
Semantic Schema Matching�

Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich

University of Trento, Povo, Trento, Italy
{fausto|pavel|yatskevi}@dit.unitn.it

Abstract. We view match as an operator that takes two graph-like
structures (e.g., XML schemas) and produces a mapping between the
nodes of these graphs that correspond semantically to each other. Se-
mantic schema matching is based on the two ideas: (i) we discover map-
pings by computing semantic relations (e.g., equivalence, more general);
(ii) we determine semantic relations by analyzing the meaning (con-
cepts, not labels) which is codified in the elements and the structures
of schemas. In this paper we present basic and optimized algorithms for
semantic schema matching, and we discuss their implementation within
the S-Match system. We also validate the approach and evaluate S-Match
against three state of the art matching systems. The results look promis-
ing, in particular for what concerns quality and performance.

1 Introduction

Match is a critical operator in many well-known metadata intensive applica-
tions, such as schema/classification/ontology integration, data warehouses, e-
commerce, semantic web, etc. The match operator takes two graph-like struc-
tures and produces a mapping between the nodes of the graphs that correspond
semantically to each other.

Many diverse solutions of match have been proposed so far, for example
[2, 5, 7, 8, 10, 16, 17, 19]. We focus on a schema-based solution, namely a matching
system exploiting only the schema information, thus not considering instances.
We follow a novel approach called semantic matching [11]. This approach is
based on the two key ideas. The first is that we calculate mappings between
schema elements by computing semantic relations (e.g., equivalence, more gen-
erality, disjointness), instead of computing coefficients rating match quality in
the [0,1] range, as it is the case in the most previous approaches, see, for ex-
ample, [8, 17, 19]. The second idea is that we determine semantic relations by
analyzing the meaning (concepts, not labels) which is codified in the elements
and the structures of schemas. In particular, labels at nodes, written in natural
language, are translated into propositional formulas which explicitly codify the
label’s intended meaning. This allows us to translate the matching problem into
a propositional unsatisfiability problem, which can then be efficiently resolved
using (sound and complete) state of the art propositional satisfiability (SAT)
deciders, e.g., [4].
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A vision for semantic matching approach and its implementation were re-
ported in [11–13]. In contrast to that work which have been focused only on
matching classifications or light-weight ontologies, this paper also considers match-
ing XML schemas. It elaborates in more detail the element level and the structure
level matching algorithms, providing a complete account of the approach. In par-
ticular, the main contributions are: (i) a new schema matching algorithm, which
builds on the advances of the previous solutions at the element level by providing
a library of element level matchers, and guarantees correctness and completeness
of its results at the structure level; (ii) an extension of the semantic matching
approach for handling attributes; (iii) the quality and performance evaluation of
the implemented system called S-Match against other state of the art systems,
which proves empirically the benefits of our approach.

The rest of the paper is organized as follows. Section 2 provides the related
work. A basic version of the matching algorithm is articulated in its four macro
steps in Section 3, while its optimizations are reported in Section 4. Section 5
discusses semantic matching with attributes. Section 6 presents a comparative
evaluation. Finally, Section 7 reports conclusions and discusses the future work.

2 Related Work

At present, there exists a line of semi-automated schema matching systems, see,
for instance [2, 7, 8, 10, 16, 17, 19]. A good survey and a classification of matching
approaches up to 2001 is provided in [24], while an extension of its schema-based
part and a user-centric classification of matching systems is provided in [25].

In particular, for individual matchers, [25] introduces the following criteria
which allow for detailing further (with respect to [24]), the element and structure
level of matching: syntactic techniques (these interpret their input as a function
of their sole structures following some clearly stated algorithms, e.g., iterative
fix point computation for matching graphs), external techniques (these exploit
external resources of a domain and common knowledge, e.g., WordNet[21]), and
semantic techniques (these use formal semantics, e.g., model-theoretic semantics,
in order to interpret the input and justify their results).

The distinction between the hybrid and composite matching algorithms of
[24] is useful from an architectural perspective. [25] extends this work by taking
into account how the systems can be distinguished in the matter of considering
the mappings and the matching task, thus representing the end-user perspective.
In this respect, the following criteria are proposed: mappings as solutions (these
systems consider the matching problem as an optimization problem and the
mapping is a solution to it, e.g., [9, 19]); mappings as theorems (these systems rely
on semantics and require the mapping to satisfy it, e.g., the approach proposed in
this paper); mappings as likeness clues (these systems produce only reasonable
indications to a user for selecting the mappings, e.g., [8, 17]).

Let us consider some recent schema-based state of the art systems in light of
the above criteria.

Rondo. The Similarity Flooding (SF) [19] approach, as implemented in
Rondo [20], utilizes a hybrid matching algorithm based on the ideas of similarity



propagation. Schemas are presented as directed labeled graphs. The algorithm
exploits only syntactic techniques at the element and structure level. It starts
from the string-based comparison (common prefixes, suffixes tests) of the node’s
labels to obtain an initial mapping which is further refined within the fix-point
computation. SF considers the mappings as a solution to a clearly stated opti-
mization problem.

Cupid. Cupid [17] implements a hybrid matching algorithm comprising syn-
tactic techniques at the element (e.g., common prefixes, suffixes tests) and struc-
ture level (e.g., tree matching weighted by leaves). It also exploits external re-
sources, in particular, a precompiled thesaurus. Cupid falls into the mappings
as likeness clues category.

COMA. COMA [8] is a composite schema matching system which exploits
syntactic and external techniques. It provides a library of matching algorithms;
a framework for combining obtained results, and a platform for the evaluation
of the effectiveness of the different matchers. The matching library is extensible,
it contains 6 elementary matchers, 5 hybrid matchers, and one reuse-oriented
matcher. Most of them implement string-based techniques (affix, n-gram, edit
distance, etc.); others share techniques with Cupid (tree matching weighted by
leaves, thesauri look-up, etc.); reuse-oriented is a completely novel matcher,
which tries to reuse previously obtained results for entire new schemas or for
its fragments. Distinct features of COMA with respect to Cupid, are a more
flexible architecture and a possibility of performing iterations in the matching
process. COMA falls into the mappings as likeness clues category.

3 Semantic Matching

We focus on tree-like structures, e.g., XML schemas. Real-world schemas are
seldom trees, however, there are (optimized) techniques, transforming a graph
representation of a schema into a tree representation, e.g., the graph-to-tree
operator of Protoplasm [3].

We call concept of a label the propositional formula which stands for the set
of data instances that one would classify under a label it encodes. We call concept
at a node the propositional formula which represents the set of data instances
which one would classify under a node, given that it has a certain label and that
it is in a certain position in a tree.

The semantic matching approach can discover the following semantic rela-
tions between the concepts of nodes of the two schemas: equivalence (=); more
general (�); less general (�); disjointness (⊥). When none of the relations holds,
the special idk (I don’t know) relation is returned. The relations are ordered ac-
cording to decreasing binding strength, i.e., from the strongest (=) to the weakest
(idk), with more general and less general relations having equal binding power.
The semantics of the above relations are the obvious set-theoretic semantics.

A mapping element is a 4-tuple 〈IDij , n1i, n2j, R〉, i=1,...,N1; j=1,...,N2;
where IDij is a unique identifier of the given mapping element; n1i is the i-th
node of the first tree, N1 is the number of nodes in the first tree; n2j is the j-th



Fig. 1: Two XML schemas and some of the mappings

node of the second tree, N2 is the number of nodes in the second tree; and R
specifies a semantic relation which may hold between the concepts of nodes n1i

and n2j. Semantic matching can then be defined as the following problem: given
two trees T1, T2 compute the N1 × N2 mapping elements 〈IDi,j , n1i, n2j, R′〉,
with n1i ∈ T1, i=1,...,N1, n2j ∈ T2, j=1,...,N2 and R′ the strongest semantic
relation holding between the concepts of nodes n1i, n2j .

3.1 The Tree Matching Algorithm

We summarize the algorithm for semantic schema matching via a running ex-
ample. We consider the two simple XML schemas shown in Figure 1.

Let us introduce some notation (see also Figure 1). Numbers are the unique
identifiers of nodes. We use ”C” for concepts of labels and concepts at nodes. Also
we use ”C1” and ”C2” to distinguish between concepts of labels and concepts
at nodes in tree 1 and tree 2 respectively. Thus, in A1, C1Photo and Cameras

and C13 are, respectively, the concept of the label Photo and Cameras and the
concept at node 3.

The algorithm takes as input two schemas and computes as output a set of
mapping elements in four macro steps. The first two steps represent the pre-
processing phase, while the third and the fourth steps are the element level and
structure level matching respectively.
Step 1. For all labels L in the two trees, compute concepts of labels. We
think of labels at nodes as concise descriptions of the data that is stored under the
nodes. We compute the meaning of a label at a node by taking as input a label,
by analyzing its real-world semantics, and by returning as output a concept
of the label, CL. Thus, for example, by writing CCameras and Photo we move
from the natural language ambiguous label Cameras and Photo to the concept
CCameras and Photo, which codifies explicitly its intended meaning, namely the
data which is about cameras and photo.

Technically, we codify concepts of labels as propositional logical formulas.
First, we chunk labels into tokens, e.g., Photo and Cameras → 〈photo, and, cameras〉;



and then, we extract lemmas from the tokens, e.g., cameras → camera. Atomic
formulas are WordNet [21] senses of lemmas obtained from single words (e.g.,
cameras) or multiwords (e.g., digital cameras). Complex formulas are built by
combining atomic formulas using the connectives of set theory. For example,
C2Cameras and Photo = 〈Cameras, sensesWN#2〉�〈Photo, sensesWN#1〉, where sen−
sesWN#2 is taken to be disjunction of the two senses that WordNet attaches to
Cameras, and similarly for Photo. Notice that the natural language conjunction
”and” has been translated into the logical disjunction ”	”.

From now on, to simplify the presentation, we assume that the propositional
formula encoding the concept of label is the label itself. We use numbers ”1”
and ”2” as subscripts to distinguish between trees in which the given concept of
label occurs. Thus, for example, Cameras and Photo2 is a notational equivalent
of C2Cameras and Photo.
Step 2. For all nodes N in the two trees, compute concepts of nodes.
In this step we analyze the meaning of the positions that the labels at nodes
have in a tree. By doing this we extend concepts of labels to concepts of nodes,
CN . This is required to capture the knowledge residing in the structure of a tree,
namely the context in which the given concept at label occurs. For example, in
A2, when we write C6 we mean the concept describing all the data instances of
the electronic photography products which are digital cameras.

Technically, concepts of nodes are written in the same propositional logical
language as concepts of labels. XML schemas are hierarchical structures where
the path from the root to a node uniquely identifies that node (and also its
meaning). Thus, following an access criterion semantics [14], the logical formula
for a concept at node is defined as a conjunction of concepts of labels located
in the path from the given node to the root. For example, C26 = Electronics2 �
Cameras and Photo2 � Digital Cameras2.
Step 3. For all pairs of labels in the two trees, compute relations
among concepts of labels. Relations between concepts of labels are computed
with the help of a library of element level semantic matchers. These matchers
take as input two atomic concepts of labels and produce as output a semantic
relation between them. Some of the them are re-implementations of the well-
known matchers used in Cupid and COMA. The most important difference is
that our matchers return a semantic relation (e.g., =, �, �), rather an affinity
level in the [0,1] range, although sometimes using customizable thresholds.

The element level semantic matchers are briefly summarized in Table 1. The
first column contains the names of the matchers. The second column lists the
order in which they are executed. The third column introduces the matcher’s
approximation level. The relations produced by a matcher with the first ap-
proximation level are always correct. For example, name � brand returned by
WordNet. In fact, according to WordNet name is a hypernym (superordinate
word) to brand. Notice that in WordNet name has 15 senses and brand has 9
senses. We use some sense filtering techniques to discard the irrelevant senses
for the given context, see [18] for details. The relations produced by a matcher
with the second approximation level are likely to be correct (e.g., net = network,



Table 1: Element level semantic matchers.

Matcher name Execution Approximation Matcher Schema info
order level type

Prefix 2 2 String-based Labels

Suffix 3 2 String-based Labels

Edit distance 4 2 String-based Labels

Ngram 5 2 String-based Labels

Text corpus 12 3 String-based Labels + corpus

WordNet 1 1 Sense-based WordNet senses

Hierarchy distance 6 3 Sense-based WordNet senses

WordNet gloss 7 3 Gloss-based WordNet senses

Extended WordNet gloss 8 3 Gloss-based WordNet senses

Gloss comparison 9 3 Gloss-based WordNet senses

Extended gloss comparison 10 3 Gloss-based WordNet senses

Extended semantic gloss comparison 11 3 Gloss-based WordNet senses

but hot = hotel by Suffix ). The relations produced by a matcher with the third
approximation level depend heavily on the context of the matching task (e.g., cat
= dog by Extended gloss comparison in the sense that they are both pets). Notice
that matchers are executed following the order of increasing approximation. The
fourth column reports the matcher’s type, while the fifth column describes the
matcher’s input.

As from Table 1, we have three main categories of matchers. String-based
matchers have two labels as input (with exception of Text corpus which takes in
input also a text corpus). These compute only equivalence relations (e.g., equiv-
alence holds if the weighted distance between the input strings is lower than a
threshold). Sense-based matchers have two WordNet senses in input. The Word-
Net matcher computes equivalence, more/less general, and disjointness relations;
while Hierarchy distance computes only the equivalence relation. Gloss-based
matchers also have two WordNet senses as input, however they exploit tech-
niques based on comparison of textual definitions (glosses) of the words whose
senses are taken in input. These compute, depending on a particular matcher,
the equivalence, more/less general relations. The result of step 3 is a matrix of
the relations holding between concepts of labels. A part of this matrix for the
example of Figure 1 is shown in Table 2.

Table 2: The matrix of semantic relations holding between concepts of labels.

Cameras2 Photo2 Digital Cameras2

Photo1 idk = idk

Cameras1 = idk �

Step 4. For all pairs of nodes in the two trees, compute relations
among concepts of nodes. During this step, we initially reformulate the tree
matching problem into a set of node matching problems (one problem for each
pair of nodes). Finally, we translate each node matching problem into a propo-
sitional validity problem. Let us discuss in detail the tree matching algorithm,
see Algorithm 1 for the pseudo-code.

In line 6, the treeMatch function takes two trees of Nodes (source and target)
in input. It starts from the element level matching. Thus, in line 11, the matrix



Algorithm 1 The tree matching algorithm

1: Node: struct of
2: int nodeId;
3: String label;
4: String cLabel;
5: String cNode;
6: String[ ][ ] treeMatch(Tree of Nodes source, target)
7: Node sourceNode, targetNode;
8: String[ ][ ] cLabsMatrix, cNodesMatrix, relMatrix;
9: String axioms, context1, context2;
10: int i,j;
11: cLabsMatrix = fillCLabMatrix(source, target);
12: for each sourceNode ∈ source do
13: i = getNodeId(sourceNode);
14: context1 = getCnodeFormula(sourceNode);
15: for each targetNode ∈ target do
16: j = getNodeId(targetNode);
17: context2 = getCnodeFormula(targetNode);
18: relMatrix = extractRelMatrix(cLabMatrix, sourceNode, targetNode);
19: axioms = mkAxioms(relMatrix);
20: cNodesMatrix[i][j] = nodeMatch(axioms, context1, context2);
21: end for
22: end for
23: return cNodesMatrix;

of relations holding between concepts of labels (cLabsMatrix) is populated by the
fillCLabsMatrix function which uses the library of element level matchers. We run
two loops over all the nodes of source and target trees in lines 12-22 and 15-21 in
order to formulate all our node matching problems. Then, for each node match-
ing problem we take a pair of propositional formulas encoding concepts of nodes
and relevant relations holding between concepts of labels using the getCnodeFor-
mula and extractRelMatrix functions respectively. The former are memorized as
context1 and context2 in lines 14 and 17. The latter are memorized in relMatrix
in line 18. In order to reason about relations between concepts of nodes, we build
the premises (axioms) in line 19. These are a conjunction of the concepts of la-
bels which are related in relMatrix. For example, the task of matching C13 and
C26, requires the following axioms: (Electronics1 = Electronics2) � (Cameras1 =

Cameras2)� (Photo1 = Photo2)� (Cameras1 � Digital Cameras2). Finally, in line
20, the relations holding between the concepts of nodes are calculated by node-
Match and are reported in line 23 as a bidimensional array (cNodesMatrix). A
part of this matrix for the example of Figure 1 is shown in Table 3.

Table 3: The matrix of semantic relations holding between concepts of nodes (the
matching result).

C21 C22 C23 C24 C25 C26

C13 � idk = idk � �

3.2 The Node Matching Algorithm

We translate the node matching problem into a propositional validity problem.
Semantic relations are translated into propositional connectives using the rules
described in Table 4 (second column). The criterion for determining whether a
relation holds between concepts of nodes is the fact that it is entailed by the



premises. Thus, we have to prove that the following formula:

axioms −→ rel(context1, context2) (1)

is valid, namely that it is true for all the truth assignments of all the propositional
variables occurring in it. axioms, context1, and context2 are as defined in the tree
matching algorithm. rel is the semantic relation that we want to prove holding
between context1 and context2. The algorithm checks for the validity of formula
(1) by proving that its negation, i.e., formula (2), is unsatisfiable.

axioms ∧ ¬rel(context1, context2) (2)
Table 4 (third column) describes how formula (2) is translated before testing

each semantic relation. Notice that (2) is in Conjunctive Normal Form (CNF),
namely it is a conjunction of disjunctions of atomic formulas. In this case we
assume that atomic formulas never occur negated, following what is common
practice in building labels of, e.g., XML schemas. Also, notice that a = b iff
both a � b and b � a hold, therefore we do not need to test the equivalence
relation separately.

Table 4: The relationship between semantic relations and propositional formulas.

rel(a, b) Translation of rel(a, b) into Translation of formula (2)
propositional logic into Conjunctive Normal Form

a = b a ↔ b N/A

a � b a → b axioms ∧ context1 ∧ ¬context2

a � b b → a axioms ∧ context2 ∧ ¬context1

a⊥b ¬(a ∧ b) axioms ∧ context1 ∧ context2

The pseudo-code of a basic solution for the node matching algorithm is pro-
vided in Algorithm 2. Let us analyze it in detail. In lines 110 and 140, the

Algorithm 2 The node matching algorithm

100. String nodeMatch(String axioms, context1, context2)
110. String formula = And(axioms, context1, Not(context2));
120. String formulaInCNF = convertToCNF(formula);
130. boolean isLG = isUnsatisfiable(formulaInCNF);
140. formula = And(axioms, Not(context1), context2);
150. formulaInCNF = convertToCNF(formula);
160. boolean isMG = isUnsatisfiable(formulaInCNF);
170. if(isMG && isLG) then
180. return ”=”;
190. endif
200. if (isLG) then
210. return ”�”;
220. endif
230. if (isMG) then
240. return ”�”;
250. endif
260. formula = And(axioms, context1, context2);
270. formulaInCNF = convertToCNF(formula);
280. boolean isOpposite = isUnsatisfiable(formulaInCNF);
290. if (isOpposite) then
300. return ”⊥”;
310. else
320. return ”idk”;
330. endif

nodeMatch function constructs the formulas for testing the less general and more



general relations. In lines 120 and 150, it converts them into CNF, while in lines
130 and 160, it checks formulas in CNF for unsatisfiability. If both relations hold,
then the equivalence relation is returned (line 180). Finally, the same procedure
is repeated for the disjointness relation. If all the tests fail, the idk relation is
returned (line 320).

In order to check the unsatisfiability of a propositional formula in a basic
version of our NodeMatch algorithm we use the standard DPLL-based SAT solver
[4, 6]. From the example in Figure 1, trying to prove that C26 is less general than
C13, requires constructing formula (3), which turns out to be unsatisfiable, and
therefore, the less generality holds.

((Electronics1↔Electronics2)∧(Photo1↔Photo2)∧
(Cameras1↔Cameras2)∧(Digital Cameras2→Cameras1))∧
(Electronics2∧(Cameras2∨Photo2)∧Digital Cameras2)∧¬
(Electronics1∧(Photo1∨Cameras1))

(3)

4 Efficient Semantic Matching

In this section we present a set of optimizations for the node matching al-
gorithm. In particular, we show, that when dealing with conjunctive concepts
at nodes, i.e., the concept of node is a conjunction (e.g., C12 = Electronics1 ∧
Personal Computers1), these node matching tasks can be solved in linear time.
When we have disjunctive concepts at nodes, i.e., the concept of node contains
both conjunctions and disjunctions in any order (e.g., C26 = Electronics2 ∧
(Cameras2 ∨Photos2)∧Digital Cameras2), we use techniques avoiding the expo-
nential space explosion which arises due to the conversion of disjunctive formulas
into CNF. This modification is required since all state of the art SAT deciders
take CNF formulas in input.

4.1 Conjunctive concepts at nodes

Let us make some observations with respect to Table 4. The first observation is
that axioms remains the same for all the tests, and it contains only clauses with
two variables. In the worst case, it contains 2 · n1 · n2 clauses, where n1 and n2

are the number of atomic concepts of labels occurred in context1 and context2
respectively. The second observation is that the formulas for less and more gen-
erality tests are very similar and they differ only in the negated context formula
(e.g., in the less generality test context2 is negated). This means that formula
(1) contains one clause with n2 variables plus n1 clauses with one variable. In
the case of disjointness test context1 and context2 are not negated. Therefore,
formula (1) contains n1 + n2 clauses with one variable. For lack of space, let us
only consider tests for more/less general relations.
Less and more generality tests. Using the above observations, formula (1),
with respect to the less/more generality tests, can be represented as follows:

axioms︷ ︸︸ ︷
n∗m∧

0
(¬As∨Bt)∧

n∗m∧
0

(Ak∨¬Bl)∧
n∗m∧

0
(¬Ap∨¬Br)∧

context1︷ ︸︸ ︷
n∧

i=1
Ai ∧

¬context2︷ ︸︸ ︷
m∨

j=1
¬Bj (4)



where n is the number of variables in context1, m is the number of variables
in context2. The Ai’s belong to context1, and the Bj’s belong to context2. s,
k, p are in the [0..n] range, while t, l, r are in the [0..m] range. Axioms can be
empty. Formula (4) is composed of clauses with one or two variables plus one
clause with possibly more variables (the clause corresponding to the negated
context). Notice that formula (4) is Horn, i.e., each clause contains at most one
positive literal. Therefore, its satisfiability can be decided in linear time by the
unit resolution rule. DPLL-based SAT solvers in this case require quadratic time.
In order to understand how the linear time algorithm works, let us suppose that
we want to check if C14 is less general than C24. Formula (4) in this case is as
follows:

((¬Electronics1∨Electronics2)∧(Electronics1∨¬Electronics2)∧
(¬Personal Computers1∨PC2)∧(Personal Computers1∨¬PC2)∧
(¬Microprocessors1∨¬PC board2))∧
Electronics1∧Personal Computers1∧Microprocessors1∧
(¬Electronics2∨¬PC2∨¬PC board2)

(5)

where the variables from context1 are written in bold. First, we assign true
to all the unit clauses occurring in (5) positively. Notice that these are all
and only the clauses in context1, namely, Electronics1, Personal Computers1,
and Microprocessors1. This allows us to discard the clauses where variables
from context1 occur positively, namely, (Electronics1 ∨¬Electronics2) and (Per-

sonal Computers1 ∨¬PC2). Thus, the resulting formula is as follows:
(Electronics2∧PC2∧¬PC board2)∧
(¬Electronics2∨¬PC2∨¬PC board2)

(6)

Formula (6) does not contain any variable from context1. By assigning true
to Electronics2 and false to PC board2 we do not determine a contradiction, and
therefore, (6) is satisfiable.

For formula (6) to be unsatisfiable, all the variables occurring in the negation
of context2, namely, (¬Electronics2∨¬PC2∨¬PC board2) should occur positively
in the unit clauses obtained after resolving axioms with the unit clauses in
context1, namely, Electronics2 and PC2. For this to happen, for any Bj there
must be a clause of the form ¬Ai∨Bj in axioms. Formulas of the form ¬Ai∨Bj
occur in (4) iff we have the axioms of type Ai = Bj and Ai � Bj. These
considerations suggest the following algorithm for testing satisfiability:

– Step 1. Create an array of size m. Each entry in the array stands for one Bj
in (4).

– Step 2. For each axiom of type Ai = Bj and Ai � Bj mark the corresponding
Bj.

– Step 3. If all the Bj’s are marked, then the formula is unsatisfiable.

Thus, nodeMatch can be optimized by using Algorithm 3. The numbers on the
left indicate where the new code must be positioned in Algorithm 2. fastHor-
nUnsatCheck implements the three steps above. Step 1 is performed in lines 402
and 403. In lines 404-409, a loop on axioms implements Step 2. The final loop in
lines 410-416 implements Step 3.



Algorithm 3 Optimizations: less/more generality tests

101. if (context1 and context2 are conjunctive) then
102. isLG = fastHornUnsatCheck(context1, axioms, ”�”);
103. isMG = fastHornUnsatCheck(context2, axioms, ”�”);
104. endif

401. boolean fastHornUnsatCheck(String context, axioms, rel)
402. int m = getNumOfVar(String context);
403. boolean array[m];
404. for each axiom ∈ axioms do
405. if (getAType(axiom) = {”=” ‖ rel}) then
406. int j = getNumberOfSecondVariable(axiom);
407. array[j] = true;
408. endif
409. endfor
410. for (i=0; i<m; i++) do
411. if (!array[i]) then
412. return false;
413. else
414. return true;
415. endif
416. endfor

4.2 Disjunctive concepts at nodes

Now, we allow for the concepts of nodes to contain conjunctions and disjunc-
tions in any order. As from Table 4, axioms is the same for all the tests. How-
ever, context1 and context2 may contain any number of disjunctions. Some of
them are coming from the concepts of labels, while others may appear from the
negated context1 or context2 (e.g., see less/more generality tests). With disjunc-
tive concepts at nodes, formula (1) is a full propositional formula, and hence, no
hypothesis can be made on its structure. Thus, its satisfiability must be tested
by using a standard SAT decider.

In order to avoid the exponential space explosion, which may arise when
converting formula (1) into CNF, we apply a set of structure preserving trans-
formations [23]. The main idea is to replace disjunctions occurring in the original
formula with newly introduced variables and to explicitly state that these vari-
ables imply the subformulas they substitute. Therefore, the size of the proposi-
tional formula in CNF grows linearly with respect to the number of disjunctions
in the original formula. Thus, nodeMatch should be optimized by replacing all
the calls to convertToCNF with calls to optimizedConvertToCNF.

5 Semantic Matching with Attributes

XML elements may have attributes. Attributes are 〈attribute− name, type〉 pairs
associated with elements. Names for the attributes are usually chosen such that
they describe the roles played by the domains in order to ease distinguishing
between their different uses. For example, in A1, the attributes PID and Name

are defined on the same domain string, but their intended uses are the internal
(unique) product identification and representation of the official product’s names
respectively. There are no strict rules telling us when data should be represented



as elements, or as attributes, and obviously there is always more than one way
to encode the same data. For example, in A1, PIDs are encoded as strings,
while in A2, IDs are encoded as ints. However, both attributes serve for the
same purpose of the unique product’s identification. These observations suggest
two possible ways to perform semantic matching with attributes: (i) taking into
account datatypes, and (ii) ignoring datatypes.

The semantic matching approach is based on the idea of matching concepts,
not their direct physical implementations, such as elements or attributes. If
names of attributes and elements are abstract entities, therefore, they allow
for building arbitrary concepts out of them. Instead, datatypes, being concrete
entities, are limited in this sense. Thus, a plausible way to match attributes using
the semantic matching approach is to discard the information about datatypes.
In order to support this claim, let us consider both cases in turn.

5.1 Exploiting datatypes

In order to reason with datatypes we have created a datatype ontology, OD,
specified in OWL [26]. It describes the most often used XML schema built-in
datatypes and relations between them. The backbone taxonomy of OD is based
on the following rule: the is-a relationship holds between two datatypes iff their
value spaces are related by set inclusion. Some examples of axioms of OD are:
float � double, int ⊥ string, anyURI � string, and so on. Let us discuss how
datatypes are plugged within the four macro steps of the algorithm.
Steps 1,2. Compute concepts of labels and nodes. In order to handle attributes,
we extend propositional logics with the quantification construct and datatypes.
Thus, we compute concepts of labels and concepts of nodes as formulas in
description logics (DL), in particular, using ALC(D) [22]. For example, C17,
namely, the concept of node describing all the string data instances which are the
names of electronic photography products is encoded as Electronics1 � (Photo1 �
Cameras1) � ∃Name1.string.
Step 3. Compute relations among concepts of labels. In this step we extend our
library of element level matchers by adding a Datatype matcher. It takes as input
two datatypes, it queries OD and retrieves a semantic relation between them.
For example, from axioms of OD, the Datatype matcher can learn that float �
double, and so on.
Step 4. Compute relations among concepts of nodes. In the case of attributes, the
node matching problem is translated into a DL formula, which is further checked
for its unsatisfiability using sound and complete procedures. Notice that in this
case we have to test for modal satisfiability, not propositional satisfiability. The
system we use is Racer [15]. From the example in Figure 1, trying to prove that
C210 is less general than C19, requires constructing the following formula:

((Electronics1=Electronics2)�(Photo1=Photo2)�
(Cameras1=Cameras2)�(Price1=Price2)�(float�double))�
(Electronics2�(Cameras2Photo2)�∃Price2.float)�¬
(Electronics1�(Photo1Cameras1)�∃Price1.double)

(7)



It turns out that formula (7) is unsatisfiable. Therefore, C210 is less general
than C19. However, this result is not what the user expects. In fact, both C19

and C210 describe prices of electronic products, which are photo cameras. The
storage format of prices in A1 and A2 (i.e., double and float respectively) is not
an issue at this level of detail.

Thus, another semantic solution of taking into account datatypes would be
to build abstractions out of the datatypes, e.g., float, double, decimal should
be abstracted to type numeric, while token, name, normalizedString should be
abstracted to type string, and so on. However, even such abstractions do not
improve the situation, since we may have, for example, an ID of type numeric
in the first schema, and a conceptually equivalent ID, but of type string, in the
second schema. If we continue building such abstractions, we result in having
that numeric is equivalent to string in the sense that they are both datatypes.

The last observation suggests that for the semantic matching approach to
be correct, we should assume, that all the datatypes are equivalent between
each other. Technically, in order to implement this assumption, we should add
corresponding axioms (e.g., float = double) to the premises of formula (1). On
the one hand, with respect to the case of not considering datatypes (see, Section
5.2), such axioms do not affect the matching result from the quality viewpoint.
On the other hand, datatypes make the matching problem computationally more
expensive by requiring to handle the quantification construct.

5.2 Ignoring datatypes

In this case, information about datatypes is discarded. For example, 〈Name, string〉
becomes Name. Then, the semantic matching algorithm builds concepts of la-
bels out of attribute’s names in the same way as it does in the case of element’s
names, and so on. Finally, it computes mappings using the optimized algorithm
of Section 4. A part of the cNodesMatrix with relations holding between at-
tributes for the example of Figure 1 is presented in Table 5. Notice that this
solution allows us for a mapping’s computation not only between the attributes,
but also between attributes and elements.

Table 5: Attributes: the matrix of semantic relations holding between concepts of nodes
(the matching result).

C27 C28 C29 C210

C16 = idk idk idk

C17 idk � idk idk

C18 idk idk = idk

C19 idk idk idk =

The task of determining mappings typically represents a first step towards
the ultimate goal of, for example, data translation, query mediation, data inte-
gration, agent communication, and so on. Although information about datatypes
will be necessary for accomplishing an ultimate goal, we do not discuss this issue
any further since in this paper we concentrate only on the mappings discovery
task.



6 Comparative Evaluation

In this section, we present the quality and performance evaluation of the match-
ing system we have implemented, called S-Match. In particular, we validate basic
and optimized versions of our system, called (S-Matchb) and (S-Matcho) respec-
tively, and evaluate them against three state of the art matchers, namely Cupid
[17], COMA [8]1, and SF [19] as implemented in Rondo [20]. All the systems un-
der consideration are fairly comparable because they are all schema-based. They
differ in the specific matching techniques they use and in how they compute
mappings.

In our evaluation we have used five pairs of schemas: two artificial examples,
a pair of product schemas (our running example, i.e., A1 vs. A2), a pair of
purchase order schemas (CIDX vs. Excel), and a pair of parts of web directories
(Google vs. Looksmart). Table 6 provides some indicators of the complexity of
the test cases2. As match quality measures we have used the following indicators:
precision, recall, overall, F-measure (see, [8]). Precision varies in the [0,1] range;
the higher the value, the smaller is the set of wrong mappings (false positives)
which have been computed. Precision is a correctness measure. Recall varies in
the [0,1] range; the higher the value, the smaller is the set of correct mappings
(true positives) which have not been found. Recall is a completeness measure.
F-measure varies in the [0,1] range. The version computed here is the harmonic
mean of precision and recall. It is a global measure of the matching quality,
growing with it. Overall is an estimate of the post-match efforts needed for
adding false negatives and removing false positives. Overall varies in the [-1,1]
range; the higher it is, the less post-match efforts are needed. As a performance
measure we have used time. It estimates how fast systems are when producing
mappings fully automatically.

To provide a ground for evaluating the quality of match results, initially, the
schemas have been manually matched to produce expert mappings. Then, the
results computed by systems have been compared with expert mappings. There
are three further observations that ensure a fair comparative study. The first
observation is that Cupid, COMA, and Rondo can discover only the mappings
which express similarity between schema elements. Instead, S-Match, among the
others, discovers the disjointness relation which can be interpreted as strong
dissimilarity in terms of the other systems under consideration. Therefore, we
did not take into account the disjointness relations (e.g., 〈ID4,4, C14, C24,⊥〉)
when specifying the expert mappings. The second observation is that, since S-
Match returns a matrix of relations, while all the other systems return a list
of the best mappings, we used some filtering rules. More precisely we have the
following two rules: (i) discard all the mappings where the relation is idk; (ii)
return always the core relations, and discard relations whose existence is implied

1 We thank Phil Bernstein, Hong Hai Do, and Erhard Rahm for providing us with
Cupid and COMA. In the evaluation we use the version of COMA described in [8].
A newer version of the system COMA++ exists but we do not have it.

2 Source files, description of the test cases, and expert mappings can be found at
http://www.dit.unitn.it/∼accord/, experiments section.



Table 6: Some indicators of the complexity of the test cases
#nodes max depth #labels per tree concepts of nodes

Artificial Example #1 250/500 16/15 250/500 conjunctive

Artificial Example #2 10/10 10/10 30/30 disjunctive

A1 vs. A2 13/14 4/4 14/15 conjunctive & disjunctive

CIDX vs. Excel 34/39 3/3 56/58 conjunctive & disjunctive

Google vs. Looksmart 706/1081 11/16 1048/1715 conjunctive & disjunctive

by the core relations. For example, 〈ID3,3, C13, C23, =〉 should be returned, while
〈ID3,5, C13, C25,�〉 should be discarded. Finally, whether S-Match returns the
equivalence or subsumption relations does not affect the quality indicators. What
only matters is the presence of the mappings standing for those relations.

In our experiments each test has two degrees of freedom: directionality and
use of oracles. By directionality we mean here the direction in which mappings
have been computed: from the first schema to the second one (forward direction),
or vice versa (backward direction). For lack of space we report only the best re-
sults obtained with respect to directionality, and use of oracles allowed. We were
not able to plug a thesaurus in Rondo, since the version we have is standalone,
and it does not support the use of external thesauri. Thesauri of S-Match, Cu-
pid, and COMA were expanded with terms necessary for a fair competition (e.g.,
expanding uom into unitOfMeasure, a complete list is available at the URL in
footnote 2).

All the tests have been performed on a P4-1700, 512 MB of RAM, Windows
XP, with no applications running but a single matching system. Notice, that the
systems were limited to allocate no more than 512 MB of main memory. Also,
all the tuning parameters (e.g., thresholds, strategies) of the systems were taken
by default (e.g., for COMA we used NamePath and Leaves matchers combined
in the Average strategy) for all the tests.

6.1 Test Cases

Let us discuss artificially designed problems in order to evaluate the performance
of S-Matcho in ideal conditions, namely when we have only conjunctive or dis-
junctive concepts of nodes. Since examples are artificial and our optimizations
address only efficiency, not quality, we analyze here only the performance time
of the systems, see, Figure 2 (Artificial Examples).

On the example with conjunctive concepts at nodes (Artificial Example #1),
COMA performs 4 times slower and 15 times slower than S-Matchb and S-Matcho

respectively. S-Matcho runs around 29% faster than Rondo. Instead, Cupid runs
out of memory.

On the example with disjunctive concepts at nodes (Artificial Example #2),
S-Matcho works around 4 orders of magnitude faster than S-Matchb, around 5
times faster than COMA, 1.6 times faster than Cupid, and as fast as Rondo.
The significant improvement of our optimized algorithm can be explained by
considering that S-Matchb does not control the exponential space explosion on
such matching problems. In fact, the biggest formula in this case consists of
about 118000 clauses. The optimization introduced in the Section 4.2 reduces
this number to approximately 20-30 clauses.

We have then considered 3 matching problems, also involving real-world ex-
amples. Let us first discuss matching results from our running example, see,



Fig. 2: Evaluation Results

Figure 2 (Product schemas: A1 vs. A2). There, S-Match outperforms the other
systems in terms of quality indicators. Since all the labels at nodes in the given
test case were correctly encoded into propositional formulas, all the quality mea-
sures of S-Match reach their highest values. In fact, as discussed before, the
propositional SAT solver is correct and complete. This means that once the ele-
ment level matchers have found all and only the mappings, S-Match will return
all of them and only the correct ones. Also, S-Matcho works more than 5 times
faster than COMA, 1.5 times faster than Cupid, and as fast as Rondo.

For a pair of BizTalk schemas: CIDX vs. Excel, S-Match performs as good as
COMA and outperforms the other systems in terms of quality indicators. Also,
S-Matcho works more than 4 times faster than COMA, more than 2 times faster
than Cupid, and as fast as Rondo.

For the biggest matching problem (Web Directories: Google vs. Looksmart),
which contains hundreds and thousands of nodes, unfortunately, we did not have
enough human resources to create expert mappings for this test case (we are still
working on establishing them), and thus, for the moment we have evaluated only
the performance time. S-Matcho performs about 9 times faster than COMA,
and about 7 times faster than S-Matchb. Rondo and Cupid run out of memory,
therefore we do not report any results for them.

6.2 Evaluation Summary

Quality measures. Since most matching systems return similarity coefficients,
rather than semantic relations, our qualitative analysis was based on the mea-
sures developed for those systems. Therefore, we had to omit information about
the type of relations S-Match returns, and focus only on the number of present/
absent mappings. We totally discarded from our considerations the disjointness
relation, however, its value should not be underestimated, because this relation
reduces the search space. For the example of Figure 1, if Cupid would support
the analysis of dissimilarity between schema elements, it could possibly recognize
that C14 is disjoint (dissimilar) with C24, and then avoid false positives such as
determining that C110 is similar to C211, and so on.



Pre-match efforts. Typically, these efforts include creating a precompiled the-
saurus with relations among common and domain specific terms. On the one
side, such a thesaurus can be further reused, since many schemas to be matched
are similar to already matched schemas, especially if they are describing the
same application domain. On the other side, for the first schemas to be matched
from a novel domain, creation of such a thesaurus requires time. With this re-
spect, exploiting an external resource of common and domain knowledge (e.g.,
WordNet) can significantly reduce the pre-match efforts. In the example of Fig-
ure 1, in order for Cupid to determine C17 as an appropriate match for C28,
we have to add an entry <Hyp key=”brand:name”> 0.7</Hyp> to its thesaurus,
while S-Match obtains the knowledge of the hyponymy relation in the above case
automatically from WordNet.
Performance measures. Time is a very important indicator, because when
matching industrial-size schemas (e.g., with hundreds and thousands of nodes,
which is quite typical for e-business applications), it shows scalability properties
of the matchers and their potential to become an industrial-strength systems.
It is also important in web applications, where some weak form of real time
performance is required (to avoid having a user waiting too long for the system
respond).

7 Conclusions

We have presented a new semantic schema matching algorithm and its optimiza-
tions. Our solution builds on the top of the past approaches at the element level
and introduces a novel (with respect to schema matching) techniques, namely
model-based techniques, at the structure level. We conducted a comparative eval-
uation of our approach implemented in the S-Match system against three state
of the art systems. The results empirically prove the strengths of our approach.

Future work includes development of the iterative and interactive semantic
matching system. It will improve the quality of the mappings by iterating and by
focusing user’s attention on the critical points where his/her input is maximally
useful. S-Match works in a top-down manner, and hence, mismatches among
the top level elements of schemas can imply further mismatches between their
descendants. Therefore, next steps include development of a robust semantic
matching algorithm. Finally, we are going to develop a testing methodology which
is able to estimate quality of the mappings between schemas with hundreds and
thousands of nodes. Initial steps have already been done, see for details [1].
Here, the key issue is that in these cases, specifying expert mappings manually
is (often) neither desirable nor feasible task. Comparison of matching algorithms
on real-world schemas from different application domains will also be performed
more extensively.
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