user has to actually enforce in practice. This
is because the tool may generate and display the “right” integrated
schema much earlier in the process. The reason for this behavior is
that the implementation of the enumeration algorithm gives priority
to the most merged candidate schemas, which are often what a user
wants, provided that other constraints are satisfied. Thus generat-
ing schemas from the most merged ones to the least merged ones
(due to the fact that we explore assignments starting from all 1’s
down to all 0’s) is quite beneficial in practice.

To illustrate this behavior, the second to last column in Figure 12
shows the number of constraints we have actually enforced before
our tool displays the right integrated schema, in each scenario. In
the WBI-SAP scenario, for example, the desired integrated schema
was generated and displayed after we added the first enumeration
constraint, although 5 such constraints are (theoretically) neces-
sary to reduce the search space to this integrated schema. In this
scenario, as well as in several others (e.g., Genex, GUS-BioSQL,
DBLP), most or all of the desired merging is performed by our tool
automatically, and the user needs to enforce at most one constraint
to indicate, through ¬Apply and ¬Merge constraints, which merg-
ing choices are undesirable.

Furthermore, as shown in the last column, at most 12 redun-
dancy constraints were needed, over all scenarios, to remove the
redundant HasA edges in the integrated schema. As an example, in
the DBLP scenario, only one redundancy constraint was needed to
merge two parallel relationships “copied” from Author HasA Arti-
cle and respectively, Author HasA Inproceedings. Finally, we note
that in the case of GUS-BioSQL, all that is needed is 4 enumer-
ation constraints (at most) and 6 redundancy constraints to arrive
at the merge of two complex schemas of real-life significance to
biologists.5 A similar comment applies to the WBI-SAP scenario,
where the input schemas are also quite complex (the concepts have
tens of attributes) and are of real-life significance to enterprise ap-
plications.

As a note on the implementation of our method, we observe that
the number of cycles in the matching graph impacts the initializa-
tion time of CH-Enum (i.e., the time to compute all cycles in Step
1). In the Amalgam scenario (our worst case), it takes 92 seconds
to compute a total of 3,486 cycles. In general, a large number of
cycles in the matching graph constitutes a potential problem for
Step 1 of CH-Enum. In the implementation, we can use a “hybrid”
approach between the naive enumeration and CH-Enum that limits

5Of course, generating the correct correspondences between the
two schemas is a prerequisite to schema integration.



the number of cycles computed in Step 1, and checks for duplicate
assignments as an extra step (since duplicate assignments may still
appear due to cycles not found in Step 1). Thus, we bound the ini-
tialization time, at the expense of an increase in the time to generate
the next schema.

7. RELATED WORK
The distinguishing feature of our approach when compared to

existing work on schema integration, model merging, and ontology
merging, is the systematic enumeration and exploration of the dif-
ferent integration designs. The enumeration of alternative designs
is based on the recognition that correspondences between concepts
signify overlap in semantics rather than equivalence, and therefore
such concepts may or may not be merged, depending on the sce-
nario. Beyond enumeration, there are several other differences
and similarities with the existing work that are worth noting. We
focus our discussion on the model merging method of Pottinger
and Bernstein [18], since this subsumes much of the earlier work
on schema integration [2, 6, 21] and also includes merging-specific
features that are present in PROMPT [16] and other ontology merg-
ing systems, such as FCA-Merge [22]. We note, in this context, that
most ontology integration literature has been primarily focused on
the problem of ontology alignment, which is deriving relationships
across concepts in different ontologies (see ILIADS [23], for a re-
cent example). In contrast, our focus here is on exploring the al-
ternatives for the structural unification of the redundant concepts or
attributes (i.e., the merge phase).

One of the main features in [18] is the use of a mapping “in
the middle” that essentially drives the integration of the two input
models. The mapping, which can be quite complex, can be seen
as a “template” for the integrated model, and must be specified by
a user before the actual integration. In contrast, the input to our
method is just a set of atomic correspondences which can be dis-
covered by an automatic schema matching tool. The additional user
constraints in our method are given as the user explores the avail-
able choices that the tool discovers (a “learn-as-you-go” approach,
as opposed to knowing or guessing in advance what the outcome
should be).

As in [18], our method operates at a logical rather than physical
schema level. Our meta-meta-model (using their terminology) is
more basic; it includes HasA edges as the basic form of relation-
ships, and a simpler form of Contains (i.e., concepts contain at-
tributes). Nevertheless, our graphs of concepts can express most of
the essential features that appear in schemas or in conceptual mod-
els such as ER diagrams or UML class diagrams. The work of [18]
is extended in [19] by considering the schema integration problem
in the context of source schemas related by GLAV mappings, as op-
posed to just correspondences between schema attributes. It would
be interesting to investigate how our enumeration methodology ex-
tends to this context.

Finally, we note that we did not address type and representation
(e.g., name) conflicts in this paper; we believe that resolution of
such conflicts can be applied as a post-processing step, and is com-
plementary to our basic method.

8. CONCLUDING REMARKS
This paper contains a number of contributions to the study of

the schema integration problem. Specifically, we developed and
implemented a method that, given a set of heterogeneous source
schemas and correspondences between them, systematically enu-
merates multiple integrated schemas and, at the same time, supports
refining the enumerated schemas via user interaction. Our method

is built on a principled approach that first formalizes the problem
in terms of concept graphs, reduces it to a graph-theoretic problem,
and then takes advantage of a known polynomial-delay algorithm
for enumerating the satisfying assignments of Horn formulas.

Our enumeration framework has also a conceptual benefit: it is
a way of precisely defining the space of candidate schemas in the
context of schema integration. Our adaptive enumeration algorithm
based on user constraints is one effective way of exploring this
space. Other subsequent exploration techniques can be developed
in the future, by exploiting various techniques for schema rank-
ing, either through the use of query workloads or by incorporating
weights or probabilities into the matchings between attributes and
concepts.
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