
TEGRA: Table Extraction by Global Record Alignment

Xu Chu1
∗

, Yeye He2, Kaushik Chakrabarti2, Kris Ganjam2

1University of Waterloo, Waterloo, Canada
2Microsoft Research, Redmond, USA

1x4chu@uwaterloo.ca
2{yeyehe, kaushik, krisgan}@microsoft.com

ABSTRACT
It is well known today that pages on the Web contain a
large number of content-rich relational tables. Such tables
have been systematically extracted in a number of efforts
to empower important applications such as table search and
schema discovery. However, a significant fraction of rela-
tional tables are not embedded in the standard HTML table
tags, and are thus difficult to extract. In particular, a large
number of relational tables are known to be in a “list” form,
which contains a list of clearly separated rows that are not
separated into columns.

In this work, we address the important problem of au-
tomatically extracting multi-column relational tables from
such lists. Our key intuition lies in the simple observation
that in correctly-extracted tables, values in the same column
are coherent, both at a syntactic and at a semantic level. Us-
ing a background corpus of over 100 million tables crawled
from the Web, we quantify semantic coherence based on a
statistical measure of value co-occurrence in the same col-
umn from the corpus. We then model table extraction as
a principled optimization problem – we allocate tokens in
each row sequentially to a fixed number of columns, such
that the sum of coherence across all pairs of values in the
same column is maximized. Borrowing ideas from A? search
and metric distance, we develop an efficient 2-approximation
algorithm. We conduct large-scale table extraction experi-
ments using both real Web data and proprietary enterprise
spreadsheet data. Our approach considerably outperforms
the state-of-the-art approaches in terms of quality, achieving
over 90% F-measure across many cases.

1. INTRODUCTION
Relational tables on the Web have long been established as

a rich source of structured data. Early studies suggest that
the number of meaningful relational tables on the Web is well
over a hundred million [10,26], and is thus considered to be
by far the largest relational data repository [10]. The sheer
number of tables has spawned many interesting applications

∗Work done at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2723725.

Figure 1: An example relational table in HTML list

including table search [1, 2], table integration [9, 27], and
knowledge discovery [26] among many others.

All these useful applications hinge on the successful ex-
traction of high-quality relational tables. While many rela-
tional tables on the Web are embedded in HTML table tags,
and are thus easy to extract (since both row boundaries and
column boundaries are clearly marked), a significant frac-
tion of tables do not use HTML table tags. In particular,
a large number of relational tables are in HTML list tags,
which provide a set of clearly separated rows, but do not
segment the rows into columns. Figure 1 shows one such
example list containing a relational table with city name,
state name, and population of cities in New England.

It is estimated in [16] that the number of useful relational
tables that can be extracted from HTML lists is at least
tens of millions (a number consistent with our analysis to be
discussed later). Tables in lists thus represent a significant
source of relational tables. Extracting such tables brings
obvious benefits for downstream applications. For example,
a table search system [1, 2] powered by an enhanced table
corpus extracted from lists is more likely to return relevant
tables (e.g., the table in Figure 1 can be returned for a query
“top New England city population”).

The pioneering work from Google, named ListExtract [16],
is the only work that specifically targets the problem of ex-
tracting tables from lists on the Web. The authors rightfully
point out the challenges therein – column delimiters in lists
are implicit, which can be any special characters. Delim-
iters can also vary from one list to another, or even within
the same list. In Figure 1, for example, a comma (“,”) and
a semi-colon (“:”) are used as column delimiters, yet the
second comma (“,”) is not a delimiter. In addition, white-
spaces (“ ”) is often used as delimiters, as in the additional
example in Figure 2 (which should parse into a three-column
table shown in Figure 3). In Figure 1, however, white-spaces
should not be used as delimiters. The bottom line is that any
special characters or punctuation can be used as column de-

l1 Los Angeles California United States
l2 Toronto Canada
l3 New York City New York USA

Figure 2: An example input list L

t1 Los Angeles California United States
t2 Toronto Canada
t3 New York City New York USA

Figure 3: An extracted output table T

limiters, which greatly complicates the extraction problem. 1

Previous approaches. The authors in [16] were the first
to recognize the value of extracting tables from We lists, and
proposed an approach called ListExtract. To date, [16]
is the only published approach specifically addressing the
problem of extracting tables from general Web lists fully
automatically (other related methods will be reviewed in
Section 6).

At a high level, the ListExtract approach works in three
steps: (1) It utilizes various signals, such as a language
model, to greedily identify token subsequences in each line
that are likely to be individual cells (e.g., “New York” and
“USA”), so that each line is independently split into multiple
cells. (2) It counts the number of segmented cells in each
line and use the majority vote to guess the correct num-
ber of columns, k, in the output table. Records that are
not split into k columns in the previous step are re-split to
produce exactly k columns. (3) Adjustments are made for
values that appear inconsistent to produce the final output.
A more detailed discussion of ListExtract can be found in
Appendix A.

We observe that ListExtract makes local splitting deci-
sions in each line independently early in the process, regard-
less of segmentations in other lines. Once such local deci-
sions are made, it becomes difficult to recover from these
decisions that are in fact suboptimal globally. For example,
in l3 of Figure 2, the language model may be very confident
that “New York” is more likely to be a cell entry than “New
York City” because of the popularity of the name. However,
once “New York” is greedily split into a cell, it becomes very
difficult to segment subsequent tokens starting with “City”
(e.g., “City”, “City New”, or “City New York”) to align them
well with values from other rows in the same column. Such
local greedy decisions negatively affect the quality of the
extraction.

Highlights of our approach. In light of these issues,
in this work we propose a principled approach called Table
Extraction by Global Record Alignment (TEGRA), which
models table extraction as a global optimization problem.
We observe that in a correctly extracted table, cell values
in the same column should be coherent, either semantically
(e.g., “Los Angeles”and“Toronto”are coherent because they
are in the same domain and co-occur in the same column
frequently), or syntactically (e.g., values should have similar
token length, etc.). Using a Web table corpus with over 100
million tables, we quantify semantic coherence by statistical
value co-occurrence in the same column (e.g., “Los Angeles”
and “Toronto” co-occur much more frequently than mere co-
incidence in the corpus, thus their coherence is strong). Us-
ing the notion of coherence, we formulate table extraction
as an optimization problem – we sequentially allocate tokens
to a fixed number of columns, so that the sum of coherence
score across all pairs of values in the same column can be
maximized.

1The work in [16] provides additional HTML lists that are
excellent motivating examples.

While this is a natural formulation that captures the“good-
ness” of a well-formatted table, the formal problem is in-
tractable in general. We design a mechanism to decompose
the objective function into more tractable components while
guaranteeing 2-approximation. We further develop an effi-
cient algorithm utilizing ideas from A* search that can prune
away unpromising segmentations without affecting quality.

TEGRA has a number of salient features. First, by us-
ing coherence as the objective function in our formulation,
we perform global optimization, where splitting decisions in
different lines are optimized holistically to ensure the best
alignment.

Second, our coherence score takes advantage of a large
table corpus with over 100 million tables. By using a data-
driven approach to measure the compatibility of two values
in the same column (“Los Angeles” and “Toronto”), it easily
generalizes to a wide variety of domains, which works well
for both public Web data as well as proprietary enterprise
data, as will be shown in our experiments. In comparison,
previous research on unsupervised record segmentation [3,
14,28] mostly relies on a specific reference table or knowledge
base that need to match the target table of interest, and as
we will show, cannot handle general tables on the Web.

Third, in order to scale to millions of lists on the Web
and extract tables automatically, our approach is designed
to be fully unsupervised, for user input can be too expensive
at this scale. Note that in our problem, we need to extract
content with heterogeneous schemas from every lists. This
is in contrast to techniques such as wrapper induction [4,
12, 17], that utilize training examples to extract targeted
relations with a specific schema.

Finally, although the intended application is offline rela-
tion table extraction (the offline unsupervised variant), our
approach is general and capable of handling an interactive
online scenario for ad-hoc table extraction (the online su-
pervised variant), where a certain amount of user feedback
is given in the form of segmentations for a few example rows
to further improve the quality of tables extracted.
Contributions. We make the following contributions.
• We model table extraction as a principled optimization
problem that captures the conceptual goodness of a table.
We show experimentally that this objective function strongly
correlates with the quality of extracted tables.
• We develop an efficient 2-approximation algorithm utiliz-
ing ideas from A? search and a mechanism to decompose the
objective function.
•We demonstrate that our approach can also be adapted to
handle user supervision in the same framework.
•We conduct extensive experiments using real datasets from
both the public Web and a proprietary enterprise. TEGRA
achieves high accuracy and outperforms the state-of-the-art
in all scenarios we evaluated.

2. PROBLEM STATEMENT
In this section, we formally define the problem of table

extraction from lists. We start by defining what table seg-
mentation or table extraction is2.

2.1 Definition of Segmentation
Let tok be a tokenization function that splits an unseg-

mented line l into a sequence of tokens tok(l), based on a set
of user defined delimiters (e.g., white spaces, commas, etc.).
We use l[w] to index the wth token, and use l[i . . . j], i ≤ j,

2We use both table segmentation and extraction inter-
changeably when the context is clear.

to represent a consecutive subsequence of tokens starting at
l[i] and ending at l[j]. We define a segmentation t of line l
as follows.

Definition 1. An m-column segmentation t of line l is
defined as t = (l[i1 . . . j1], . . . , l[im . . . jm]), where i1 = 1, jm =
|l|, and ik+1 = jk + 1, ∀1 ≤ k ≤ m− 1. Denote by sm(l) the
domain of all possible m-column segmentations of l.

The notion of segmentation is quite natural – it is a set of
m subsequences of tokens that collectively covers all tokens
in l. We intentionally make a distinction by denoting an
unsegmented line as l and a segmented tuple/record3 as t.

Example 1. Consider an unsegmented line l1 in our run-
ning example in Figure 2. Using white spaces as delimiters,
l1 can be split into a sequence of tokens as follows.

l1 : Los Angeles California United States

A possible segmentation of l1 is t = (l[1 . . . 2], l[3 . . . 3], l[4 . . . 5])
t : Los Angeles California United States

Finally, a table segmentation for a list of lines L is simply
the union of segmentations of all lines in L.

2.2 The Goodness of Segmentation
There are many ways to segment a line, and exponen-

tially more to segment a list into a table. Among all these
options, we need a criteria to measure the goodness of a
segmented table in order to guide the algorithm to pick the
best segmentation. Intuitively, when a human looks at a
table, if values in the same column are not coherent, then
he would judge the segmentation as “bad”. For example, if
a person’s name “John Smith” and a city name “New York
City” are in the same column, the segmentation would be
judged as “bad” because semantically these values are not
in the same conceptual domain. Similarly, if a numerical
value “159.3” and a city name “New York City” are aligned
in the same column, or if a long string value “New York City
New York” and a short string “Toronto” are aligned in the
same column, then the alignment is also likely to be bad,
because we expect values in the same column of a correctly-
segmented table to be syntactically similar (e.g., similar
number of tokens, similar value types, etc.).

Mimicking this human intuition, we say a segmented ta-
ble is good if it is overall coherent. For technical reasons, in
this work we use the notion of distance, which is the reverse
of coherence – that is, pairs of cell values with high coher-
ence (similarity) have low distance (dis-similarity), and vice
versa. With this, we can equivalently say that a segmented
table is good if its overall distance is low.

2.3 Quantify Goodness: Distance Functions
In order to quantify the overall distance of a table, we first

define the distance between two cell values. Given two string
values s1 and s2, we use d(s1, s2) to denote the distance (in-
coherence) score of s1 and s2. As motivated above, d(s1, s2)
should be a combination of syntactic distance, dsyn(s1, s2),
and semantic distance, dsem(s1, s2). Namely,

d(s1, s2) = α dsyn(s1, s2) + (1− α) dsem(s1, s2) (1)

where α controls the relative importance of the two compo-
nents. By default, we set α to be 0.5.

In this work, we focus on distance d(s1, s2) that satisfies
the natural properties used in metric distance, namely, non-
negativity, symmetry, and triangular inequality.
• Non-negativity: d(s1, s2) ≥ 0
• Symmetry: d(s1, s2) = d(s2, s1)
• Triangle inequality: d(s1, s2) + d(s1, s3) ≥ d(s2, s3)
3Tuple and record are used interchangeably for a segmented
row in the paper.

2.3.1 Semantic Distance
As discussed above, semantic distance dsem(s1, s2) should

capture the likelihood that s1 and s2 are in the same seman-
tic domain (e.g., “New York City” and “Toronto”). While
specialized Knowledge Bases (KBs) capture some of these
semantic information, they are of limited domain coverage
and/or entity coverage (let alone name variations, etc.). Since
our goal is to extract tables from millions of general lists on
the Web regardless of domain, KBs are unsuitable as a uni-
versal way to define distance because it cannot possibly cover
all entities that can be found on the Web (we will explore
this in our experiments).

We propose a data-driven way to define semantic distance
that generalizes to all values. Specifically, using a table cor-
pus of over 100 million tables crawled from the Web, we mea-
sure the statistical co-occurrence of s1 and s2 in the same
column. This embodies our intuition that values in the same
semantic domain (“New York City” and “Toronto”) should
co-occur frequently in the same column.

In particular, let C(s1) and C(s2) be the set of Web table
columns that s1 and s2 occur in, respectively. If C(s1) ∩
C(s2) is large relative to C(s1) and C(s2), then s1 and s2 are
likely to be semantically coherent (low semantic distance).

In this work, we use a probabilistic measure called point-
wise mutual information [11], PMI(s1, s2), defined as fol-
lows. Let N be the total number of columns. Then p(s1) =
|C(s1)|

N
, p(s2) = |C(s2)|

N
, are the probabilities of seeing s1,

s2 respectively, and p(s1, s2) = |C(s1)∩C(s2)|
N

is the probabil-
ity of seeing (s1, s2) together in the same column. PMI is
defined as:

PMI(s1, s2) = log
p(s1, s2)

p(s1)p(s2)

Example 2. Let s1 = Canada, and s2 = Republic of Korea.
Suppose N = 100M (there are a total of 100M columns),
|C(s1)| = 1000, |C(s2)| = 500, and |C(s1) ∩ C(s2)| = 300
(individually, the two strings occur 1000 and 500 times re-
spectively; together they co-occur 300 times). It can be cal-
culated that PMI(s1, s2) = 4.77 > 0, strongly indicating that
they are semantically related (even though syntactically s1
and s2 are very different, by the number of tokens, etc.)

Note that PMI actually measures coherence instead of dis-
tance. We apply the following normalization and transfor-
mation to ensure that the resulting semantic distance satis-
fies triangle inequality4.

dsem(s1, s2) = 0.75− 0.25NPMI(s1, s2)

where NPMI ∈ [−1, 1] is the normalized PMI, defined as:

NPMI(s1, s2) =
PMI(s1, s2)

− log p(s1, s2)

Discussions. In principle other metric distances such as
Jaccard distance, Angular distance (the metric version of
Cosine similarity) can also be used to define dsem(s1, s2).
We choose NPMI because it is a symmetric measure that
is robust to asymmetric sets. Appendix H gives more dis-
cussion on this, as well as our experience of using Jaccard
(which also produces decent results).

2.3.2 Syntactic Distance
The main motivation of using syntactic distance is that

not all strings are semantically meaningful. For example, if

4This is by virtue of the fact that dsem ∈ [0.5, 1] after trans-
formation of NPMI. When other metric distances are used in
place of NPMI the triangle inequality is naturally respected.

s1 = SKU-926434 and s2 = SKU-09393. There is unlikely
sufficient statistical co-occurrence to justify that they are
semantically coherent.

At a high level, we define syntactic distance dsyn(s1, s2)
as:
dsyn(s1, s2) =

dlen(s1, s2) + dchar(s1, s2) + dtype(s1, s2)

3

where dlen represents the difference in the number of tokens,
dchar the difference at the character level, and dtype the dif-
ference based on certain predefined types (e.g., numeric val-
ues, email address, date and time, etc) as determined by
regular expressions. The exact definition of these functions
can be found in Appendix I.

Note that the use of syntactic features for segmentations
has been extensively studied [3,8,16]. Our syntactic distance
function uses well-known ideas from existing literature, and
we do not claim to make new contributions in this respect.

2.4 An Optimization-based Formulation
Using distance functions, we can formally quantify the

goodness of an extracted table as follows.
The objective function. Given a list L = {l1, l2, . . . , ln}

containing n unsegmented lines, the table we extract T =
{t1, t2, . . . , tn} should be such that each record ti is a seg-
mentation of li, and furthermore every record has the same
number of columns m.

Let t[k] be the k-th column of record t. Given a segmented
table T with m columns, we can define our objective func-
tion, termed sum of pairs (SP) distance, as the sum of dis-
tance of every pair of cell values, ti[k] and tj [k], in the same
column. Namely,

SPm(T) =
∑

1≤k≤m

∑
1≤i<j≤n

d(ti[k], tj [k]) (2)

Since the summations are commutative, we can rewrite as

SPm(T) =
∑

1≤i<j≤n

∑
1≤k≤m

d(ti[k], tj [k]) (3)

Let d(ti, tj) be the distance between two records, defined
as

d(ti, tj) =
∑

1≤k≤m

d(ti[k], tj [k]) (4)

We can simplify Equation (3) to have

SPm(T) =
∑

1≤i<j≤n

d(ti, tj) (5)

Example 3. We revisit our running example in Figure 3.
By Equation (4), the distance d(t1, t2) between t1 and t2 is
calculated as:

d(t1, t2) = d(Los Angeles,Toronto) + d(California,null)

+ d(United States,Canada)

SP3(T) can then be written as the sum of all pairs distance,
where d(t1, t3) and d(t2, t3) are defined similarly.

SP3(T) = d(t1, t2) + d(t1, t3) + d(t2, t3)

The use of all pair distance as the objective is natural –
it captures the idea that a table is coherent if all pairs of
values in the same column are coherent. We note that sum
of pairs is also used in clustering [5], bioinformatics [22], and
facility location problems [19], among other things.

Problem statement. Suppose we know the number of
columns that lists need to be segmented into, we can define
the problem Table Segmentation Given Column Num-
ber as follows.

Definition 2. Table segmentation given column num-
ber. Given a list L = {l1, l2, . . . , ln} and the desired number
of columns m. The problem here is to find a table segmen-
tation T = {t1, t2, . . . , tn} that minimizes the sum of pair
distance SPm(T) over all possible table segmentations.

In the unsupervised setting where the number of columns m
is not given, we can test all possible m’s up to some upper
limit (e.g., the maximum number of tokens in all lines), and
pick the m that produces the best SP score per column.

Definition 3. Unsupervised table segmentation. Given
a list L = {l1, l2, . . . , ln}, the problem of unsupervised seg-
mentation is to find a segmentation T = {t1, t2, . . . , tn} that

minimizes the per column objective score SPm(T)
m

over all
possible table segmentations and m.

Note that we use the per column SP score as the objec-
tive function in the unsupervised setting, because we need to
normalize the aggregate SP score for a fair comparison be-
tween segmentations with different number of columns m.

Example 4. When the number of columns m is 2, the
table T ′ in Figure 4 achieves the best SP2(T ′) for list L in
Figure 2. Note that values in the first column of T ′ have high
semantic distance values, because their co-occurrence in Web
tables corpus are almost non-existent. This is an artifact of
the m = 2 column constraint. If we specify m = 3, we will
have the table T in Figure 3, where semantic distances are

very low. In this case, SP3(T
′)

3
will be lower than SP2(T)

2
,

indicating that 3-column is the right segmentation of L.

t1 Los Angeles California United States
t2 Toronto Canada
t3 New York City New York USA

Figure 4: Table T ′ with minimal SP2(T ′)
Notice that for unsupervised table segmentation, since
we can try all numbers of columns m up to |lmax|, where
|lmax| can be the maximum number of tokens in any line, or
some reasonable upper limit of columns we expect to see in a
table (e.g., 20), for the rest of the paper we will only discuss
table segmentation given column number for unsuper-
vised table segmentation and treat m as a given input.

3. THE TEGRA ALGORITHM
While the SP objective function naturally captures the

desirable property of a good table, we show that the gen-
eral problem of unsupervised table segmentation is NP-hard
using a reduction from multiple sequence alignment.

Theorem 1. The decision version of unsupervised table
segmentation is NP-hard.

A proof of Theorem 1 can be found in Appendix B.
In light of the hardness, we propose the TEGRA algo-

rithm that solves the segmentation problem with an ap-
proximation guarantee. In particular, in Section 3.1, we
design a mechanism to decompose the objective function
into more tractable components with quality guarantees. In
Section 3.2, we further optimize the segmentation algorithm
using ideas reminiscent of A* search. These together pro-
duce an efficient table segmentation algorithm.

3.1 A Conceptual Approximation Algorithm
In the following, we define the notion of anchor and an-

chor distance to decompose the SP distance.
Definition 4. Let record ti ∈ T be an anchor record, the

anchor distance of ti, denoted as ADm(ti, T), is the sum of
distances between ti, and all other records in T .

ADm(ti, T) =
∑

tj∈T,j 6=i

d(ti, tj) (6)

Using the definition of anchor distance and symmetry of
distance d, SP distance is decomposed as the half of the sum
of the anchor distance for all anchors. Namely,

SPm(T) =
∑

1≤i<j≤n

d(ti, tj)

=
1

2

∑
1≤i≤n

ADm(ti, T) (7)

We will omit subscript m in SPm(T), ADm(ti, T) when
the context is clear.

Example 5. Consider the example table T in Figure 3.
For each anchor record we have

AD3(t1, T) = d(t1, t2) + d(t1, t3)

AD3(t2, T) = d(t2, t1) + d(t2, t3)

AD3(t3, T) = d(t3, t1) + d(t3, t2)

Given that SP3(T) = d(t1, t2) + d(t1, t3) + d(t2, t3),

we have SP3(T) = 1
2
(AD3(t1, T)+AD3(t2, T)+AD3(t3, T)).

Intuitively, transforming SP to AD is to make the problem
more tractable. SP considers n2 pairs of interaction between
record pairs in T , where a change of segmentation in one
record has complex implications. In comparison, when com-
puting AD, once the segmentation of anchor ti is fixed, the
best (minimal) AD(ti, T) over all possible T can be found
by segmenting all other lines independently against ti.

Formally, let s(li)
5 be a segmentation function that maps

a line li to all possible segmentations. Similarly s(L) maps
a list L to all possible tables. Given a segmented ti, the best
segmentation for each line lj against ti, denoted by ti∗j , is
the one that achieves the minimal distance with ti.

ti∗j = arg min
tj∈s(lj)

d(ti, tj) (8)

Notice that ti and the segmentations of all other lines ti∗j
together induce a table, denoted as R(ti).

R(ti) = {ti∗j |1 ≤ j ≤ n, j 6= i} ∪ ti (9)

where R(ti) is the table induction function for anchor ti.
By the definition of the anchor distance AD, we know

R(ti) minimizes AD(ti, R(ti)) over all possible tables.

R(ti) = arg min
T∈s(L)

AD(ti, T) (10)

Equation (10) follows from the fact that in the definition
of AD(ti, T) (Equation (6)), only distance scores between
anchor ti and other records count, distance between other
records, d(tj , tk), j 6= i ∧ k 6= i, do not contribute to AD.
Thus, each line can be independently optimized in Equa-
tion (8), yet the union of all lines in Equation (9) still min-
imizes AD anchored on ti (Equation (10)).

Notice that finding table segmentations R(ti) through AD
minimization is more tractable, because only one pair (ti, lj)
needs to be considered at a time, as opposed to considering
n lines simultaneously in SP optimization.

Interestingly, we show that the table segmentation found
by minimizing AD(ti, R(ti)) over all possible anchor ti is not
bad compared to the global optimal SP (T).

Define t∗i to be the segmentation of li that minimizes
AD(t∗i , R(t∗i)) over all possible ti ∈ s(li):

t∗i = arg min
ti∈s(li)

AD(ti, R(ti)) (11)

5The segmentation function s() is defined with subscript m in
Definition 1 but also used without subscript when context is clear.

Let c be the index that minimizes AD(t∗i , R(t∗i)) over all
choices of i:

(t∗c , R(t∗c)) = arg min
1≤i≤n

AD(t∗i , R(t∗i)) (12)

Let T ∗ = arg minT∈s(L) SP (T) be the global optimal seg-
mentation with minimum SP (T). In the following theorem,
we can show that the SP distance, SP (R(t∗c)), of the seg-
mentation R(t∗c) induced by picking the best t∗c , is not far
away from the global optimal SP (T ∗).

Theorem 2. Let R(t∗c) be the table segmentation with
minimum AD distance over all possible choices of anchors as
defined in Equation (12). Let T ∗ be the global optimal seg-
mentation with the minimum SP (T ∗). If d satisfies triangle
inequality, then SP (R(t∗c)) ≤ 2SP (T ∗)

The idea here to bound SP (R(t∗c)) using SP (T ?) is to
utilize triangle inequality, the fact that R(t∗c) minimizes AD
over all possible anchor segmentation, and the relationship
between AD and SP outlined in Equation (7). A proof of
this theorem can be found in Appendix C. Using this re-
sult, we develop TEGRA-naive in Algorithm 1 that has 2-
approximation.

Algorithm 1: TEGRA-naive

Input: List L = {l1, l2, . . . , ln}, number of columns m
Output: Segmented table T = {t1, t2, . . . , tn}

1 for each li ∈ L do
2 for each ti ∈ s(li) do
3 AD(ti, R(ti)) = 0
4 for each lj ∈ L, j 6= i do
5 ti∗j = arg mintj∈s(lj) d(ti, tj)

6 AD(ti, R(ti))+ = d(ti, t
i∗
j)

7 t∗i = arg minti∈s(li) AD(ti, R(ti))

8 c = arg min1≤i≤n AD(t∗i , R(t∗i))

9 Return R(t∗c)

TEGRA-naive works as follows. It first picks each line
li ∈ L as an anchor. Then for each anchor segmentation
ti ∈ s(li), it segments every other line lj to ti∗j so that it

minimizes distance d(ti, t
i∗
j) over all possible s(lj) (Line 5).

The anchor segmentation t∗i that has the minimum AD dis-
tance is picked (Line 7). This induces a table segmentation
R(t∗i) using a table induction function R() that unions all
line segmentations in Equation (8), (9). We return as result
the table R(t∗c) induced by anchor t∗c that has minimum AD
distance over all anchor lines.

Example 6. Consider list L in Figure 2:
For line l1, TEGRA-naive tries all possible segmentations

t1. For every t1 such as the one in Figure 3, it will find
the best t1∗2 out of all possible t2 for l2 such that d(t1, t

1∗
2)

is minimal and the best t1∗3 out of all possible t3’s such that
d(t1, t

1∗
3) is minimal. It will remember the t∗1 that results

in the minimal AD(t∗1, T
∗
1) = d(t∗1, t

1∗
2) + d(t∗1, t

1∗
2), where

T ∗1 = {t∗1, t1∗2 , t1∗3 }.
Similarly, T ∗2 is derived for l2, and T ∗3 for l3.
TEGRA-naive returns one of T ∗1 , T

∗
2 , T

∗
3 whose AD(t∗i , T

∗
i)

is minimal among all 1 ≤ i ≤ 3.

While the naive version of the algorithm is logically clear,
each of the two steps at Line 2 and Line 5 requires enumer-
ating all possible segmentations t ∈ s(l) for a line l, which is
prohibitively expensive with a large number of columns. In
the next section, we will explain how these two key compo-
nents can be optimized. We also note that even in this naive

algorithm, when assuming the number of desired columns is
no more than a fixed constant (e.g., it is shown that over 95%
Web tables have less than 10 columns [10]), the complexity
of TEGRA-naive is already a polynomial of the input.

3.2 Optimization Strategies
As discussed above, there are two places in TEGRA-naive

that require exhaustive enumeration of possible segmenta-
tions of a line l. In order to optimize this, we need to address
two problems efficiently: (1) Pruning Anchor Segmen-
tation (PAS): How to prune away unpromising segmen-
tations so that the t∗i that minimizes AD(t∗i , R(t∗i)) can be
found efficiently without looking at all possible segmenta-
tions (Line 2 and Line 7 of Algorithm 1). (2) Segment a
Line Given a Record (SLGR): Given a segmented ti,
how to segment another line lj such that d(ti, tj) is mini-
mized (Line 5 of Algorithm 1). For technical reasons, we
will discuss SLGR first and then PAS in the following.

3.2.1 Segment a Line Given a Record (SLGR)
We are given an unsegmented line lj , and a segmented

record ti. The goal is to find ti∗j ∈ s(lj) that minimizes

d(ti, t
i∗
j). Recall that the distance of two records d(ti, tj) is

defined as the sum of distance of all m pairs of cells in the

same column,
∑

1≤k≤m

d(ti[k], tj [k]).

We define a partial alignment cost function Mlj ,ti [p, w],
that calculates the cost of aligning the first p columns of ti,
using the first w tokens of lj .

Definition 5. The partial alignment cost function, de-
noted as Mlj ,ti [p, w], with 0 ≤ p ≤ m and 0 ≤ w ≤ |lj |, is
defined as follows.

Mlj ,ti [p, w] = min
t′∈sp(lj [1...w])

∑
1≤k≤p

d(t′[k], ti[k]) (13)

Recall that lj [1 . . . w] represents the consecutive subsequence
of lj that ends at the w-th token, and sp(lj [1 . . . w]) is the
segmentation function that enumerates all possible p-column
segmentations of lj [1 . . . w].

When the context is clear we omit the subscript lj , ti in
Mlj ,ti [p, w]. Notice that by definition, the final segmenta-
tion corresponding to M [m, |lj |] is exactly the desired seg-
mentation ti∗j , which minimizes d(ti, t

i∗
j).

There is an optimal sub-structure [13] in M [p, w], namely

M [p, w] = min

M [p− 1, x] + d(lj [x+ 1 . . . w], ti[p])

∀0 ≤ x < w

M [p− 1, w] + d(null, ti[p])

(14)

M [p, w] is calculated based on where the first p−1 columns
end. If the first p−1 columns end at a token x < w, then the
pth column is lj [x+1 . . . w]. Thus M [p, w] equals M [p−1, x]
plus the distance of aligning lj [x+ 1 . . . w] with ti[p]. If the
first p − 1 columns end at token w, then the pth column is
null. Thus M [p, w] equals M [p−1, w] plus aligning null with
ti[p]. M [p, w] takes the minimum of all those choices. This
is clearly amenable to dynamic programming. The actual
algorithm can be found in Appendix D.

Example 7. Revisiting our running example, suppose t1
in Figure 3 has been segmented. Given l2 in Figure 2, in
SLGR, we need to find the min-cost segmentation t1∗2 of l2
so that d(t1, t

1∗
2) is minimized.

Figure 5 shows a sample matrix M [p, w]. The final seg-
mentation t1∗2 is also t2 in Figure 3.

In the M [p, w] matrix in Figure 5, M [0, 1],M [0, 2] is ini-
tialized to be∞ because the 0th column (a hypothetic column)
cannot consume any tokens. Suppose d(null, ∗) = 0.9. We
have M [1, 0],M [2, 0],M [3, 0] populated as 0.9, 1.8, 2.7 respec-
tively because of this.

Using Equation (14), it can be calculated that M [1, 1] =
d(l2[1], t1[1]) = d(Toronto,Los Angeles) = 0.3. Similarly,

M [2, 1] = min

{
M [1, 0] + d(Toronto, t1[2]) = 0.9 + 0.5 = 1.4

M [1, 1] + d(null, t1[2]) = 0.3 + 0.9 = 1.2

Thus M [2, 1] has an arrow from M [1, 1]. The final result t1∗2
is constructed by back tracing the computation from M [3, 2]
via arrows. For instance, t1∗2 [3] is “Canada” because M [3, 2]
comes from M [2, 1], meaning the second token “Canada” is
used in the third column.

Figure 5: Matrix M [p, w] for aligning l2 with t1.

3.2.2 Pruning Anchor Segmentations (PAS)
In this section, we develop techniques to prune away un-

promising anchor segmentations in s(li) while still finding
t∗i = arg minti∈s(li)AD(ti, R(ti)) correctly (Line 2 to Line 7
in Algorithm 1).

Example 8. The following segmentation t′1, for instance,
is a bad choice for segmenting l1 in Figure 2.

t′1 Los Angeles California United States

This is because there is no subsequence of tokens in any
other line of Figure 2, that can possibly have a low distance
score with t′1[1] (“Los”). The same is true for the second
column t′1[2] and third column t′1[3].

Conceptually, we need a way to systematically avoid such
segmentations. In the following, we will first show that the
space of possible segmentations s(li) can be naturally en-
coded in a graph. We will then show that finding the best
segmentation translates to finding a path on the graph with
minimum cost, which motivates us to use ideas from A* for
efficient pruning of segmentations.

Anchor Segmentation Graph. Efficient pruning of seg-
mentations requires us to first represent the space of segmen-
tations s(li). We define a search graph Gi for li that can
compactly encode all segmentations as follows. Nodes in the
graph are labeled as li[p, w] (abbreviated to [p, w] when con-
text is clear), for all 1 ≤ p ≤ m− 1, and 0 ≤ w ≤ |li|. There
is a special start node [0, 0] and a target node [m, |li|]. There
is an edge going from [pj , wj] to [pk, wk], if pk = pj + 1 and
wj ≤ wk.

Notice that in this graph, a path from the start node to the
end node represents a segmentation of li. In fact the union of
all paths in the graph Gi captures all possible segmentations
s(li). This gives us a natural and compact representation of
the search space.

More formally, a complete path from the start node to
target node specifies a complete segmentation ti for a line
li. A partial prefix path is a path from the start node to
[p, w], specifying only the partial segmentations of the first
p columns using the first w tokens. Similarly, a partial suffix

Figure 6: Search space G1 for segmenting l1

path is a path from [p, w] to the target node, specifying only
the partial segmentations of the last m − p columns using
remaining tokens starting at position w + 1.

Example 9. Figure 6 shows the search graph for seg-
menting l1 into three columns. The start node is [0, 0]. The
is target node [3, 5], because l1 has five tokens and we need
to segment into three columns.

The complete path Z : [0, 0]→ [1, 2]→ [2, 3]→ [3, 5] fully
specifies one possible segmentation: the first column is “Los
Angeles” (using 2 token for 1 column), the second column
“California” (3 token for 2 columns), and the third column
“United States” (5 tokens for 3 columns).

The partial prefix path X : [0, 0]→ [1, 2] corresponds to a
partial segmentation, where the first column is “Los Ange-
les”, and the last two columns are yet to be segmented using
the remaining three tokens “California United States”.

Similarly the partial suffix path Y : [2, 3] → [3, 5] corre-
sponds to a partial segmentation with only the third column
specified as “United States”.

Having created Gi, we need to assign cost/lengths to graph
paths, to represent the current distance cost of the (partial)
segmentation.

Definition 6. Path length in Gi is defined as follows.
• Length of a complete path Z. Let tZi be the segmenta-
tion specified by path Z. The length of the path L(Z) is:

L(Z) =
∑

1≤j≤n
j 6=i

Mlj ,t
Z
i

[m, |lj |]

Where Mlj ,ti is the alignment cost function defined in Defi-
nition 5. Note that here all m columns and |lj | tokens have
been aligned.
• Length of a partial prefix path X to node [p, w]. Let
tXi be the partial segmentation specified by X. The length of
the path L(X) is defined as:

L(X) =
∑

1≤j≤n
j 6=i

min
0≤k≤|lj |

Mlj ,t
X
i

[p, k]

• Length of a partial suffix path Y from node [p, w]. Let
tYi be the partial segmentation specified by Y . The length of
the path L(Y) is defined as:

L(Y) =
∑

1≤j≤n
j 6=i

min
∀0≤k≤|lj |

Nlj ,t
Y
i

[p, k]

where Nlj ,t
Y
i

[p, w] is defined similar to M only backwards:

it represents the minimal sum of distance between the last
m − p columns of ti, and the last m − p columns starting
at the (w + 1)-th token of lj. Matrix N can be calculated
similar to M using Algorithm 3.

Note that the length of a complete path Z is the sum of
distances between tZi and all other lines, which is exactly
our anchor distance AD(tZi , R(tZi)).

tX1 Los Angeles California United States

tX2 Toronto Canada

tX3 New York City New York USA

Figure 7: Calculating the length of partial prefix
path X. The gray cells are unsegmented.

When calculating the length of a partial prefix path X,
since the remaining m − p columns of ti are not fully seg-
mented yet, we do not know the best way to segment the
first p columns in lj to align with ti. Therefore, we test all
possible ending tokens for the first p columns in lj to align
with ti[1 . . . p]. The length of a partial suffix path L(Y) is
defined similar to L(X) except that the backward DP matrix
N is used.

Our definition of path lengths is not additive and thus
different from traditional graph paths. Namely, for some
partial prefix path X ending at [p, w], partial suffix path Y
starting from [p, w], and complete path Z = X ∪Y , we have
L(X) +L(Y) 6= L(Z). However, we show that our paths are
super-additive, which is a nice property.

Lemma 1. The paths of search graph Gi defined above
are super-additive. That is, for any partial prefix path X
ending at [p, w], partial suffix path Y starting from [p, w],
and complete path Z = X∪Y , we have L(X)+L(Y) ≤ L(Z).

Intuitively, L(X) + L(Y) ≤ L(Z) is true because the defi-
nition of partial paths allows other lines lj to use a flexible
number of tokens to align with p columns from ti, thus giv-
ing partial paths more freedom in minimizing their lengths,
making the sum of lengths of two partial paths smaller than
the length of the full path. A proof of Lemma 1 can be
found in Appendix F. Super-additivity allows us to estimate
(underestimate) L(Z) by estimating L(X), L(Y) separately.

Example 10. For a partial prefix path X : [0, 0]→ [1, 2]
in G1, the corresponding partial segmentation tX1 [1] is shown
in Figure 7. Figure 7 also shows the partial segmentations
of other lines tX2 [1], tX3 [1], that have the minimal distance
with tX1 [1] respectively. Notice that although in the final re-
sult “New York City” in t3 should align with “Los Angeles”
from t1, here “New York” is aligned with “Los Angeles” when
calculating L(X) because it has a smaller distance with “Los
Angeles” than “New York City”.

Pruning anchor segmentations (PAS) using A? Search.
Now that we have defined graph Gi to encode all segmenta-
tions of li, finding the minimum AD cost segmentation nat-
urally translates to finding the shortest path, where ideas
from A* search [23] are directly applicable.

In A* search, there is a concept called heuristic/future
function h [23] , which gives an estimate of the cost of the
path from an intermediate node to the target node (note that
in spite of the name heuristic, it always finds the correct min-
cost path). It can be shown that if h never overestimates
the true cost of reaching the target, then A* can be used to
safely prune away unpromising paths. We refer readers to
Appendix E for a more detailed overview of A*.

Given the defined lengths of paths, it is important to de-
sign an appropriate h function that closely approximates
but always underestimates the future cost. Specifically, the
h function takes as input a node [p, w], and returns an un-
derestimate of the min-cost path from [p, w] to the target.

Notice that while the past cost of a partial prefix pathX at
[p, w] can be calculated following Definition 6, the future cost
starting from [p, w] cannot be calculated in the same way,
because the future path Y is not known at this point yet.
The idea then is to segment the remaining m − p columns

in li while allowing other lines to align with these m − p
columns fully flexibly to produce a safe underestimate.

In order to achieve this, for any candidate column c in li
that is c = li[a . . . b], define a free distance of c as follows.

Definition 7. The free distance of c and lj, denoted as
freeD(c, lj), is

freeD(c, lj) = min
1≤aj≤bj≤|lj |

d(li[a . . . b], lj [aj . . . bj])

The free distance of c, denoted as freeD(c), is simply the
summation of freeD(c, lj) for all lj , j 6= i.

freeD(c) =
∑

1≤j≤n
j 6=i

freeD(c, lj)

Intuitively, the free distance of c and lj is the minimum
distance between c and any subsequence in lj regardless of
other alignments (hence the name free).

Example 11. In Figure 7, suppose we are calculating
freeD(“California”) in tX1 . Candidate column “Canada” in
l2, “New York” in l3 have the smallest distance with “Califor-
nia” respectively. Notice that although in final table, “null” in
l2 is aligned with “California”, in freeD calculation “Canada”
is used for “California” because they have a smaller distance.

Our h function uses free distance to (under-)estimate fu-
ture costs. In particular, Let r = li[w+1 . . . |li|] be remaining
tokens at [p, w] for conciseness. Using freeD, we can define
a heuristic function h(p, w) as follows.

h(p, w) = min
t′∈sm−p(r)

∑
1≤k≤m−p

freeD(t′[k]) (15)

The heuristic function h(p, w) is the minimal sum of free
distances of all (m − p)-column segmentation of r. Notice
that Equation (15) is similar to Equation (13). Thus they
share a similar optimal sub-structure as in Equation (14).
A similar DP can thus be used to compute h(p, w).

We empirically observe that the heuristic function de-
signed here is effective in pruning away unlikely paths and
achieves significant efficiency improvements as demonstrated
in the experiments.

Lemma 2. h(p, w) is admissible [23], i.e., it underesti-
mates the length of any path from [p, w] to target node. Fur-
thermore, h(p, w) is monotonic [23], i.e., L(X) + h(p, w) ≤
L(X ′)+h(p+1, w′) where X is a path from starting node to
node [p, w], and X ′ is a path extending X with an additional
node [p+ 1, w′].

The actual algorithm for calculating h(p, w) and a proof of
Lemma 2 can be found in Appendix G.

Algorithm 2 describes the A? search procedure for find-
ing T ∗i with the minimal AD(t∗i , T

∗
i). It keeps a closed set

of nodes, representing a set of visited node whose shortest
path from start node has already been found, and a set of
open nodes, representing a set of node to be visited ordered
according to a node’s f function. Each node [p, w] in Gi

stores the following information: (1) the current path X
from start node to [p, w] that has the minimal length, de-
noted as [p, w].X; (2) the length L(X) of the current path
X, i.e., the g function in A? search; (3) the underestimated
distance between the current node to the destination node,
i.e., h function in A? search; and (4) the f function in A?

search, which is equal to g+h. At each step of Algorithm 2,
the node with the lowest f is removed from the set of open
nodes, and the f, g,X of its neighbors are updated accord-
ingly (Lines 8-12). The loop terminates when the target
node is removed from open nodes (Line 5).

Algorithm 2: Minimizing Anchor Distance

Input: List L, Number of columns m, anchor line li
Output: t∗i , R(t∗i), such that ADm(t∗i , R(t∗i)) is minimized

1 Initialize the openset, add start node [0, 0] to it
2 Initialize the closedset, initially empty
3 while openset 6= ∅ do
4 [p, w]← the node with the lowest f score
5 break if [p, w] is the target node, construct t∗i
6 remove [p, w] from openset, add [p, w] to closedset
7 for neighbor nodes [p+ 1, w′] of [p, w] do
8 continue if [p+ 1, w′] is in the closedset
9 X′ ← [p, w].X ∪ [p+ 1, w′]

10 if [p+ 1, w′] 6∈ openset or L(X′) < g(p+ 1, w′) then
11 update X, g, f of [p+ 1, w′]
12 add [p+ 1, w′] to openset if it is not in there

13 construct R(t∗i) by aligning every lj with t∗i
14 Return t∗i and R(t∗i)

Theorem 3. Algorithm 2 terminates with a table Ti that
has the minimal AD(t∗i , R(t∗i)).
The correctness of Algorithm 2 follows directly from the
proof of the correctness of A? search [23] and the fact that
our h function is admissible and monotonic as shown in
Lemma 2.

We note that an improved algorithm TEGRA thus replaces
Lines 2- 7 in TEGRA-naive with Algorithm 2.

4. THE SUPERVISED VARIANT
While we set out to design algorithms that can extract

tables fully automatically, we note that our approach applies
directly in the scenario where user supervision is provided.

In an online ad-hoc table extraction scenario (such as in
spreadsheets), users may be willing to provide example seg-
mentations for a few lines. Suppose in addition to the unseg-
mented lines L = {li|i ∈ [n]}, we have a set of user provided
segmentation examples, denoted as E = {li|i ∈ [k]}, for
some k < n.

In such cases, we can modify the objective function to have

SP ′m(T) =
∑

1≤i<j≤n

wijd(ti, tj), where wij reflects the rela-

tive importance of examples. This way, SP ′m(T) can then
assign more weights to record pairs involving user examples
because they are generally more reliable.

Definition 8. Supervised table segmentation. Given
L = {li|i ∈ [n]} and user segmented examples E = {li|i ∈
[k]} for some k < n. Our goal is to produce T = {ti|i ∈ [n]}
with m columns, such that SPm(T) is minimized.

We present one way to assign wij given k user examples:

wij =

{
n
k

if ti ∈ E or tj ∈ E
1.0, otherwise

These wij ensures that the user-provided examples are
more important, i.e., wij ≥ 1 if ti or tj is user provided.
Furthermore, the importance of user examples n

k
are ad-

justed based on the total number of lines and number of
user examples, so that the impact of user examples is nei-
ther overwhelming nor underwhelming.

The TEGRA approach applies directly in this supervised
problem variant, which is also shown to outperform alterna-
tive approaches in our experiments.

5. EXPERIMENTS
We conduct extensive experiments to understand the per-

formance of different algorithms.

Data set avg #
of rows

avg #
of cols

avg % of
numeric cells

Web 14.2 6.2 43.1%
Wiki 11.8 5.0 42.1%

Enterprise 15.0 4.5 56.8%

Table 1: Some characteristics of three data sets.
Numbers are averaged over 10,000 tables.

5.1 Experimental Setup
5.1.1 Algorithms compared
• ListExtract [16]. This work addresses the exact same
problem as ours. As discussed in Appendix A, ListExtract
makes local splitting decisions first, and then tries to make
adjustment to the local decisions. It is the most relevant
work directly comparable to TEGRA.
• Judie [14]. Judie represents a large class of record seg-
mentation techniques [3,14,28] that rely on the existence of
a reference table / knowledge base (KB) in the matching
domain of the input list (e.g., a recipe knowledge base [14]).
While it has been shown to work well when the matching
KB in that narrow domain is provided, it is unclear how
this class of approaches perform when segmenting general
lists on the Web using general purpose KBs. We compare
with a recent work Judie that is shown to outperform other
techniques, including the unsupervised CRF U-CRF [28]. We
use the popular Freebase [6] as the general purpose KB.
• TEGRA. This is our method discussed in Section 3.

5.1.2 Data preparation
We crawl two table corpora for our experiments.
First, we crawl over 100 million tables from the document

index of a commercial search engine, henceforth referred to
as Web-All. These tables are classified as high-quality rela-
tional content (e.g., not HTML tables for formatting, etc.).
This corpus covers diverse relational content in almost all
possible domains available on the public Web.

We also crawl over 500,000 tables from Excel spreadsheets
in the Intra-net of a large IT company. This is referred to
as Enterprise-All.

5.1.3 Benchmark table sets
In order to evaluate quality of tables extracted, for each

unsegmented list we need a ground truth table that is the
correct segmentation of the list. Manual labeling cannot
scale to a test set large enough to draw any reliable con-
clusion, due to the high cost of labeling (authors in [16] for
instance manually labeled segmentations for 20 lists). In or-
der to perform large scale experiments for a reliable quality
comparison, yet without actually labeling data, we automat-
ically construct test datasets similar to [16]. We randomly
sample existing tables, and then we concatenate cells in the
same row into a line using white-spaces as delimiters. For
instance, the table in Figure 3 crawled from the Web is con-
catenated into a list in Figure 2 and used as input. The
original table can then be used as the ground truth to eval-
uate segmentation quality.

We prepare three datasets of different characteristics as
our benchmark sets, namely Web, Wiki and Enterprise, each
with 10,000 tables. The Web dataset is randomly sampled
from Web-All, which contains relational tables crawled from
the Web. The Wiki dataset is also sampled from Web-All but
restricted to the wikipedia.org domain, which are generally
of high quality compared to the Web dataset. The Enter-

prise benchmark set is sampled from Enterprise-All that
contains spreadsheets crawled from an enterprise. Table 1
reports some characteristics of these three data sets.

As an additional sanity check to validate the large scale
evaluation using automatic methods above, we also manu-
ally sample 20 real Web lists spanning across domains such
as airports, movies, cartoons, presidents, and sports. We
manually segment these lists into tables as ground truth.
Note that these lists use many different delimiters such as
comma, semicolon, dash, and tab. This dataset is henceforth
referred to as Lists.

5.1.4 The background table corpus
Given that our semantic coherence requires co-occurrence

computation like PMI from a background table corpus to
determine semantic distance (Section 2.3.1), we use Web-All

and Enterprise-All for this purpose.
The Web-All corpus covers diverse relational content in

almost all possible domains available on the public Web.
We construct the background corpus Background-Web as
Background-Web = Web-All \ (Web ∪ Wiki).

Note that we intentionally exclude benchmark sets from
the background corpus, to ensure that the quality numbers
genuinely reflect algorithms’ capability of segmenting tables
not seen before. This is similar to the classical training set
/ testing set separation used in Machine Learning.

Given the excellent coverage of Background-Web, and the
fact that it is of public nature such that anyone with suffi-
cient resources could crawl this corpus, we use this as the
default background corpus across our experiments.

In addition, we create a background corpus Background-

Enterprise = Enterprise-All \ Enterprise. Since the
benchmark set Enterprise is obtained from the same source
as Background-Enterprise, Background-Enterprise pro-
vides additional co-occurrence information specific to the
Enterprise test set (e.g., organization names, customer names,
etc.). Thus, we report quality of extracting Enterprise us-
ing Background-Enterprise in addition to Background-Web.

5.1.5 Evaluation metric
Direct comparisons between an output table Ta and the

ground truth table Tg can be tricky, since there may be mul-
tiple, equally correct ways of segmenting lists into tables,
and Ta and Tg may have different number of columns. For
instance, suppose Table 2 is the ground truth table Tg we
crawled, and Table 3 is the output Ta of an algorithm. Al-
though first-name/last-name are separated into two columns
in ground truth Tg, they are concatenated in Ta. Similarly
month/date columns are segmented in Ta but not Tg.

Table 2: Tg

Jenny Scott Jan 12
John Smith Nov 20

Table 3: Ta

Jenny Scott Jan 12
John Smith Nov 20

Intuitively, both segmentations are reasonable in this par-
ticular case, since we could easily find tables on the Web
that segment first-name/last-name and month/date in two
columns, as well as tables that concatenate them. Even hu-
man labelers may disagree on the right segmentation.

Our observation is that segmenting one column into mul-
tiple ones, or conversely concatenating multiple consecutive
columns into one still provides some utility. For instance, re-
gardless of whether first-name/last-name are concatenated
or not, the extracted table still provides useful informa-
tion. However, traditional set-based precision/recall eval-
uation does not take this into account.

We are not the first to recognize this problem. It has
been shown [15,18] that in certain matching and alignment
problems, traditional precision/recall is not suitable, and
generalized P/R evaluations has been proposed [15, 18]. In

the following we describe the metric that we use, which is
similar in spirit to [18].

Define a column mapping M as a mapping from one col-
umn in Tg to multiple consecutive columns in Ta, or one
column in Ta to multiple consecutive columns in Tg. Denote
by M(T) the column(s) of T that participates in M . Also
let l(M(T)) be the values of columns M(T) in line l.

Define |M | as the total number of correctly aligned row
values between columns M(Ta) and M(Tg), namely |M | =
|{i : li(M(Ta)) = li(M(Tg)), i ∈ [n]}|.

A mapping set M = {Mi : i ∈ [k]} is a set of column
mappings Mi such that no two different mappings touch
overlapping columns in Tg and Ta. In other words, ∀i 6= j,
Mi(Ta) ∩Mj(Ta) = ∅ and Mi(Tg) ∩Mj(Tg) = ∅.

Let |M| =
∑

i∈[k] |Mi|, which is the number of correctly

aligned values, and |Mbest| = maxM |M| be the best possi-
ble set of mappings.

We define the precision (P), recall (R), and f-measure (F)
as follows:

P =
|Mbest|
|Ta|

R =
|Mbest|
|Tg|

F =
2PR

P +R

where |T | denotes the total number of cells in T .
As a concrete example, for Tg and Ta in Table 2 and 3,
Mbest has two column mappings: M1 that maps the first
two columns in Tg to the first column in Ta, where |M1| = 2
(mappings in both rows are correct); and M2 that maps the
third column in Tg to the last two columns in Ta, where
|M2| = 2. |Mbest| = |M1| + |M2| = 4. P = 4

6
= 0.67

and R = 4
6

= 0.67. Note that using this metric, we only
get partial credits when we over-segment or under-segment
in a consistent manner. Observe that in this case where
the produced a table Ta that is clearly useful, the our P/R
values are only 0.67.

5.2 Overall table quality comparison
Unsupervised. Table 4 shows the the overall quality com-
parison when extracting tables from lists without any user
input. It is clear from the table that TEGRA significantly
outperforms both ListExtract and Judie across all bench-
mark sets. Notice that the difference in F-measures be-
tween TEGRA and ListExtract (the second-best method)
is quite significant – the results are 0.9 vs 0.76, 0.9 vs 0.73
and 0.87 vs 0.79 for the three automatically generated test
sets respectively, and 0.91 vs 0.7 for the manually label test
set. This validates our belief that a principled formulation
that performs global optimization is superior to ListEx-

tract that uses local decisions that can be sub-optimal.
We observe that while the recall numbers of ListExtract

come relatively close to TEGRA, its precision numbers lag
much behind (0.89 vs 0.69, 0.89 vs 0.65, 0.88 vs 0.75, and
0.89 vs 0.63 respectively). We believe this is because of
the way ListExtract works. Recall that it greedily ex-
tract the most confident cells from each row independently,
which tends to lead to over-segmentation, because shorter
token subsequences are naturally more popular in a language
model and other sources (e.g., “New York” is a popular name
and is likely to be extracted first despite the token “City”
that comes after “New York”). Since it is more aggressive in
splitting, its precision numbers suffer the most.

The Judie approach does not perform as well as oth-
ers. This is not entirely surprising – the algorithm relies
on a domain-specific reference table / knowledge base (KB)
to perform segmentation correctly through essentially KB
lookups. In the case of general lists on the web, even a

TEGRA ListExtract Judie

Web P 0.89 0.69 0.37
R 0.94 0.88 0.45
F 0.90 0.76 0.40

Wiki P 0.89 0.65 0.44
R 0.94 0.85 0.50
F 0.90 0.73 0.46

Enterprise P 0.88 0.75 0.43
R 0.89 0.87 0.49
F 0.87 0.79 0.45

Lists P 0.89 0.63 0.60
R 0.94 0.82 0.64
F 0.91 0.70 0.62

Table 4: Quality Comparison (unsupervised)

TEGRA ListExtract Judie

Web P/R/F 0.97 0.70 0.39

Wikipedia P/R/F 0.96 0.71 0.50

Enterprise P/R/F 0.94 0.81 0.49

Lists P/R/F 0.95 0.71 0.61

Table 5: Quality Comparison (supervised)

general-purpose KB like Freebase [6] does not have nearly
enough entities to cover values that can possibly occur in
wide range of tables on the Web, not to mention various
naming variations (e.g., a KB may have the entry “United
Kingdom”but not“UK”or“Britain”) and ambiguity of names
(e.g., “United” may refer to airline or country). Thus, the
class of techniques represented by Judie is not suitable for
general table extraction from lists on the Web.

Supervised. We show an overall quality comparison when
user feedback is given (i.e., the supervised setting) in Ta-
ble 5. We emulate the user input by randomly selecting two
records from the ground truth table as input.

It is worth noting that while user feedback gives a qual-
ity boost to all three algorithms, TEGRA benefits the most.
This demonstrates the usefulness of the proposed framework
– using the same technique and a little user feedback, the
quality of TEGRA can be greatly improved. We report ad-
ditional experiments in the supervised setting in Appendix K
due to space limit.

SP Distance Analysis. In order to analyze the correlation
between our objective function and the “goodness” of tables
extracted, we sort extracted tables based on their objective
scores normalized on a per tuple-pair basis, and bucketize
the tables into five bins. We plot the score bucket percentile
on the x-axis and F-measure on the y-axis in Figure 8(a).
The overall trend is that as the normalized objective score
increases, table quality as measured by F-measure decreases
across all three datasets. This validates the usefulness of our
formulation and scoring – by minimizing SP distance we are
indeed producing high quality tables.

5.3 Sensitivity to different tables
In this section we vary input tables to understand the

performance of the three algorithms in response to tables of
different characteristics. We skip the results on Wiki dataset
since the results are similar to Web.

First, we observe that tables with more number of tokens
per cell are generally more difficult to segment (because al-
gorithms are more likely to make mistakes in picking wrong
splitting positions). In contrast tables with fewer number
of tokens per cell are easier, which are often tables domi-
nated by 1-token numerical columns that are easy to seg-

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Score Percentile

 Enterprise
 Web
 Wiki

(a) SP Function

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 0.2 0.4 0.6 0.8 1

F
-
M
e
a
s
u
r
e

Syntactic Weight

 Enterprise
 Web
 Wiki

(b) Distance Function

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Tokens Percentile

 TEGRA

 ListExtract

 Judie

(c) Tokens−Web

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Tokens Percentile

 TEGRA

 ListExtract

 Judie

(d) Tokens− Enterprise

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Cols Percentile

 TEGRA

 ListExtract

 Judie

(e) Cols−Web

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Cols Percentile

 TEGRA

 ListExtract

 Judie

(f) Cols− Enterprise

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Rows Percentile

 TEGRA

 ListExtract

 Judie

(g) Rows−Web

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Rows Percentile

 TEGRA

 ListExtract

 Judie

(h) Rows− Enterprise

Figure 8: Experiments in the unsupervised setting

ment. Using this observation, we sort tables based on their
average number of tokens per cell, which is a proxy mea-
sure of segmentation “difficulty”. We again bucketize tables
into 5 buckets, and plot the corresponding F-measure in Fig-
ures 8(c) and 8(d).

When the average number of tokens per cell is low, the
F-measure of ListExtract and TEGRA are very close, since
a large fraction of these tables are actually dominated by 1-
token numerical columns, which are not difficult to segment.
As the average number of tokens per cell increases, segmen-
tation becomes non-trivial, and the F-measure drops quite
significantly for ListExtract. Note that even in the hard-
to-segment cases, TEGRA performs surprisingly well – in fact,
its quality numbers stay almost the same across all five ta-
ble buckets. The fact that TEGRA can segment difficult (and
more meaningful) tables almost as well as trivial 1-column
numerical tables underlines the robustness of TEGRA.

Second, we vary tables by the number of columns. We ob-
serve in Figures 8(e) and 8(f) that as the number of columns
increases, quality results only drop slightly. This is some-
what surprising and contrary to our initial belief that tables
with more columns are more difficult to segment. An analy-
sis reveals that tables with more columns are actually mixed,
with both tables that are genuinely difficult to segment, and
tables with mostly 1-token numerical columns that are triv-
ial to segment. Since our test sets are uniformly sampled
from the corpus, in aggregate the results are not sensitive to
the number of columns.

Finally, we bucketize tables by the number of rows. We
observe in Figures 8(g) and 8(h), as the number of rows in-
creases, quality results of all three algorithms stay relatively
the same. This is mostly expected – the number of rows
does not correlate much with the hardness of segmentation.

5.4 Sensitivity to distance scoring
In this section, we vary the relative importance of syn-

tactic distance and semantic distance, namely α in Equa-
tion (1), with the goal of understanding the importance of
score components in different settings. In Figure 8(b), we
vary the weight of the syntactic component α used in the
distance function in Equation (1).

For Web and Wiki, starting with only semantic distance
(α = 0) the quality of Web and Wiki is already fairly good.
As we increase the importance of syntactic distance the qual-
ity results improves slightly. When we move to the rightmost
point with only syntactic distance (α = 1), quality numbers
suffer. This shows the importance of semantic distance for
Web and Wiki, where syntactic features like the number of to-
kens is not sufficient to capture semantic coherence between

values like “New York City” and “Toronto”.
On the other hand, on the Enterprise data set, the qual-

ity results using only semantic distance (α = 0) are not very
good. As we increase the importance of syntactic distance
quality numbers improve significantly. However when we
reach the extreme with only syntactic distance (α = 1) the
performance falls again. This shows that syntactic distance
is perhaps more important in the Enterprise data set, be-
cause a significant fraction of data is proprietary (e.g., cus-
tomer names, internal ID codes, etc.) that cannot be found
in background-Web crawled from the public domain. When
semantic distance is not as indicative, syntactic distance nat-
urally becomes more important.

Across all three benchmark sets Web, Wiki and Enter-

prise, both syntactic distance and semantic distance are
shown to be important – using some combination of syn-
tactic distance and semantic distance gives the best perfor-
mance. This demonstrates the usefulness of both scoring
components. Empirically we find α = 0.5 to be a good
setting (equal weights between semantic and syntactic dis-
tance), which is used as default in our experiments.

5.5 Impact of matching background corpus
In Table 6, we evaluate the effect of using different back-

ground corpora, namely, background-Enterprise, background-
Web and background-Combined (which combines the previ-
ous two). It is quite clear that in all these cases, using the
matching background corpus (e.g., background-Enterprise
for test set Enterprise) or the combined corpus (background-
Combined) provides the best performance.

On the other hand, when using mismatched corpus, e.g.,
background-Enterprise for Web, the performance drops sig-
nificantly. We believe that background-Enterprise does
not really cover the diverse data found on the Web, thus
cannot provide meaningful semantic distance. Surprisingly,
using background-Web on Enterprise performs reasonably
well, perhaps because background-Web is already diverse
enough to cover certain aspect of Enterprise (e.g., geog-
raphy data, product data, etc.). This is encouraging, be-
cause it show that the general purpose approach of using
the public background-Web can actually provide reasonable
performance on proprietary Enterprise data, which under-
scores the general applicability of our approach.

5.6 Efficiency study
Figures 9(a) and Figure 9(b) show the scalability of dif-

ferent approaches when varying the number of columns and
number of rows, respectively. It is not really surprising that
the TEGRA line (second from the top) takes considerably more

Test-Dataset \ Background TEGRA ListExtract Judie

Web B-Web 0.90 0.76 0.40
B-Enterprise 0.68 0.73 0.40
B-Combined 0.90 0.76 0.40

Wiki B-Web 0.90 0.73 0.46
B-Enterprise 0.70 0.71 0.46
B-Combined 0.90 0.73 0.46

Enterprise B-Web 0.84 0.78 0.45
B-Enterprise 0.87 0.80 0.45
B-Combined 0.87 0.79 0.45

Table 6: F-Measure using different background cor-
pus (unsupervised)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 4 6 8 10 12 14 16 18 20

T
i
m
e

(
m
s
)

Number of columns

 TEGRA-naive+

 TEGRA

 TEGRA+2

 TEGRA+4

 TEGRA+8

 ListExtract

 Judie

(a) Varying # columns

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 10 15 20 25 30 35 40 45 50

T
i
m
e

(
m
s
)

Number of rows

TEGRA-naive+

 TEGRA

 TEGRA+2

 TEGRA+4

 TEGRA+8

 ListExtract

 Judie

(b) Varying # rows

Figure 9: Scalability Analysis

time than ListExtract and Judie, since both use greedy
procedures that lack formal quality guarantees. Given the
significant quality improvement TEGRA provides, and the
fact that our main targeted application is to extract tables
from Web lists offline, we believe that the cost in execution
time can be justified (we scale out the extraction process
using a production Map Reduce system).

In comparison to TEGRA, TEGRA-naive+ line here uses the
dynamic programming in SLGR, but no A* optimization is
performed. TEGRA-naive+ actually takes over 40 seconds to
segment a table with 20 rows, and over a few minutes when
the number of rows increases (off the chart in Figure 9(b)).
The significant improvement of TEGRA over TEGRA-naive+

shows the effectiveness of our A* optimization in Section 3.
We note that previous studies [16] as well as our own show

that the majority (over 95%) of Web tables have less than 10
columns, in which case the unoptimized TEGRA can already
finish within 4 seconds on average as shown in Figures 9(a).
Furthermore, since the anchor-distance calculations are triv-
ial to parallelize on a per row basis, we also experiment us-
ing multi-threading to see its impact on latency (denoted as
TEGRA+n, where n is the number of threads used). We note
that with modest multi-threading, e.g. TEGRA+4, we can re-
duce segmentation time for a 10-column table to around 1
second, which may already be acceptable for certain online
applications like interactive table segmentation.

5.7 Estimate useful lists on the Web
As an empirical analysis of the number of useful relational

tables in lists, we extract a sample of 770K Web HTML lists
embedded in 〈ul〉〈/ul〉 HTML tags from a small fraction of
the Web crawl. We filter away lists with too many or two few
rows, and those with very long rows, which leaves us with
around 40K lists. We run our segmentation algorithms on
these lists. The number of resulting tables that have a good
empirical per-tuple quality score (based on Figure 8(a)) is
around 2K. Given that the sampled Web chunk is about
0.006% of the whole index, we estimate that there are over
30 million lists on the Web with good relational content,
which is in line with what is reported in [16].

6. RELATED WORK
The pioneering work in [16] is the only work that automat-

ically extracts tables from general Web lists to our knowl-
edge, and is reviewed in Appendix A. Because it greedily
makes local splitting decisions for each line independently
early in the process without giving consideration to global
alignment, it can get stuck with sub-optimal local decisions.

There are several approaches, e.g., Judie [14], CRAM [3],
U-CRF [28], that segment text into records utilizing a knowl-
edge base (KB) or a reference table in the matching domain
of the target content. Our experience shows that for these
approaches to work well, a large fraction of values to be seg-
mented must be covered in the matching KB. In the case
of Web-scale table extraction where finding a matching KB
for each target list is infeasible, using general KB like Free-
base [6] does not work well (Section 5). We believe the
reason lies in the fact that data on the Web are so diverse
that even a general KB cannot provide sufficient coverage
for the variety of values that can possibly occur in tables.
In contrast, TEGRA obviates the need for specific KBs by
taking advantage of statistical co-occurrence using a large
table corpus that provides exhaustive content coverage.

Graphical models like CRF have been demonstrated to be
useful for table segmentation, especially in supervised set-
tings [21]. A recent approach, U-CRF [28], adapts CRF for
the unsupervised setting and can be used without training
examples. It is conceptually similar to Judie [14] in that
it also requires matching KBs to be provided. Since it is
shown in [14] that Judie outperforms U-CRF for unsuper-
vised record parsing, we only compare with Judie in this
paper. HMM has also been adapted for record segmenta-
tion in [8,25]. However, [8] uses training examples, and [25]
requires explicit target schema, which make them unsuitable
for extraction of tables from Web lists.

Our problem is also related to information extraction, and
more specifically wrapper induction for structured Web data
extraction [4, 12, 17]. However, all these approaches above
are supervised in nature, requiring some examples to be
given, which cannot scale to the general problem of extract-
ing tables from millions of lists on the Web. Example driven
extraction using program synthesis techniques (e.g., [20]) is
another related line of work.

Sequence alignment in bioinformatics [22] addresses the
problem of aligning biological sequences to identify similar
regions, where similarity is predefined for pairs of symbols.
The all-pairs objective function we use is reminiscent of the
sum-of-pairs in the multiple sequence alignment (MSA) lit-
erature [22]. However, because symbols are always the unit
of alignment in MSA, when pairs of sequences (a, b) and
(a, c) are aligned, it is trivial to align the three sequences
(a, b, c) together. In contrast, in table alignment this prop-
erty does not hold, because token sequences become the unit
of alignment and additivity of tokens no longer holds, which
makes table alignment more difficult.

7. CONCLUSIONS AND FUTURE WORK
Motivated by the need to extract relational tables from

HTML lists, we propose a principled formulation for the
problem of table extraction. We design efficient algorithms
with 2-approximation guarantees, which produce tables of
superior quality compared to the state-of-the-art. Our ap-
proach also shows great promise in the supervised setting
when user examples are provided, which is an interesting
area that warrants further investigations.

8. REFERENCES
[1] Google Web Tables.

http://research.google.com/tables.

[2] Microsoft Excel Power Query.
http://office.microsoft.com/powerbi.

[3] E. Agichtein and V. Ganti. mining reference tables for
automatic text segmentation. In KDD, 2004.

[4] E. Agichtein and L. Gravano. Snowball: extracting
relations from large plain-text collections. In DL, 2000.

[5] Y. Bartal, M. Charikar, and D. Raz. Approximating
min-sum clustering in metric spaces. In STOC, 2001.

[6] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In SIGMOD,
2008.

[7] P. Bonizzoni and G. D. Vedova. The complexity of multiple
sequence alignment with sp-score that is a metric. In
Theoretical Computer Science, 2001.

[8] V. R. Borkar, K. Deshmukh, and S. Sarawagi. Automatic
segmentation of text into structured records. In SIGMOD,
2001.

[9] M. J. Cafarella, A. Y. Halevy, and N. Khoussainova. Data
integration for the relational web. In VLDB, 2009.

[10] M. J. Cafarella, E. Wu, A. Halevy, Y. Zhang, and D. Z.
Wang. Webtables: Exploring the power of tables on the
web. In VLDB, 2008.

[11] K. W. Church and P. Hanks. Word association norms,
mutual information, and lexicography. In Computational
Linguistics, 1990.

[12] W. W. Cohen, M. Hurst, and L. S. Jensen. A flexible
learning system for wrapping tables and lists in html
documents. In WWW, 2002.

[13] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. 2001.

[14] E. Cortez, D. Oliveira, A. S. da Silva, E. S. de Moura, and
A. H. F. Laender. Joint unsupervised structure discovery
and information extraction. In SIGMOD, 2011.

[15] H. Do, S. Melnik, and E. Rahm. Comparison of schema
matching evaluations. In Workshop on Web Databases,
2002.

[16] H. Elmeleegy, J. Madhavan, and A. Y. Halevy. Harvesting
relational tables from lists on the web. PVLDB, 2009.

[17] D. W. Embley, Y. Jiang, and Y.-K. Ng. Record-boundary
discovery in web documents. In SIGMOD, 2009.

[18] J. Euzenat. Semantic precision and recall for ontology
alignment evaluation. IJCAI’07, 2007.

[19] R. L. Francis, T. J. Lowe, and H. D. Ratliff. Distance
constraints for tree network multifacility location problems.
In Operations Research, 1978.

[20] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data
manipulation using examples. In CACM, 2012.

[21] R. Gupta and S. Sarawagi. Answering table augmentation
queries from unstructured lists on the web. In PVLDB,
2009.

[22] D. Gusfield. Efficient methods for multiple sequence
alignment with guaranteed error bounds. Bulletin of
Mathematical Biology, 1993.

[23] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths.
SIGART Bull., 1972.

[24] W. Just. Computational complexity of multiple sequence
alignment with sp-score. In Journal of Computational
Biology, 2001.

[25] A. Machanavajjhala, A. S. Iyer, P. Bohannon, and
S. Merugu. Collective extraction from heterogeneous web
lists. In WSDM, 2011.

[26] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri.
Infogather: entity augmentation and attribute discovery by
holistic matching with web tables. In SIGMOD, 2012.

[27] M. Zhang and K. Chakrabarti. Infogather+: Semantic
matching and annotation of numeric and time-varying
attributes in web tables. In SIGMOD, 2013.

[28] C. Zhao, J. Mahmud, and I. Ramakrishnan. Exploiting

structured reference data for unsupervised text
segmentation with conditional random fields. In SDM, 2008.

APPENDIX
A. ALGORITHM OVERVIEW IN [16]

Given an input list L = {l1, l2, . . . , ln}, ListExtract in [16]
extracts a table T = {t1, t2, . . . , tn} in three phases: an in-
dependent splitting phase, an alignment phase, and an re-
finement phase.

In the first phase, each line li is independently split into a
multi-column record ti based on Field Quality Score FQ(f).
FQ(f) has three components: type support, language model
support, and table corpus support.

In the alignment phase, since each line might be split into
different number of columns in the previous step, the algo-
rithm use the most common columns number m to re-split
all lines. Records with number of columns less than m are
expanded by inserting empty columns using a dynamic pro-
gramming procedure to maximize consistency among cells
in the same column. A Field-to-Filed Consistency Score,
F2FC(f1, f2), is used to measure the consistency of two
fields f1, f2 being the same column. Records with number of
columns more than m are merged and re-split into a record
using the same algorithm in the independent splitting phase
given m as a constraint.

In refinement phase, ListExtract tried to rectify some
local decisions made before by identifying sequences of fields
(termed streaks) in a record that are deemed to be incorrect.
A field is deemed to be incorrect if its score with other fields
in the same column is less than a predefined threshold. Each
streak is then merged together and re-split.

B. PROOF OF THEOREM 1
We obtain the hardness result by a reduction from multi-

ple sequence alignment (MSA) [24]. Recall that given a set
S = {si|1 ≤ i ≤ k} of k strings over an alphabet Σ, a mul-
tiple alignment of is a k × l matrix A where row i contains
string si interleaved by spaces. The score for a multiple
alignment is the sum of all pairs of rows in the alignment,
where the cost of a pair of rows is in turn the sum of all
aligned symbol pairs. The penalty costs of all symbol pairs
P : (Σ,Σ) → R are pre-defined. The decision version of
MSA is to determine if there exists a multiple alignment
with cost no more than some given constant C.

For any instance of MSA, we construct an Unsupervised
Table Segmentation(UTS) as follows. We create k unseg-
mented lines L = {si|1 ≤ i ≤ k} exactly using S, and define
the cost function in UTS for each pair of token subsequences
as:

d(li[ai . . . bi], lj [aj . . . bj]) =

P (li[ai . . . bi], lj [aj . . . bj]),

if ai = bi ∧ aj = bj

∞, if ai 6= bi ∨ aj 6= bj

That is, if li[ai . . . bi] and lj [aj . . . bj] are single symbols, then
we use exactly P from MSA, otherwise we force it to ∞.

We show that if there exists a solution to MSA, i.e., a
multiple alignment with cost at most C, then there is a
solution to UTS with cost at most C. Suppose the multiple
alignment solution A has l number of columns. It can be
shown that l ≤

∑
1≤i≤k |si|. In the corresponding UTS, if

we try all number of columns m ≤
∑

1≤i≤k |si|, then when
using l number of columns, the best UTS will have a cost
at most C. This is because the alignment A is a feasible

http://research.google.com/tables
http://office.microsoft.com/powerbi

segmentation of L in UTS with exactly the same cost. Thus
the solution to UTS must have a cost at most C.

We then show it in the other direction – if there exists
a solution to UTS, i.e., a table segmentation with cost at
most C, then there is a solution to MSA with cost at most
C. Since there is a table segmentation with cost at most C,
then all columns in the segmentations must be single-symbol
or null (otherwise the cost is ∞ by construction). Thus
this table segmentation is also a valid multiple alignment,
meaning the solution to MSA must have a cost at most C.

Since MSA is shown to be NP-hard [24], this completes
our hardness proof. Note that MSA is shown to be NP-hard
even with metric distance [7]. It follows that UTS is also
NP-hard even with metric distance.

C. PROOF OF THEOREM 2
Let T ∗c = R(t∗c) be the table returned by Algorithm 1 that

has the minimal AD(t∗c , T
∗
c), and T ? be the table with the

minimal SP distance. Then we have

SPm(T ∗c) =
1

2

∑
1≤i≤n

∑
1≤j≤n
j 6=i

d(ti, tj)

≤ 1

2

∑
1≤i≤n

∑
1≤j≤n
j 6=i

(
d(ti, t

∗
c) + d(t∗c , tj)

)
(16)

= (n− 1)
∑

1≤i≤n
i 6=c

d(t∗c , ti)

≤ (n− 1)AD(t∗c , T
∗
c) (17)

Note that Equation (16) holds by triangle inequality.
Overall, Equation (17) shows that SPm(T ∗c) can be bounded

by AD(t∗c , T
∗
c) from above. We further show that SPm(T ?)

can be bounded by AD(t∗c , T
∗
c) from below.

SPm(T ?) =
1

2

∑
1≤i≤n

AD(ti, T
∗) (By definition of AD)

≥ 1

2

∑
1≤i≤n

AD(ti, T
∗
i) (18)

≥ n

2
AD(t∗c , T

∗
c) (By definition of t∗c , T

∗
c) (19)

Note that Equation (18) is true because T ∗i is defined to
be the table that minimizes anchor distance of ti among all
possible tables segmentations, which include T ∗.

Dividing (17) by (19), we have:

SPm(T ∗c)

SPm(T ?)
≤ 2(n− 1)nAD(t∗c , T

∗
c)

nAD(t∗c , T ∗c)
= 2− 2

n
< 2

D. ALGORITHM FOR SLGR
Algorithm 3 describes a dynamic programming procedure

to calculate M [p, w] and the optimal segmentation ti∗j . Lines
1-5 initialize M [p, w] and address boundary cases. Line 8
uses the optimal substructure for calculating M [p, w]. The
complexity of the procedure is O(m|lj |2), where the size of
the M matrix is O(m|lj |), and the calculation of each cell
requires O(|lj |) comparisons.

E. A? SEARCH OVERVIEW.
A?, an informed search algorithm, is designed to find a

least-cost path from a start node to an end node quickly.
It keeps a priority queue of alternate paths sorted by their
underestimated cost to the end node. It traverses the graph
by following a path that has least expected cost.

Algorithm 3: Segment a Line Given Record (SLGR)

Input: A record ti and a line lj
Output: Segmentation ti∗j of lj that minimizes d(ti, t

i∗
j)

1 M [0, 0]← 0
2 for each w ∈ 1 . . . |lj | do
3 M [0, w]←∞
4 for each p ∈ 1 . . .m do
5 M [p, 0]←M [p− 1, 0] + d(null, ti[k])

6 for each p = 1 . . .m do
7 for each w = 1 . . . |lj | do
8

M [p, w] = min

M [p− 1, x] + d(lj [x+ 1 . . . w], ti[p])

∀0 ≤ x < w

M [p− 1, w] + d(null, ti[p])

9 ti∗j ← construct segmentation by back tracing M [m, |lj |]
10 Return ti

For every node x in the search graph, A? keeps a cost
function f(x) to determine the order in which A? visits the
nodes in the graph. f(x) consists of two components: g(x)
and h(x). g(x) is the currently known least cost from start
node to x. h(x) is an estimated cost from x to the end node.
h(x) must be admissible, i.e., h(x) must underestimate the
actual cost from x to the end node. h(x) being admissi-
ble guarantees the the path A? finds is the least cost path
when terminated. h(x) is said to be monotonic if it satisfies
L(X)+h(x) ≤ L(Y)+h(y), where X is any path from start
node to x, and Y is the path extending X with an addi-
tional node y. If h(x) is monotonic, any node only needs to
be processed once, making the search more efficient.

F. PROOF OF LEMMA 1
Let tZi be the segmentation corresponding to Z, tXi be

the partial segmentation corresponding to X, and tYi be the
partial segmentation corresponding to Y , we have tZi [k] =
tXi [k], ∀1 ≤ k ≤ p and tZi [k] = tYi [k], ∀p < k ≤ m. Let tZj
be the record aligning lj with tZi , tXj be the record aligning

lj with tXi , and tYj be the record aligning lj with tYi . we
have (20):

L(Z) =
∑

1≤j≤n
j 6=i

∑
1≤k≤m

d(tZi [k], tZj [k])

=
∑

1≤j≤n
j 6=i

∑
1≤k≤p

d(tZi [k], tZj [k]) +
∑

1≤j≤n
j 6=i

∑
p<k≤m

d(tZi [k], tZj [k])

L(X) =
∑

1≤j≤n
j 6=i

∑
1≤k≤p

d(tXi [k], tXj [k])

L(Y) =
∑

1≤j≤n
j 6=i

∑
p<k≤m

d(tYi [k], tYj [k]) (20)

L(X) ≤
∑

1≤j≤n
j 6=i

∑
1≤k≤p

d(tZi [k], tZj [k]) (21)

L(Y) ≤
∑

1≤j≤n
j 6=i

∑
p<k≤m

d(tZi [k], tZj [k]) (22)

(21) holds because tZi [k] = tXi [k],∀1 ≤ k ≤ p and tXj is the

record that achieves the minimal distance with tXi according
to the definition of L(X), which is certainly smaller or equal
to any other record’s (including tZj) distance with first p
columns of ti. (22) holds for similar reasons.

Combining (20) (21) (22), we have L(X) +L(Y) ≤ L(Z).

G. HEURISTIC FUNCTION
Algorithm 4 describes the procedure for calculating h func-

tion for every node [p, w] inGi. Lines 1-8 initialize freeD(c1)
for every candidate column c1 in li. Lines 9-13 initialize and
take care of corner cases of hli(p, w). Lines 14-16 use a
dynamic programming procedure to initialize all entries of
hli(p, w) similar to the one used in Algorithm 3.

Algorithm 4: Calculate h Function

Input: List L, number of columns m, anchor line li
Output: hi(p, w) for 1 ≤ p ≤ m and 1 ≤ w ≤ |li|

1 for candidate column c1 ∈ li do
2 freeD(c1)← 0
3 for Line lj ∈ L and lj 6= li do
4 freeD(c1, lj)← Double.Max
5 for candidate column c2 ∈ lj do
6 if d(c1, c2) < freeD(c1, lj) then
7 freeD(c1, lj)← d(c1, c2)

8 freeD(c1)← freeD(c1) + freeD(c1, lj)

9 hli (m, |li|)← 0
10 for w = |li| − 1→ 1 do
11 hli (m,w)←∞
12 for p = m− 1→ 1 do
13 hli (p, |li|)← hli (p+ 1, |li|) + freeD(null)

14 for p = m→ 1 do
15 for w = |li| → 1 do
16

hli (p, w) = min

hli (p+ 1, x) + freeD(li[w + 1 . . . x])

∀w < x ≤ |li|
hli (p+ 1, w) + freeD(null)

17 Return hi(p, w)

Proof of Lemma 2. h function is admissible by definition
since for every candidate column s1 in li, it finds the best
candidate column in every other line to align with s1.

According to Line 16 in Algorithm 4, we have:

h(p, w) ≤ h(p+ 1, w′) + freeD(li[w + 1 . . . w′]) (23)

Let tXi be the segmentation corresponding to X and tX
′

i be
the segmentation corresponding to X ′. We have tXi [k] =

tX
′

i [k], ∀1 ≤ k ≤ p. For every other line lj , let tXj be the

record of aligning lj with tXi and tX
′

j be the record of aligning

lj with tX
′

i . We have the following:

L(X) =
∑

1≤j≤n
j 6=i

∑
1≤k≤p

d(tXi [k], tXj [k])

L(X ′) =
∑

1≤j≤n
j 6=i

∑
1≤k≤p+1

d(tX
′

i [k], tX
′

j [k])

=
∑

1≤j≤n
j 6=i

∑
1≤k≤p

d(tX
′

i [k], tX
′

j [k]) +
∑

1≤j≤n
j 6=i

d(tX
′

i [p+ 1], tX
′

j [p+ 1])

(24)

Similar to the argument in Proof F, we have 25.

L(X) ≤
∑

1≤j≤n
j 6=i

∑
1≤k≤p

d(tX
′

i [k], tX
′

j [k]) (25)

Because li[w+1 . . . w′] = tX
′

i [p+1], we have (26) for every
line lj from the definition of freeD.

freeD(li[w + 1 . . . w′], lj) ≤ d(tX
′

i [p+ 1], tX
′

j [p+ 1]) (26)

Summing up (26) for every j 6= i, we have:

freeD(li[w + 1 . . . w′]) ≤
∑

1≤j≤n
j 6=i

d(tX
′

i [p+ 1], tX
′

j [p+ 1]) (27)

Combining Equations (23) (24) (25) (27), we have:
L(X) + h(p, w) ≤ L(X ′) + h(p+ 1, w′)

H. JACCARD DISTANCE
Since Jaccard distance also reflects the strength of co-

occurrence between s1, s2, we also used Jaccard for semantic

distance. Recall that JaccardDist(s1, s2) = 1− |C(s1)∩C(s2)|
|C(s1)∪C(s2)|

.

While using Jaccard distance also achieves reasonable qual-
ity, its performance is not as good as using NPMI. We sus-
pect that the reason lies in the fact that Jaccard cannot
handle asymmetric sets well. In particular, suppose s1 is
very popular (e.g. “USA”) but s2 is not (e.g., “Congo”).
When using Jaccard, just because s1 is so popular, even if
s2 always co-occurs with s1 the Jaccard similarity is low and
Jaccard distance is high. In comparison, NPMI is informa-
tion theoretic and handles asymmetry better – even if s2
is not popular, as long as s1 and s2 always co-occur their
NPMI will never be negative. Thus NPMI is more robust
to asymmetric sets and is a better measure to use in our
setting.

I. DETAILS OF SYNTACTIC DISTANCE
At a high level, our syntactic distance dsyn(s1, s2) is

dsyn(s1, s2) =
dlen(s1, s2) + dchar(s1, s2) + dtype(s1, s2)

3

We use three main components to capture syntactic dis-
tance. First, length difference is defined as dlen(s1, s2) =
||s1|−|s2||

max (|s1|,|s2|)
, where |s1| denotes the number of tokens in

s1. One can prove that dlen satisfies triangular inequality.
Second, character distance dchar(s1, s2) looks at s1 and s2
in character level, and determines if they have same num-
ber of digits, capital letters, punctuation marks, symbols,
and letters. dchar(s1, s2) equals to the number of types of
characters s1 and s2 have the same number, divided by the
total types of characters, which is 5. Third, type distance
indicates dtype(s1, s2) whether s1 and s2 belong to the same
predefined type, e.g., numerical value, phone number, email
address, all of which determined by predefined regular ex-
pressions. Define dtype(s1, s2) to be 0 when they s1 and s2
have the same type, and 1 otherwise. It can be shown that
dsyn(s1, s2) satisfies triangle inequality.

Note that when calculating the distance between a string
s and a null string, i.e., d(null, s), we treat null as an empty
string for calculating the syntactic distance dsyn(null, s), i.e.,
we use dsyn(“”, s) for dsyn(null, s); we give 1.0 for the seman-
tic distance dsem(null, s) since empty string does not carry
any meaningful semantics.

Also note that our design d(s1, s2) did not include the
likelihood of s1 or s2 being a cell in a table, called single
value distance, which also seems to be a valid component of
d(s1, s2). Appendix J provides an explanation about this.

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Score Percentile

 Enterprise
 Web
 Wiki

(a) SP Function

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0 0.2 0.4 0.6 0.8 1

F
-
M
e
a
s
u
r
e

Syntactic Weight

 Enterprise
 Web
 Wiki

(b) Distance Function

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Tokens Percentile

 TEGRA

 ListExtract

 Judie

(c) Tokens−Web

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Tokens Percentile

 TEGRA

 ListExtract

 Judie

(d) Tokens− Enterprise

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Cols Percentile

 TEGRA

 ListExtract

 Judie

(e) Cols−Web

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Cols Percentile

 TEGRA

 ListExtract

 Judie

(f) Cols− Enterprise

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Rows Percentile

 TEGRA

 ListExtract

 Judie

(g) Rows−Web

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-
M
e
a
s
u
r
e

Rows Percentile

 TEGRA

 ListExtract

 Judie

(h) Rows− Enterprise

Figure H.1: Experiments in supervised setting

Lastly, our syntactic distance do not work well for lists
with very long texts (e.g., paragraphs). In practice, very
long lists are unlikely to have good relational tables, so we
simply discard lists whose lengths exceed certain limit. Im-
ages and other HTML constructs are sometimes embedded
in lists. These however can be easily identified by HTML
tags and are removed from the input lists by an upstream
table/list extraction job.

J. SINGLE VALUE DISTANCE
d(s1, s2) reflects the likelihood of s1, s2 being in the same

column of a table, which include dsyn(s1, s2) and dsem(s1, s2).
d(s1, s2) could also include two additional components: the
likelihood of s1 being a cell in a table d(s1) and the likeli-
hood of s2 being a cell in a table d(s2). d(s1) could include
the language model of s1, the frequency of s1 in a column
of the web tables corpus, etc. We chose not to include d(s1)
and d(s2) in our design of d(s1, s2) for several reasons: (1)
we found that the d(s1) and d(s2) is already partially ex-
pressed by d(s1, s2). For instance, if s1 occurs infrequently
in the web tables corpus, so will the occurrence of s1, s2; (2)
it is quite difficult to tune the relative weights of four compo-
nents, dsyn(s1, s2), dsem(s1, s2), d(s1), and d(s2); and (3) we
found in experiments that bad relative weight assignment of
the four components will greatly degrade the tables quality.
Furthermore, the best quality of resulted tables after fine
turning the relative weights is not so much better than our
current much simpler distance function design.

K. MORE EXPERIMENTS
We also experiment with the supervised scenario where

users need to segment an ad-hoc list into tables, and example
row segmentations can be provided. By default we use two
example segmentations as input.

Table 7 varies the background corpus, where we have sim-
ilar observations as Table 6 in the unsupervised setting.

Figure H.1 reports the same set of experiments as ones in
Figure 8, but this time with supervision. We observe similar
trends in the supervised setting.

Figure K.1 analyzes how quality improves as more user
feedback is provided. The leftmost point (x = −1) cor-
responds to the unsupervised scenario where lists are seg-
mented fully automatically. In the next set of points (x = 0),
the correct number of columns are given as input. As we
move to the right with x > 0 number of fully segmented rows
as input, quality numbers further improve. We observe that

Test-Dataset Background TEGRA ListExtract Judie

Web B-Web 0.97 0.70 0.39
B-Enterprise 0.79 0.67 0.39
B-Combined 0.97 0.70 0.39

Wiki B-Web 0.96 0.71 0.50
B-Enterprise 0.79 0.69 0.50
B-Combined 0.96 0.71 0.50

Enterprise B-Web 0.92 0.79 0.49
B-Enterprise 0.92 0.83 0.49
B-Combined 0.94 0.81 0.49

Table 7: F-Measure using different background cor-
pus (supervised)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 0 1 2 3 4

F
-
M
e
a
s
u
r
e

Supervision Level

 TEGRA

 ListExtract

 Judie

(a) Web

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

-1 0 1 2 3 4

F
-
M
e
a
s
u
r
e

Supervision Level

 TEGRA

 ListExtract

 Judie

(b) Enterprise

Figure K.1: Varying supervision level

TEGRA gets a significant boost with only 1 example row,
and the incremental gain of have more example segmenta-
tions quickly diminishes. This shows that in the supervised
setting TEGRA can achieve very high quality with very
limited feedback. It is somewhat surprising that for Lis-

tExtract, knowing the number of columns (x = 0) actually
hurts its quality. We suspect that the reason lies in the
fact that ListExtract splits lines using a language model,
which favors shorter token sequences (e.g., “New York” over
“New York City”). As such, it tends to be too aggressive
and over-segment. When the number of columns are con-
strained, however, the local splitting decisions cannot be rec-
onciled by using more number of columns, thus destroying
the structure of the extracted table and negatively affecting
performance.

	Introduction
	Problem Statement
	Definition of Segmentation
	The Goodness of Segmentation
	Quantify Goodness: Distance Functions
	Semantic Distance
	Syntactic Distance

	An Optimization-based Formulation

	The TEGRA Algorithm
	A Conceptual Approximation Algorithm
	Optimization Strategies
	Segment a Line Given a Record (SLGR)
	Pruning Anchor Segmentations (PAS)

	The Supervised Variant
	Experiments
	Experimental Setup
	Algorithms compared
	Data preparation
	Benchmark table sets
	The background table corpus
	Evaluation metric

	Overall table quality comparison
	Sensitivity to different tables
	Sensitivity to distance scoring
	Impact of matching background corpus
	Efficiency study
	Estimate useful lists on the Web

	Related Work
	Conclusions and Future Work
	References
	Algorithm overview in DBLP:journals/pvldb/ElmeleegyMH09
	Proof of Theorem 1
	Proof of Theorem 2
	Algorithm for SLGR
	A Search Overview.
	Proof of Lemma 1
	Heuristic Function
	Jaccard Distance
	Details of Syntactic Distance
	Single Value Distance
	More Experiments

