
P2P Schema-Mapping over Network-bound XML
Data

Carmela Comito 1, Domenico Talia 2

DEIS - University of Calabria
Via P. Bucci 41 c,87036, Rende, Italy

1ccomito@deis.unical.it
2talia@deis.unical.it

Abstract—The rise in availability of web-based data sources
has led to new challenges in data integration systems for obtaining
decentralized, wide-scale sharing of data preserving semantics. In
this paper we present a framework for integrating heterogeneous
XML data sources distributed over a large-scale, highly dynamic
network of autonomous nodes. We propose a query reformulation
algorithm to combine and query distributed XML databases
through a decentralized point-to-point mediation process among
the different data sources by using P2P schema mappings.
More precisely, our integration model is based on path-to-path
mappings, using the XPath language. We demonstrate the utility
and scalability of our ideas and algorithms with a detailed set
of experiments. Finally, we present our experience implementing
the above cited query reformulation algorithm as a Web service
within the GDIS system, a service-based Grid architecture.
We have evaluated GDIS on several real world schemas with
promising results.

I. INTRODUCTION

The continuously growing availability of data sources over
network-bound systems, requires a coordinated and integrated
access of such data due to the heterogeneity of the involved
data models. The scale, decentralization and dynamism in-
volved, make traditional centralized approaches to information
management fully inadequate as they fail to respond to the
extreme dynamism of such systems. Decentralized-distributed
data structures have recently received a lot of attention with the
successful introduction of peer-to-peer systems, Web services,
Grids, and ubiquitous computing systems. However, such
systems lack an integrated and efficient approach to semantic
data sharing. Therefore, semantic interoperability is a key
issue to be addressed in open networked systems where many
different and independent enterprise parties need to cooperate
and share information resources.

In order to address the semantic interoperability concern,
in this paper we focus on recovering schema heterogeneity
presenting an extended and modified version of the XML
Schema MAPping (XMAP) framework [1]. By designing this
framework, we aim at developing a decentralized network of
semantically related XML schemas that enables the formula-
tion of queries over distributed, heterogeneous data sources.
The environment is modeled as a system composed of a
number of geographically distributed nodes, where each node
can hold one or more XML databases. These nodes are
connected to each other through declarative mappings rules.

We recover schema heterogeneity by mapping different
schemas following the peer-to-peer (P2P) integration approach
recently adopted in the database community. This approach is
not based on a global schema but each database (peer) repre-
sents an autonomous information system, and data integration
is achieved by establishing mappings directly among the
various peers. However, differently from related works XMAP
does not require heavyweight mapping creation from the user
who has only to establish simple correspondences among paths
in different schemas and the system supplies the rest. In partic-
ular, XMAP uses an algorithm which automatically determine
rewritings of the user query, from the correspondences. XMAP
is inspired to Piazza [2], but whereas schema mapping in
XMAP is based on path-path mappings, in Piazza is based
on schema-to-schema mappings. Moreover, in XMAP map-
pings are expressed as path expressions and the reformulation
algorithm allows only for XPath query. Conversely, in Piazza
mappings are described as query expressions using a subset of
XQuery. Differently from XMAP, the PEPSINT [3] approach
is built on a hybrid super-peer architecture in which schema
heterogeneity is recovered through a P2P schema-based for-
malism, whereas data heterogeneity is resolved through a
global RDF ontology. The EDUTELLA [4] approach is based
on RDF and like XMAP, it relies on a mapping network
between local schemas that allows building new mappings
transitively. However, differently from EDUTELLA our ap-
proach is completely decentralized in the sense that it does
not rely on super-peers. Hyperion [5] combines mapping tables
that relate different values (as opposed to paths in the present
work) across peers, and mapping expression (analogously to
XMAP). While semantically impoverished, we use simple
element correspondences for two main reasons. First of all,
our mappings are to be considered in a large-scale framework
and we do not expect a database administrator/user to know
the rule machinery, whereas it is reasonable to assume that
even users unfamiliar with the complex structure of the schema
can provide such correspondences. Hence, the design was
motivated by practical considerations. In addition, automated
techniques for schema matching (including CUPID, LSD and
DIKE) have proven to be very successful in extracting such
correspondences.

We have embedded XMAP in the GDIS [6], [7], [8]
architecture in which the XMAP algorithm is exposed as a

Fourth International Conference on Semantics, Knowledge and Grid

978-0-7695-3401-5/08 $25.00 © 2008 IEEE
DOI 10.1109/SKG.2008.30

271

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on March 30, 2009 at 03:57 from IEEE Xplore. Restrictions apply.

web service [9] within an OGSA-Grid infrastructure. In this
system, data is exchanged through invocations of OGSA-DAI
web services. We have also evaluated GDIS on several real
world schemas with promising results.

The remainder of the paper is organized as follows. Sec-
tion II presents the XMAP integration framework describing
both the mapping approach and the query reformulation pro-
cess. The experimental evaluation of the XMAP is detailed
in section III. Section IV illustrates the deployment and
experiencing of the XMAP framework on a service-based Grid
architecture. Finally, Section V draws some conclusions.

II. THE XMAP FRAMEWORK

In this section, we describe a modified and extended version
of the XMAP framework whose preliminary release has been
presented in [1]. Compared to the original work, we now
modified the reformulation algorithm by distributing the whole
reformulation process, as will be detailed in sub-section II-B.
Further, while in [1] we just presented the logical model of
the framework and the theoretical grounds supporting it, in this
paper we also discuss the experimental evaluation (see sub-
section III) of a real software prototype of the whole XMAP
framework implemented in Java.

A. P2P Schema-Mapping in XMAP

XMAP [1] is a decentralized network of semantically
related XML schemas that enables the formulation of
queries over heterogeneous, distributed, highly dynamic XML
databases. The main goal of the XMAP framework is to
allow transparent access to heterogeneous XML data inde-
pendently of where data is stored in a large-scale, highly
dynamic, distributed environment. The main challenge here
is heterogeneity of data representations, also known as the
problem of schema heterogeneity. There may be consider-
able differences in the way the sources organize their data,
including differences in data representations (terminological),
as well as differences in underlying schemas (structural).
We recover schema heterogeneity considering the schema
mapping problem, where given two separate schemas it is
necessary to translate data from one to the other. We use a
simple form of correspondence: element (attribute) correspon-
dences also specifying the logical access paths that define
the associations between elements involved. We require the
database administrator or the final user to supply only very
simple correspondences. These correspondences can either be
created by hand or through some (semi-)automatic mapping
discovery algorithm. From such correspondences we specify
mappings as path expressions that relate a specific element
or attribute (together with its path) in the source schema to
related elements or attributes in the destination schema. The
data integration model we propose is indeed based on path-to-
path mappings expressed in the XPath [10] query language,
assuming XML Schema as the data model for XML sources.
Specifically, this means that a path in a source is described in
terms of XPath expressions. As a first step, we consider only

a subset of the full XPath language. The expressions of such
a fragment of XPath are given by the following grammar:

q → n | . | q / q | q // q | q [q]

where ”n” is any label (node tests), ”.” denotes the ”current
node”, ”/” indicates the child axis whereas ”//” the descendant
axis, and ”[]” denotes a predicate.

A schema mapping is defined as a set of “formulas”
that relate a pair of schemas. More precisely, we define a
mapping M over a source schema S as a set of mapping
rules RM = {RM

1 , RM
2 , . . . RM

k }. As we perform path-to-
path mappings, a mapping rule associates paths in different
schemas. Specifically, a mapping rule is an expression of the
form:

RM : {SS , PS} −→CM {SD, PD}, where:

RM is the label of the rule; SS is the source schema with
respect to which the rules are established; PS is a path
expression in the source schema; SD is the target schema with
respect to which the semantic connections are established; PD

is a path expression in the destination schema (the cardinality
of this element may be more than one); CM denotes the car-
dinality of the mappings between the two schemas. Mappings
are classified as 1-1, 1-N, N-1, N-N according to the number of
nodes (both elements and attributes) of the schemas involved
in the mapping relationship. The mapping rules are specified
in XML documents called XMAP documents. Each source
schema in the framework is associated to an XMAP document
containing all the mapping rules related to it.

The P2P paradigm has been recently adopted in the database
community to overcome the limitations of distributed database
systems, namely the static topology and the heavy administra-
tion work, and to exploit the dissemination of data sources
over the Internet. Accordingly, XMAP is inspired to such
trends emerged in the context of peer-to-peer data integration
(e.g., [11], [4], [5], [2], [3]). As such, in XMAP each data
source represents an autonomous information system, and
schema heterogeneity is handled by establishing mappings
directly among the various source schemas without resorting
to any hierarchical structure. Therefore, in our model, there is
no global schema representing all data sources in a unique
data model but a collection of local schemas (the native
schema of each data source). Regardless of the total number of
nodes composing the system, each source schema is directly
connected only to a small number of other schemas. However,
it remains reachable from all other schemas that belong to
its “transitive closure”. For any mapping M, its closure is
defined as the set of rules that can be derived from M by
repeated composition of schema paths. In other words, the
system supports two different kinds of mapping to connect
schemas semantically: point-to-point mappings and transitive
mappings. In transitive mappings, data sources are related
through one or more “mediator schemas”. For example, if
we have a source A directly connected to a source B and B
connected to C, A is connected to both B and C. Establishing
the mappings this way creates a graph of semantically related

272

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on March 30, 2009 at 03:57 from IEEE Xplore. Restrictions apply.

sources where each of the sources knows its direct semantic
neighbors (point-to-point mapping) and can learn about the
mappings of its neighbors (transitive mapping).

The XMAP framework abstracts from the underlying net-
work infrastructure, it is modeled as a number of various
autonomous nodes (that can be also referred to as sites,
sources, peers, etc) which hold information, and which are
linked to other nodes by means of mappings. Therefore,
it can be extended at information nodes in any networked
environment, and, as thus it can be seen as a set of network
nodes connected to the Internet. More precisely, XMAP is
composed of a collection N of nodes which are logically
bound to XML data sources. That is, each data source Dn

is represented by exactly one node n and, conversely, each
node has access to a single data source, named local data
source. Naturally, a local schema Sn is associated to this data
source Dn. Data sources employ the XML data model and
each source defines its own XML Schema. Each node also
holds a collection of mappings Mn from its local schema
to other foreign schemas. Finally, a node knows a list (also
named partial view or, simply, view) of other nodes (called
neighbors). These nodes are connected to each other through
declarative mappings rules. Finally, we make an “open world”
assumption: nodes do not have complete knowledge of the
domain but every node can contribute new answers to the user
queries.

B. Query Reformulation
Answering a query in XMAP is done by reformulating it

over the schemas of the semantically-connected nodes in the
framework. Precisely, our query processing approach exploits
the semantic connections established in the system by perform-
ing the XPath query reformulation algorithm before executing
the input query, in order to gain further knowledge. This way,
when a query is posed over the schema of a source, the system
will be able to use data from any source that is transitively
connected by semantic mappings. Indeed, it will reformulate
the given query expanding and translating it into appropriate
queries for each semantically related source. In this way, the
appropriate query will be posed on that node, and additional
answers may be found. Thus, the user can retrieve data from
all the related sources in the system by simply submitting a
single XPath query. The result of query reformulation is a
union of reformulated queries: one or more queries per node
schema.

In the original XMAP reformulation algorithm [1] we as-
sumed that the node receiving the query submitted by the client
is the one that performs the full (transitive) reformulation.
Here nodes may exchange both data and mappings, so that
only the query node will eventually evaluate the query answer
in one go. Therefore, there is no distributed computation and
the network may be flooded with data. This is the simplest
way to detect and eliminate redundant queries. However, this
also imposes a high load on the contacted node and triggers a
heavy-weight and complex management of mapping informa-
tion that must be kept consistent across all nodes in the tran-

sitive closure. To leverage these limitations, in this paper we
introduce a variation of the query processing algorithm where
the reformulation process is fully decentralized and distributed.
Differently from the original design, here a node applies only
one step of the reformulation algorithm to produce only its
direct reformulations over the schemas directly connected to
its schema. In this case, nodes only need to know mappings
having their local schema as the source schema. Therefore,
the algorithm is composed of several reformulation steps, and
each of such steps performs direct reformulations by using the
point-to-point mappings. To obtain transitive reformulations of
a query it is necessary to concatenate individual reformulation
steps by exploiting all the mappings in the transitive closure of
the schema over which the original query is formulated. Each
time a reformulated query is obtained, the algorithm tries to
rewrite it by recursively invoking the XMAP algorithm.

The algorithm can be decomposed in the following stages
(see Figure 1):

1) Identifying the path expressions in Q.
An XPath query can contain one or more predicates that
produce different branching points in the tree pattern
representing the query. Each of these branches identifies
a specific path in the XML data source. The paths
identified in the query are collected into a set P .

2) Looking for corresponding paths in all source schemas
related to S.
The goal of this stage is to find corresponding paths in
all sources semantically related to S. This means finding
the path expressions corresponding to every element Pi

in P , by using the mapping information specified in
the XMAP document provided with S. These paths P �

i,j

are called corresponding paths, and the schema S�
j they

belong to, corresponding schema. In particular we define
a corresponding element E�

i,j as a tuple 〈S�
j , {P �

i,j}〉,
where {P �

i,j} is a set of paths over the schema S�
j . A

corresponding set E� is a set of corresponding elements
{E�

1 , . . . E�
n} (with E�

j =
⋃

i E�
i,j).

3) Pruning of corresponding schemas.
The third stage of the algorithm checks for each corre-
sponding schema found in the previous stage whether
it may be used to obtain one or more reformulation of
the query Q. To this aim, the algorithm checks whether
each of such schemas has at least one corresponding
path for each path present in the query. The schemas
that meet this condition are the only ones that we will
be considered to obtain reformulated queries, we call
them candidate schemas. We define a candidate element
E�

i,j as a tuple 〈S�
j , {P �

i,j}〉, where {P �
i,j} is a set of

paths over the schema S�
j . A candidate set E� is a set of

candidate elements {E�
1 , . . . E�

n} (with E�
j =

⋃
i E�

i,j).
4) Constructing reformulated queries.

In this stage, given the set E�, the algorithm produces
one or more XPath queries over each schema in the set.
More precisely, for each destination schema S�

j in E�

the following steps are performed:

273

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on March 30, 2009 at 03:57 from IEEE Xplore. Restrictions apply.

a) Checking Join conditions. Once the cardinality
of the mapping has been established, and before
actually producing the query, one needs to check
the join conditions between the paths P �

i,j(1 ≤
i ≤ |P|) of the candidate schema S�

j . So, this
step produces as output a set ECR of candidate
reformulation element ECR

i,j .
b) Pruning redundant reformulations. If a candidate

reformulation element in the set ECR, found in the
previous stage, has already been used to reformu-
late the original query, it will not be used again
to reformulate the same query. The output of this
sub-stage is the set ECR pruned of the candidate
reformulation elements already been used.

c) Composing XPath Queries. Once the reformulation
set has been obtained, the actual production of one
or more XPath queries is initiated. These queries
are the product of the reformulation of the query
Q in the destination schema S�

j . The step produces
as output the set Q�.

At this point all the direct reformulations of the original
query have been produced. Then, the algorithm is recursively
invoked over them by exploiting transitive mappings.

Algorithm QueryReformulation
Input: query Q, schema S, mapping M (M is the XMAP of S)
Output: set of reformulated queries Q�

begin
P ← IdentifyPath(Q);
for each path Pi ∈ P do

E� ← FindCorrespondingPath(Pi, M);
E� ← PruningSchema(E�);
for each S�

j ∈ E� do
if (|P|=1) then

for each candidate element E�
i,j ∈ E� do

ECR
i,j ← ConstructCandidateReformulations(E�

i,j)

for each candidate reformulation ECR
i,j ∈ ECR do

if (! RedundantQuery(ECR
i,j)) then

Q� ← ConstructQuery(ECR
i,j);

else
ECR ← CombinePaths(E�

i,j);
for each candidate reformulation ECR

i,j ∈ ECR do
if (VerifyJoinCondition(ECR

i,j)
&&! RedundantQuery(ECR

i,j)) then
Q� ← ConstructQuery(ECR

i,j);
Qrec ← QueryReformulation(Q�, S�

j , XMAP(S�
j));

if (|Qrec| > 0) then
Q� ← Q� ∪ Qrec;

Q� ← Q� ∪ Q�;
return Q�

end

Fig. 1. Pseudo-code of the XMAP reformulation algorithm. Main procedure.

C. Example
In the following we briefly describe an example of use of

the XMAP algorithm.
Let suppose a user wants to find the title of the paper

published in the year 2000. To this aim the following query
Q is formulated over the schema UW :

Q=/uw/area/pubs/paper[year = ”2000”]/title

In the first step the algorithm identifies the paths in the
query:

• P1=/uw/area/pubs/paper/title
• P2=/uw/area/pubs/paper/year
and produces as output the set P = P1 ∪ P2. Next,

exploiting the mappings associated to the schema UW (see
Figure 2), the algorithm finds two mapping rules connecting
UW to the schema DBLP through the paths P1 and P2.
More precisely, one of these rules relates P1 to two paths
in DBLP , respectively P �

1,1=/dblp/article/title
and P �

1,2=/dblp/proceedings/title. Similarly,
the other mapping rule relates P2 to the path
P �

2,1=/dblp/article/year and the path
P �

2,2=/dblp/proceedings/year. So, the second
step of the algorithm produces as output a candidate set
composed of the paths P �

1 and P �
2 and the (candidate)

schema DBLP �. In the considered example as the schema
DBLP � has correspondences for both paths P1 and P2, it is
identified as a destination schema (step 3), so it can be used
to reformulate the query Q. In particular, the algorithm (step
4), produces two direct reformulations of the query Q over
the schema DBLP , respectively QR1 and QR2 .

QR1=/dblp/article[year="2000"]/title
QR2=/dblp/proceedings[year="2000"]/title

Since there are no more mapping rules involving the paths
in the query Q, no further direct reformulations are produced.
Then the algorithm is recursively invoked over the direct refor-
mulations QR1 and QR2 , exploiting the mappings associated
to the schema DBLP . Figure 1 shows the pseudo-code of the
XMAP reformulation algorithm.

The problem of query answering in a semantic network is
coNP-hard in the size of the data [2]. The main source of
complexity is cycles in the semantic network. We avoid cycles
by assuring that a specific path combination can be used only
once from any path from the root of the reformulation tree
to a leaf. With this termination condition the algorithm is
guaranteed to find all the answers to a query when possible
and obtain some answers in other cases as well.

III. XMAP EVALUATION

Our aim is to observe how our approach behaves in a
network of XML database systems having heterogeneous
schemas. The experiments are conducted on the basis of some
parameters like the average rank of the semantic network, the
number of nodes and the input query. The average rank of the
network is the average number of semantic neighbours per
node. The number of nodes represents the number of different
database schemas considered. We used the DBResearch data
set to validate the XMAP framework based on data available
on web sites concerning research in the database field (such as
DBLP, ACM, etc). On the basis of these schemas, we defined
XMAP mappings among subsets of schemas. We sampled this
collection of mappings to experiment with different experi-
mental configurations. The experimental results were obtained

274

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on March 30, 2009 at 03:57 from IEEE Xplore. Restrictions apply.

<sourceSchema>uw</sourceSchema>
<Rule cardinality="Mapping1-N">
<destinationSchema>dblp</destinationSchema>
<sourcePath>/uw/area/pubs/paper/title</sourcePath>
<destinationPath>/dblp/article/title</destinationPath>
<destinationPath>/dblp/proceedings/title</destinationPath>
</Rule>
<Rule cardinality="Mapping1-N">
<destinationSchema>dblp</destinationSchema>
<sourcePath>/uw/area/pubs/paper/year</sourcePath>
<destinationPath>/dblp/article/year</destinationPath>
<destinationPath>/dblp/proceedings/year</destinationPath>
</Rule>

Fig. 2. Fragment of the UW XMAP document.

0

20

40

60

80

100

120

2 3 3,5 4 5

Average Rank

R
e
fo

rm
u

la
ti

o
n

T
im

e
,

m
s

Fig. 3. Reformulation time as function of the average rank in the network.

by averaging the output of 1000 runs of a given configuration.
Due to lacks of space, we show only the most significant
results obtained.
Average Rank of the network. In these experiments we

observed how the average rank of the semantic network affects
the performance of the algorithm. To this aim we measured the
reformulation time of a single query over 50 heterogeneous
schemas in five configurations with different values of the
average rank. Figure 3 shows that the reformulation time is
a linear function of the average rank of the network and,
moreover, it shows that our algorithm executes very quickly,
the reformulations are obtained in at most 100 milliseconds.
The raise of the shape in Figure 3 is not uniform due to
the different connectivity of the mappings. A higher rank not
always corresponds to a higher number of produced reformu-
lations. This depends strongly on the mapping connectivity.
Not only could some mappings provide better connectivity
than others, but adding new mappings might only introduce
redundant paths without contributing any new reformulation.
For this reason, we introduced the relative number TT/TRQ
where the total running time of the algorithm is shown as
a ratio of the total number of reformulations produced. The
lower this value, the higher the efficiency of the algorithm.
Thus, the ratio TT/TRQ depends on the connectivity of the
introduced mappings with respect to the query to reformulate
as shown in Figure 4. Here, in the uniform set most of the
mappings concern the same semantic relationships among
the same concepts thus they introduce redundant paths in
the semantic network and consequently they contribute few
reformulations. Whereas in the not uniform set the percentage
of redundant mappings is lower resulting in a bigger number
of reformulations.
Number of Nodes. Here we aim to evaluate how the number

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

2 3 4

Rank

T
T

/T
R

Q

Rank Uniform

Rank Not Uniform

Fig. 4. Ratio TT/TRQ as function of the average rank in the network for
two different mapping distributions.

of nodes in the network affects the behavior of the algorithm.
We executed a query in nine configurations characterized by
different values of the average rank and different number of
nodes. As expected, the reformulation time grows linearly with
the number of nodes in the network. However, a growing
number of nodes does not affect the performance of the
algorithm as it is confirmed by the trend of the ratio TT/TRQ
that remains almost constant with the number of nodes (see
Figure 5). Obviously, considering the contemporary increase
rank and nodes we observe a raise of the value TT/TRQ due
to the impact of the average rank on the reformulation time.
Therefore, even if the time necessary to execute the algorithm
is higher, the increasing number of produced reformulations
improves the performance of the reformulation process and
proves the scalability of the XMAP algorithm that is specif-
ically tailored for networks with large number of nodes and
low value of the average rank.

XMAP allows schema mappings without requiring heavy-
weight view definitions: although simple, the mappings are
sufficient to express complex associations between XML
DTDs. In XMAP, the user has only to establish simple
correspondences among paths in different schemas and the
system supplies the rest. Therefore, even users unfamiliar
with the complex structure of the schema can provide such
correspondences. Then the XMAP algorithm automatically
determine rewritings of the user query, from such correspon-
dences. From the experiments we can realize that XMAP ad-
dresses the scalability concern guaranteeing quick production
of reformulations, within few milliseconds even for the most
demanding configurations.

IV. A CASE STUDY: XMAP IN SERVICE-BASED GRIDS

In this section we show how a distributed and dynamic
setting as the Grid could benefit from XMAP mappings. As
the Grid aims at realizing the sharing and cooperation of
resources among virtual organizations, when queries are posed
using a node schema, answers should come from anywhere
in the system. Therefore, in such a context reconciliation of
schema heterogeneity plays a key role. Motivated by this issue,
we developed the Grid Data Integration System (GDIS), a

275

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on March 30, 2009 at 03:57 from IEEE Xplore. Restrictions apply.

decentralized service-based data integration architecture for
Grid databases; it has been presented in a previous work [6].

The GDIS system offers a wrapper/mediator-based approach
to integrate data sources: it adopts the XMAP decentralized
mediator approach to handle semantic heterogeneity over data
sources, whereas syntactic heterogeneity is hidden behind
OGSA-DAI [12] wrappers. The user query is handled by the
reformulator engine that through the XMAP query reformula-
tion algorithm produces zero, one or more reformulations of
the original query. All the obtained reformulations (included
the original query) are then processed independently by dif-
ferent processor engines through OGSA-DAI wrappers that
access data source and produce the query result.

0

0,1

0,2

0,3

0,4

0,5

0,6

50 100 200

Nodes

T
T

/T
R

Q Rank2

Rank3

Rank4

Fig. 5. Ratio TT/TRQ as function of the number of nodes for different values
of the rank.

Respect to the original GDIS prototype (see [1], [6], [7],
[8]), we have changed the underlying implementation as
described in the following.

In previous implementations of the GDIS system, we ex-
tended the free available OGSA-DAI 5.0 Grid Data Service
(GDS) reference implementation. By this, we avoided to (i)
build new proprietary solutions and (ii) reimplement well
solved aspects of Grid data services, and are able to concen-
trate on the integration task. According to this, we introduced
a new activity, the XPathQueryReformulation activity, that
wraps the XPath query reformulation algorithm of the XMAP
framework. Such activity before really accesses data sources,
performs schema integration by exploiting the mappings of
the XML schema over which the XPath query has been
formulated.

In the current version of the GDIS prototype, instead of
incorporating the reformulation algorithm within the OGSA-
DAI module, the XMAP algorithm is deployed as a stand-
alone OGSA-DAI data Service (XMAP-ODS) that interacts
with standard OGSA-DAI wrappers. Figure 6 provides an
overview of the service interactions. It focuses on the interac-
tions that concern the integration service, and thus it hides all
the complexities that relate to query execution. The following
architectural assumptions are made. The XMAP-ODS service
has a mechanism to load local mapping information and con-
tains a view of the schemas of the participating data resources.
A database, wrapped as an OGSA-DAI resource, can join the
system registering itself in a registry and informing then the

XMAP-ODS service. The interactions involved when a query
is issued are as follows (see also Figure 6):

1) The client contacts the XMAP-ODS and requests a view
of the schema for each database he/she is interested in.

2) Based on the retrieved schema, he/she composes an
XPath query (Q1), which is sent to the XMAP-ODS.

3) The XMAP-ODS activates the reformulation algorithm
over Q1 (obtaining a set of reformulations of the query)
and identifies the relevant sites to execute the query
Q1 by contacting the local databases via OGSA-DAI
wrappers.

4) Each produced reformulated query (QRi) is processed to
collect results from other databases than the one initially
considered by the user. To this aim the XMAP-ODS
contacts the relevant databases through the OGSA-DAI
wrappers. Query execution results are then send to the
XMAP-ODS service that will forward them to the client.

Fig. 6. Service interactions in the GDIS system

In the following we briefly present a performance evaluation
of the GDIS prototype. In these experiments, we focus on the
performance of GDIS as a whole, not on the specificity of the
reformulation process which has been detailed in the previous
section. Particularly, we will focus on the overhead incurred by
extending OGSA-DAI with XMAP also measuring the cutoff
of the time spent in the system.

To experiment with GDIS we have setup the following
environment: the XMAP-ODS server was a Fedore Core 5
machine Pentium 4 at 3.20 GHz; the client was a Windows
machine Pentium 3 at 1 GHz; the registry was a Fedore Core
4 machine Celeron at 2GHz; one OGSA-DAI server was co-
located with the registry and another one was on a Fedore
Core 4 machine Pentium 4 at 2.4 GHz.

The results were produced according to the following pro-
tocol: the client creates a XMAP-ODS instance, then uses it
to submit the query, and finally destroys the instance it has
created. More precisely, in the case considered in Figure 7,
the client creates the XMAP-ODS instance, then after some
time he submits the same query request 100 times (it waits
for the results of the previous request before sending the
next one). During the reformulation process, the XMAP-ODS

276

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on March 30, 2009 at 03:57 from IEEE Xplore. Restrictions apply.

service asks the registry for any mapping information it might
need. It is visible on the Figure 7 that mapping information
queries are performed lazily, only when it is first needed,
which explains why we don’t see a bunch of requests to the
registry and then some quiet time to perform reformulation.
Instead, reformulation CPU time is spread in between mapping
information requests: as soon as a new reformulated query is
found, the XMAP-ODS service asks the registry for the XMAP
document of the schema over which the query is expressed
(assuming it has not seen it before).

0 1000 2000 3000 4000 5000

h
o

st

time (ms)

clie
nt

re
gist

ry

service
instanciation

request
XM

AP
/O

D
S

Mapping Requests

Fig. 7. Entity interactions during the reformulation of a specific query.
Interactions are HTTP requests and responses.

In our experiments we considered 4 queries formulated over
different database schemas. These queries were characterized
by different number of produced reformulations (respectively
2, 4, 8 and 16) and the average number of the produced tuples
ranged from 10 to 100. We measured the contribution to the
total processing time of query reformulation, network delay
and query execution. Particularly, the reformulation time is
the response time to call the XMAP-ODS service and retrieve
for a given XPath query the set of its equivalent queries,
while the network delay also includes the time spent on
the network asking and waiting for mapping documents and
the execution time is the query engine time to local query
execution. Figure 8 shows the minimal overhead introduced
by the reformulation algorithm all along the query answering
process. There it can be noted that the query execution time
is the dominant cost for all the considered queries. Moreover,
one should also note that the contribution to the overall query
processing time of the different time components depends on
the number of mappings involved in the query reformulation,
the number of reformulations obtained, and on the number of
database entries concerning the query answering. Local query
answering time taken by the query execution engine was the
bottleneck for many queries mostly for those involving a large
amount of tuples.

Therefore, we can conclude that GDIS has an added-
value compared to OGSA-DAI. In fact, although OGSA-DAI
provides data access transparently to the user, its applicability
is restricted because users typically do not know enough
information about the semantics of the data in the third-
party resources to which they are provided access. With our

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 8 16

Number of Reformulations

T
im

e
C

o
n

tr
ib

u
ti

o
n

Query Execution Query Reformulation Network Delay

Fig. 8. Time Distribution in the GDIS system.

approach the user instead of writing a query across multiple
databases has only to compose a query that refers to a
single database, and the system, through the XMAP algorithm
returns equivalent queries that refer to data stored to other
databases and execute them automatically. Note that we do
not pay a price in terms of performance because, as it is
shown in Figure 8, the query reformulation time is negligible
compared to the OGSA-DAI query execution time. Moreover,
the importance of GDIS, is that, to the best of our knowledge,
the only two works designed to provide schema-integration in
Grids are the Grid Data Mediation Service (GDMS) that is
part of the GridMiner project [13] and the SASF project [14].
Both the projects provide semantic mapping across relational
databases coupled with a global-as-view approach. The main
difference from GDIS is that both the approaches rely on the
existence of a global schema, which is not realistic in Grids.

V. CONCLUSION

We have presented and evaluated the XMAP framework
for P2P Schema-mapping over XML data, focusing on the
following contributions: (i) a simple and intuitive P2P schema-
mapping approach based on path correspondences; (ii) a query
reformulation algorithm for XPath queries that is scalable and
efficient, as revealed by the detailed experimentation; (iii)
the incorporation of the XMAP framework within the GDIS
architecture addressing schema heterogeneity among XML
data sources over Grid nodes.

REFERENCES

[1] C. Comito and D. Talia, “XML data integration in OGSA grids,” in
Proceedings of the First VLDB Workshop on Data Management in Grids
(DMG’O5), Sept. 2005, pp. 4–15.

[2] A. Y. Halevy, D. Suciu, I. Tatarinov, and Z. G. Ives, “Schema mediation
in peer data management systems,” in ICDE, Mar. 2003, pp. 505–516.

[3] I. F. Cruz, H. Xiao, and F. Hsu, “Peer-to-Peer Semantic Integration of
XML and RDF Data Sources,” in AP2PC 2004, July 2004.

[4] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmér, and T. Risch, “EDUTELLA: a P2P networking infrastructure
based on RDF,” in WWW2002, May 2002, pp. 604–615.

[5] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Miller,
and J. Mylopoulos, “The hyperion project: from data integration to data
coordination.” in SIGMOD Record, vol. 32, no. 3, 2003, pp. 53–58.

[6] C. Comito and D. Talia, “GDIS: A service-based architecture for data
integration on grids,” in GADA, Oct. 2004, pp. 88–98.

277

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on March 30, 2009 at 03:57 from IEEE Xplore. Restrictions apply.

[7] ——, “Grid data integration based on schema mapping,” in Applied
Parallel Computing. State of the Art in Scientific Computing, 8th
International Workshop, PARA 2006, ser. Lecture Notes in Computer
Science, vol. 4699. Springer, 2006, pp. 319–328.

[8] ——, “Data integration based on schema-mapping in service-based
grids,” in High Performance Computing and Grids in Action, ser.
Advances in Parallel Computing, L. Grandinetti, Ed., vol. 16. IOS
Press, 2008, pp. 308–328.

[9] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “The
physiology of the grid,” Global Grid Forum, Jan. 2002,
http://www.globus.org/alliance/publications/papers/ogsa.pdf.

[10] J. Clark and S. DeRose, “XML path language (XPath) version 1.0,”
W3C Recommendation, Nov. 1999, http://www.w3.org/TR/xpath.

[11] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos,
L. Serafini, and I. Zaihrayeu, “Data management for peer-to-peer com-
puting : A vision,” in WebDB, June 2002, pp. 89–94.

[12] M. Antonioletti and et al., “OGSA-DAI: Two years on,” in
Global Grid Forum 10 — Data Area Workshop, Mar. 2004,
http://www.ogsadai.org.uk/.

[13] “GridMiner, http://www.gridminer.org/.”
[14] “SASF: service-based approach to schema federation,

http://sasf.grid.leena34.com/.”

278

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on March 30, 2009 at 03:57 from IEEE Xplore. Restrictions apply.

