
Core Schema Mappings

Giansalvatore Mecca1 Paolo Papotti2 Salvatore Raunich1

1 Dipartimento di Matematica e Informatica – Università della Basilicata – Potenza, Italy
2 Dipartimento di Informatica e Automazione – Università Roma Tre – Roma, Italy

ABSTRACT

Research has investigated mappings among data sources un-
der two perspectives. On one side, there are studies of prac-
tical tools for schema mapping generation; these focus on al-
gorithms to generate mappings based on visual specifications
provided by users. On the other side, we have theoretical re-
searches about data exchange. These study how to generate
a solution – i.e., a target instance – given a set of mappings
usually specified as tuple generating dependencies. However,
despite the fact that the notion of a core of a data exchange
solution has been formally identified as an optimal solution,
there are yet no mapping systems that support core compu-
tations. In this paper we introduce several new algorithms
that contribute to bridge the gap between the practice of
mapping generation and the theory of data exchange. We
show how, given a mapping scenario, it is possible to gener-
ate an executable script that computes core solutions for the
corresponding data exchange problem. The algorithms have
been implemented and tested using common runtime engines
to show that they guarantee very good performances, orders
of magnitudes better than those of known algorithms that
compute the core as a post-processing step.

Categories and Subject Descriptors

H.2 [Database Management]: Heterogeneous Databases

General Terms

Algorithms, Design

Keywords

Schema Mappings, Data Exchange, Core Computation

1. INTRODUCTION
Integrating data coming from disparate sources is a cru-

cial task in many applications. An essential requirement of
any data integration task is that of manipulating mappings

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

between sources. Mappings are executable transformations
– say, SQL or XQuery scripts – that specify how an instance
of the source repository should be translated into an instance
of the target repository. There are several ways to express
such mappings. A popular one consists in using tuple gen-
erating dependencies (tgds) [3]. We may identify two broad
research lines in the literature.

On one side, we have studies on practical tools and al-
gorithms for schema mapping generation. In this case, the
focus is on the development of systems that take as input
an abstract specification of the mapping, usually made of
a bunch of correspondences between the two schemas, and
generate the mappings and the executable scripts needed to
perform the translation. This research topic was largely in-
spired by the seminal papers about the Clio system [17, 18].
The original algorithm has been subsequently extended in
several ways [12, 4, 2, 19, 7] and various tools have been
proposed to support users in the mapping generation pro-
cess. More recently, a benchmark has been developed [1] to
compare research mapping systems and commercial ones.

On the other side, we have theoretical studies about data
exchange. Several years after the development of the initial
Clio algorithm, researchers have realized that a more solid
theoretical foundation was needed in order to consolidate
practical results obtained on schema mapping systems. This
consideration has motivated a rich body of research in which
the notion of a data exchange problem [9] was formalized,
and a number of theoretical results were established. In this
context, a data exchange setting is a collection of mappings –
usually specified as tgds – that are given as part of the input;
therefore, the focus is not on the generation of the mappings,
but rather on the characterization of their properties. This
has brought to an elegant formalization of the notion of a
solution for a data exchange problem, and of operators that
manipulate mappings in order, for example, to compose or
invert them.

However, these two research lines have progressed in a
rather independent way. To give a clear example of this,
consider the fact that there are many possible solutions for
a data exchange problem. A natural question is the fol-
lowing: “which solution should be materialized by a map-
ping system?” A key contribution of data exchange research
was the formalization of the notion of core [11] of a data
exchange solution, which was identified as an “optimal” so-
lution. Informally speaking, the core has a number of nice
properties: it is “irredundant”, since it is the smallest among
the solutions that preserve the semantics of the exchange,
and represents a “good” instance for answering queries over

the target database. It can therefore be considered a nat-
ural requirement for a schema mapping system to generate
executable scripts that materialize core solutions.

Unfortunately, there is yet no schema mapping genera-
tion algorithm that natively produces executable scripts that
compute the core. On the contrary, the solution produced
by known schema mapping systems – called a canonical so-
lution – typically contains quite a lot of redundancy. This is
partly due to the fact that computing cores is a challenging
task. Several polynomial-time algorithms [11, 13, 20] have
been developed to compute the core of a data exchange so-
lution. These algorithms represent a relevant step forward,
but still suffer from a number of serious drawbacks from
a schema-mapping perspective. First, they are intended as
post-processing steps to be applied to the canonical solution,
and require a custom engine to be executed; as such, they
are not integrated into the mapping system, and are hardly
expressible as an executable (SQL) script. Second and more
important, as it will be shown in our experiments, they do
not scale to large exchange tasks: even for databases of a
few thousand tuples computing the core typically requires
many hours.

In this paper we introduce the +Spicy1 mapping system.
The system is based on a number of novel algorithms that
contribute to bridge the gap between the practice of map-
ping generation and the theory of data exchange. In partic-
ular:

(i) +Spicy integrates the computation of core solutions
in the mapping generation process in a highly efficient way;
after a set of tgds has been generated based on the input pro-
vided by the user, cores are computed by a natural rewriting
of the tgds in terms of algebraic operators; this allows for
an efficient implementation of the rewritten mappings us-
ing common runtime languages like SQL or XQuery and
guarantees very good performances, orders of magnitude
better than those of previous core-computation algorithms;
we show in the paper that our strategy scales up to large
databases in practical scenarios;

(ii) we classify data exchange settings in several cate-
gories, based on the structure of the mappings and on the
complexity of computing the core; correspondingly, we iden-
tify several approximations of the core of increasing quality;
the rewriting algorithm is designed in a modular way, so
that, in those cases in which computing the core requires
heavy computations, it is possible to fine tune the trade off
between quality and computing times;

(iii) finally, the rewriting algorithm can be applied both
to mappings generated by the mapping system, or to pre-
existing tgds that are provided as part of the input. More-
over, all of the algorithms introduced in the paper can be
applied both to relational and to nested – i.e., XML – scenar-
ios; +Spicy is the first mapping system that brings together
a sophisticate and expressive mapping generation algorithm
with an efficient strategy to compute irredundant solutions.

In light of these contributions, we believe this paper makes
a significant advancement towards the goal of integrating
data exchange concepts and core computations into existing
database technology.

The paper is organized as follows. In the following section,
we give an overview of the main ideas. Section 3 provides
some background. Section 4 provides a quick overview of

1Pronounced “more spicy”.

the tgd generation algorithm. The rewriting algorithms are
in Sections 5, 6. A discussion on complexity is in Section 7.
Experimental results are in Section 8. A discussion of related
work is in Section 9.

2. OVERVIEW
In this section we shall introduce the various algorithms

that are developed in the paper.
It is well known that translating data from a given source

database may bring to a certain amount of redundancy into
the target database. To see this, consider the mapping sce-
nario in Figure 1. A source instance is shown in Figure 2.
A constraint-driven mapping system as Clio would gener-

Figure 1: Mapping Bibliographic References

ate for this scenario several mappings, like the ones below.2

Mappings are tgds that state how tuples should be produced
in the target based on tuples in the source. Mappings can be
expressed using different syntax flavors. In schema mapping
research [12], an XQuery-like syntax is typically used. Data
exchange papers use a more classical logic-based syntax that
we also adopt in this paper.

m1. ∀t, y, p, i : Refs(t, y, p, i) → ∃N: TRefs(t, y, p,N)
m2. ∀i, n : Auths(i, n) → ∃T, Y, P : TRefs(T, Y, P, n)
m3. ∀t, y, p, i, n : Refs(t, y, p, i) ∧ Auths(i, n) → TRefs(t, y, p, n)
m4. ∀t, p, n : WebRefs(t, p, n) → ∃Y : TRefs(t, Y, p, n)

Mapping m3 above states that for every tuple in Refs that

Figure 2: Instances for the References Scenario

has a join with a tuple in Authors, a tuple in TRefs must
be produced. Mapping m1 is needed to copy into the target

2Note that the generation of mapping m1 requires an extension
of the algorithms described in [18, 12].

references that do not have authors, like “The SQL92 Stan-
dard”. Similarly, mapping m2 is needed in order to copy
names of authors for which there are no references (none in
our example). Finally, mapping m4 copies tuples in We-
bRefs.

Given a source instance, executing the tgds amounts to
running the standard chase algorithm on the source instance
to obtain an instance of the target called a canonical uni-
versal solution [9]; note that a natural way to chase the
dependencies is to execute them as SQL statements in the
DBMS.

These expressions materialize the target instance in Fig-
ure 2. While this instance satisfies the tgds, still it contains
many redundant tuples, those with a gray background. As
shown in [12], for large source instances the amount of re-
dundancy in the target may be very large, thus impairing
the efficiency of the exchange and the query answering pro-
cess. This has motivated several practical proposals [8, 12,
7] towards the goal of removing such redundant data. Unfor-
tunately, these proposals are applicable only in some cases
and do not represent a general solution to the problem.

Data exchange research [11] has introduced the notion of
core solutions as “optimal” solutions for a data exchange
problem. Consider for example tuples t1 = (null, null, null,
E.F.Codd) and t2 = (A Relational Model..., 1970, CACM,
E.F.Codd) in Figure 2. The fact that t1 is redundant with
respect to t2 can be formalized by saying that there is an
homomorphism from t1 to t2. A homomorphism, in this con-
text, is a mapping of values that transforms the nulls of t1
into the constants of t2, and therefore t1 itself into t2. This
means that the solution in Figure 2 has an endomorphism,
i.e., a homomorphism into a sub-instance – the one obtained
by removing t1. The core [11] is the smallest among the so-
lutions for a given source instance that has homomorphisms
into all other solutions. The core of the solution in Figure 2
is in fact the portion of the TRefs table with a white back-
ground.

A possible approach to the generation of the core for a
relational data exchange problem is to generate a canoni-
cal solution by chasing the tgds, and then to apply a post-
processing algorithm for core identification. Several poly-
nomial algorithms have been identified to this end [11, 13].
These algorithms provide a very general solution to the prob-
lem of computing core solutions for a data exchange setting.
Also, an implementation of the core-computation algorithm
in [13] has been developed [20], thus making a significant
step towards the goal of integrating core computations in
schema mapping systems.

However, experience with these algorithms shows that, al-
though polynomial, they require very high computing times
since they look for all possible endomorphisms among tuples
in the canonical solution. As a consequence, they hardly
scale to large mapping scenarios. Our goal is to introduce a
core computation algorithm that lends itself to a more effi-
cient implementation as an executable script and that scales
well to large databases. To this end, in the following sections
we introduce two key ideas: the notion of homomorphism
among formulas and the use of negation to rewrite tgds.

Subsumption and Rewriting. The first intuition is that it
is possible to analyze the set of formulas in order to recognize
when two tgds may generate redundant tuples in the target.
This happens when it is possible to find a homomorphism

between the right-hand sides of the two tgds. Consider tgds
m2 andm3 above; with an abuse of notation, we consider the
two formulas as sets of tuples, with existentially quantified
variables that correspond to nulls; it can be seen that the
conclusion TRefs(T, Y, P, n) of m2 can be mapped into the
conclusion TRefs(t, y, p, n) of m3 by the following mapping
of variables: T → t, Y → y, P → p; in this case, we say
that m3 subsumes m2; similarly, m3 also subsumes m1 and
m4. This gives us a nice necessary condition to intercept
possible redundancy (i.e., possible endomorphisms among
tuples in the canonical solution). Note that the condition
is merely a necessary one, since the actual generation of
endomorphisms among facts depends on values coming from
the source. Note also that we are checking for the presence
of homomorphisms among formulas, i.e., conclusions of tgds,
and not among instance tuples; since the number of tgds is
typically much smaller than the size of an instance, this task
can be carried out quickly.

A second important intuition is that, whenever we identify
two tgds m, m′ such that m subsumes m′, we may prevent
the generation of redundant tuples in the target instance by
executing them according to the following strategy: (i) gen-
erate target tuples for m, the “more informative” mapping;
(ii) for m′, generate only those tuples that actually add
some new content to the target. To make these ideas more
explicit, we may rewrite the original tgds as follows (uni-
versally quantified variables have been omitted since they
should be clear from the context):

m′

3. Refs(t, y, p, i) ∧ Auths(i, n) → TRefs(t, y, p, n)
m′

1. Refs(t, y, p, i) ∧ ¬(Refs(t, y, p, i) ∧ Auths(i, n))
→ ∃N: TRefs(t, y, p,N)

m′

2. Auths(i, n) ∧ ¬(Refs(t, y, p, i) ∧ Auths(i, n))∧
¬(WebRefs(t, p, n)) → ∃X,Y, Z: TRefs(X,Y, Z, n)

m′

4. WebRefs(t, p, n) ∧ ¬(Refs(t, y, p, i) ∧ Auths(i, n))
→ ∃Y : TRefs(t, Y, p, n)

Once we have rewritten the original tgds in this form, we
can easily generate an executable transformation under the
form of relational algebra expressions. Here, negations be-
come difference operators; in this simple case, nulls can be
generated by outer-union operators, ∪∗, that have the se-
mantics of the insert into SQL statement:3

m′

3 : TRefs = πt,y,p,n(Refs 1 Auths)
m′

1 : ∪∗(πt,y,p(Refs) − πt,y,p(Refs 1 Auths))
m′

2 : ∪∗(πn(Auths) − πn(Refs 1 Auths) − πa(WebRefs))
m′

4 : ∪∗(πt,p,n(WebRefs) − πt,p,n(Refs 1 Auths))

The algebraic expressions above can be easily implemented
in an executable script, say in SQL or XQuery, to be run in
any database engine. As a consequence, there is a noticeable
gain in efficiency with respect to the algorithms for core
computation proposed in [11, 13, 20].

Despite the fact that this example looks pretty simple,
it captures a quite common scenario. However, removing
redundancy from the target may be a much more involved
process, as discussed in the following.

Coverages. Consider now the mapping scenario in Figure 3.
The target has two tables, in which genes reference their pro-
tein via a foreign key. In the source we have data coming

3We omit the actual SQL code since it tends to be quite long.
Note also that in the more general case Skolem functions are
needed to properly generate nulls.

from two different biology databases. Data in the PDB ta-
bles comes from the Protein Database, which is organized
in a way that is similar to the target. On the contrary, the
EMBL table contains data from the popular EMBL reposi-
tory; there, tuples need to be partitioned into a gene and a
protein tuple. In this process, we need to “invent” a value to
be used as a key-foreign key pair for the target. This is usu-
ally done using a Skolem function [18]. This transformation

Figure 3: Genes

can be expressed using the following tgds:

m1. PDBProtein(i, p) → Protein(i, p)
m2. PDBGene(g, i) → Gene(g, i)
m3. EMBLGene(p, g) → ∃N: Gene(g,N) ∧ Protein(N, p)

Sample instances are in Figure 4. It can be seen that the
canonical solution contains a smaller endomorphic image
– the core – since the tuples (14-A, N2) and (N2, 14-A-
antigen), where N2 was invented during the chase, can be
mapped to the tuples (14-A, p1) and (p1, 14-A-antigen). In
fact, if we look at the right-hand sides of tgds, we see that
there is a homomorphism from the right-hand side of m3,
{Gene(g,N),Protein(N, p)}, into the right-hand sides of m1

and m2, {Gene(g, i),Protein(i, p)}: it suffices to map N into
i. However, this homomorphism is a more complex one with
respect to those in the previous example. There, we were
mapping the conclusion of one tgd into the conclusion of an-
other. We call this form of homomorphism a coverage of m3

by m1 and m2. We may rewrite the original tgds as follows

Figure 4: Instances for the genes example

to obtain the core:

m′

1. PDBProtein(i, p) → Protein(i, p)
m′

2. PDBGene(g, i) → Gene(g, i)
m′

3. EMBLGene(p, g) ∧ ¬(PDBGene(g, i) ∧ PDBProtein(i, p))
→ ∃N Gene(g,N) ∧ Protein(N, p)

From the algebraic viewpoint, mappingm′

3 above requires to
generate in Gene and Protein tuples based on the following
expression:

EMBLGene − πp,g(PDBGene 1 PDBProtein)

In the process, we also need to generate the appropriate
Skolem functions to correlate tuples in Gene with the corre-
sponding tuples in Protein. A key difference with respect to

subsumptions is that there can be a much larger number of
possible rewritings for a tgd like m3, and therefore a larger
number of additional joins and differences to compute. This
is due to the fact that, in order to discover coverages, we
need to look for homomorphisms of every single atom into
other atoms appearing in right-hand sides of the tgds, and
then combine them in all possible ways to obtain the rewrit-
ings. To give an example, suppose the source also contains
tables XProtein, XGene that write tuples to Protein and
Gene; then, we might have to rewrite m3 by adding the
negation of four different joins: (i) PDBProtein and PDB-
Gene; (ii) XProtein, XGene; (iii) PDBProtein and XGene;
(iv) XProtein and PDBGene. This obviously increases the
time needed to execute the exchange.

We emphasize that this form of complex subsumption
could be reduced to a simple subsumption if the source
database contained a foreign-key constraint from PDBGene
to PDBProtein; in this case, only two tgds would be neces-
sary. In our experiments, simple subsumptions were much
more frequent than complex coverages. Moreover, even in
those cases in which coverage rewritings were necessary, the
database engine performed very well.

Handling Self-Joins. Special care must be devoted to tgds
containing self-joins in the conclusion, i.e., tgds in which the
same relation symbols occurs more than once in the right-
hand side. One example of this kind is the“self-join”scenario
in STMark [1], or the “RS” scenario in [11]; in this section
we shall refer to a simplified version of the latter, in which
the source schema contains a single relation R, the target
schema a single relation S , and a single tgd is given:

m1. R(a, b) → ∃x1, x2 : S(a, b, x1) ∧ S(b, x2, x1)

Assume table R contains a single tuple: R(1, 1); by chas-
ing m1, we generate two tuples in the target: S(1, 1, N1),
S(1, N2, N1). It is easy to see that this set has a proper en-
domorphism, and therefore its core corresponds to the single
tuple S(1, 1, N1).

Even though the example is quite simple, eliminating this
kind of redundancy in more complex scenarios can be rather
tricky, and therefore requires a more subtle treatment. In-
tuitively, the techniques discussed above are of little help,
since, regardless of how we rewrite the premise of the tgd,
on a tuple R(1, 1) the chase will either generate two tuples
or none of them. As a consequence, we introduce a more
sophisticate treatment of these cases.

Let us first note that in order to handle tgds like the one
above, the mapping generation system had to be extended
with several new primitives with respect to those offered
by [18, 12], which cannot express scenarios with self-joins.
We extend the primitives offered by the mapping system as
follows: (i) we introduce the possibility of duplicating sets
in the source and in the target; to handle the tgd above, we
duplicate the S table in the target to obtain two different
copies, S 1, S 2; (ii) we give users full control over joins in the
sources, in addition to those corresponding to foreign key
constraints; using this feature, users can specify arbitrary
join paths, like the join on the third attribute of S 1 and S 2.

Based on this, we notice that the core computation can
be carried-on in a clean way by adopting a two-step process.
As a first step, we rewrite the original tgd using duplications
as follows:

m1. R(a, b) → ∃x1, x2 : S 1(a, b, x1) ∧ S 2(b, x2, x1)

By doing this, we “isolate” the tuples in S 1 from those in
S 2. Then, we construct a second exchange to copy tuples
of S 1 and S 2 into S , respectively. However, we can more
easily rewrite the tgds in the second exchange in order to
remove redundant tuples. In our example, on the source
tuple R(1, 1) the first exchange generates tuples S 1(1, 1, N1)
and S 2(1, N2, N1); the second exchange discards the second
tuple and generates the core. The process is sketched in
Figure 5. These ideas are made more precise in the following
sections.

Figure 5: The Double Exchange

3. PRELIMINARIES
In the following sections we will mainly make reference

to relational settings, since most of the results in the litera-
ture refer to the relational model. However, our algorithms
extend to the nested case, as it will be discussed in Section 8.

Data Model We fix two disjoint sets: a set of constants,
const, a set of labeled nulls, var. We also fix a set of la-
bels A0, A1 . . ., and a set of relation symbols {R0,R1, . . .}.
With each relation symbol R we associate a relation schema
R(A1, . . . , Ak). A schema S = {R1, . . . ,Rn} is a collec-
tion of relation schemas. An instance of a relation schema
R(A1, . . . , Ak) is a finite set of tuples of the form R(A1 :
v1, . . . , Ak : vk), where, for each i, vi is either a constant
or a labeled null. An instance of a schema S is a collection
of instances, one for each relation schema in S. We allow
to express key constraints and foreign key constraints over
a schema, defined as usual. In the following, we will inter-
changeably use the positional and non positional notation
for tuples and facts; also, with an abuse of notation, we will
often blur the distinction between a relation symbol and the
corresponding instance.

Given an instance I , we shall denote by const(I) the set
of constants occurring in I , and by var(I) the set of labeled
nulls in I . dom(I), its active domain, will be const(I)∪var(I).

Given two disjoint schemas, S and T, we shall denote by
〈S,T〉 the schema {S1 . . .Sn,T1 . . .Tm}. If I is an instance
of S and J is an instance of T, then the pair 〈I, J〉 is an
instance of 〈S,T〉.

Dependencies Given two schemas, S and T, an embedded
dependency [3] is a first-order formula of the form ∀x(φ(x) →
∃y(ψ(x, y)), where x and y are vectors of variables, φ(x) is
a conjunction of atomic formulas such that all variables in x
appear in it, and ψ(x, y) is a conjunction of atomic formulas.
φ(x) and ψ(x, y) may contain equations of the form vi = vj ,
where vi and vj are variables.

An embedded dependency is a tuple generating depen-
dency if φ(x) and ψ(x, y) only contain relational atoms. It is
an equality generating dependency (egd) if ψ(x, y) contains
only equations. A tgd is called a source-to-target tgd if φ(x)
is a formula over S and ψ(x, y) over T. It is a target tgd if
both φ(x) and ψ(x, y) are formulas over T.

Homomorphisms and Chase Given two instances J , J’
over a schema T, a homomorphism h : J → J’ is a mapping
from dom(J) to dom(J’) such that for each c ∈ const(J),
h(c) = c, and for each tuple t = R(A1 : v1, . . . , Ak : vk) in J

it is the case that h(t) = R(A1 : h(v1), . . . , Ak : h(vk)) be-
longs to J’. h is called an endomorphism if J’ ⊆ J; if J’ ⊂ J it
is called a proper endomorphism. We say that two instances
J , J’ are homomorphically equivalent if there are homomor-
phisms h : J → J’ and h′ : J’ → J. Note that a conjunction
of atoms may be seen as a special instance containing only
variables. The notion of homomorphism extends to formulas
as well.

Dependencies are executed using the classical chase pro-
cedure. Given an instance 〈I, J〉, during the chase a tgd
φ(x) → ∃y(ψ(x, y)) is fired by a value assignment a, that
is, an homomorphism from φ(x) into I, such that there is
no extension of a that maps φ(x) ∪ ψ(x, y) into 〈I, J〉. To
fire the tgd a is extended to ψ(x, y) by assigning to each
variable in y a fresh null, and then adding the new facts to
J.

Data Exchange Setting A data exchange setting is a
quadruple (S,T,Σst,Σt), where S is a source schema, T is
a target schema, Σst is a set of source-to-target tgds, and
Σt is a set of target dependencies that may contain tgds
and egds. Associated with such a setting is the following
data exchange problem: given an instance I of the source
schema S, find a finite target instance J such that I and J
satisfy Σst and J satisfies Σt. In the case in which the set
of target dependencies Σt is empty, we will use the notation
(S,T,Σst).

Given a data exchange setting (S,T,Σst,Σt) and a source
instance I , a universal solution [9] for I is a solution J such
that, for every other solution J’ there is a homomorphism
h : J → J’. The core [11] of a universal solution J , C, is a
subinstance of J such that there is a homomorphism from
J to C, but there is no homomorphism from J to a proper
subinstance of C.

4. TGD GENERATION
Before getting into the details of the tgd rewriting algo-

rithm, let us give a quick overview of how the input tgds are
generated by the system. Note that, as an alternative, the
user may decide to load a set of pre-defined tgds provided
as logical formulas encoded in a fixed textual format.

The tgd generation algorithm we describe here is a gen-
eralization of the basic mapping generation algorithm intro-
duced in [18]. The input to the algorithm is a mapping sce-
nario, i.e., an abstract specification of the mapping between
source and target. In order to achieve a greater expres-
sive power, we enrich the primitives for specifying scenarios.
More specifically, given a source schema S and a target T,
a mapping scenario is specified as follows:
(i) two (possibly empty) sets of duplications of the sets in S

and in T; each duplication of a set R corresponds to adding
to the data source a new set named R i, for some i, that is
an exact copy of R;
(ii) two (possibly empty) sets of join constraints over S and
over T; each join constraint specifies that the system needs
to chase a join between two sets; foreign key constraints also
generate join constraints;
(iii) a set of value correspondences, or lines; for the sake of
simplicity in this paper we concentrate on 1 : 1 correspon-
dences of the form AS → AT .4

4In its general form, a correspondence maps n source attributes
into a target attribute via a transformation function; moreover,
it can have an attached filter that states under which conditions

The tgd generation algorithm is made of several steps. As
a first step, duplications are processed; for each duplication
of a set R in the source (target, respectively), a new set R i

is added to the source (target, respectively). Then, the al-
gorithm finds all sets in the source and in the target schema;
this corresponds, in the terminology of [18], to finding pri-
mary paths.

The next step is concerned with generating views over the
source and the target. Views are a generalization of logical
relations in [18] and are the building blocks for tgds. Each
view is an algebraic expression over sets in the data source.
Let us now restrict our attention to the source (views in the
target are generated in a similar way).

The set of views, Vinit, is initialized as follows: for each
set R a view R is generated. This initial set of views is then
processed in order to chase join constraints and assemble
complex views; intuitively, chasing a join constraint from set
R to set R’ means to build a view that corresponds to the
join of R and R’ . As such, each join constraint can be seen as
an operator that takes a set of existing views and transforms
them into a new set, possibly adding new views or changing
the input ones. Join constraints can be mandatory or non
mandatory ; intuitively, a mandatory join constraint states
that two sets must either appear together in a view, or not
appear at all.

Once views have been generated for the source and the
target schema, it is possible to produce a number of can-
didate tgds. We say that a source view v covers a value
correspondence AS → AT if AS is an attribute of a set that
appears in v; similarly for target views. We generate a can-
didate tgd for each pair made of a source view and a target
view that covers at least one correspondence. The source
view generates the left-hand side of the tgd, the target view
the right-hand side; lines are used to generate universally
quantified variables in the tgd; for each attribute in the tar-
get view that is not covered by a line, we add an existentially
quantified variable.

5. TGD REWRITING
We are now ready to introduce the rewriting algorithm.

We concentrate on data exchange settings expressed as a
set of source-to-target tgds, i.e., we do not consider target
tgds and egds. Target constraints are used to express key
and foreign key constraints on the target. With respect to
target tgds, we assume that the source-to-target tgds have
been rewritten in order to incorporate any target tgds corre-
sponding to foreign key constraints. In [10] it is proven that
it is always possible to rewrite a data exchange setting with
a set of weakly acyclic [9] target tgds into a setting with no
target tgds such that the cores of the two settings coincide,
provided that the target tgds satisfy a boundedness prop-
erty. With respect to key constraints, they can be enforced
in the final SQL script after the core for the source-to-target
tgds has been generated.5

the correspondence must be applied; our system handles the most
general form of correspondences; it also handles constant lines.
It is possible to extend the algorithms presented in this paper to
handle the most general form of correspondence; this would be
important in order to incorporate conditional tgds [6]; while the
extension is rather straightforward for constants appearing in tgd
premises, it is more elaborate for constants in tgd conclusions,
and is therefore left to future work.
5The description of the algorithm is out of the scope of this paper.

A key contribution of this paper is the definition of a
rewriting algorithm that takes as input a set of source-to-
target tgds Σ and rewrites them into a new set of constraints
Σ′ with the nice property that, given a source instance I ,
the canonical solution for Σ′ on I coincides with the core of
Σ on I .

We make the assumption that the set Σ is source-based.
A tgd φ(x) → ∃y(ψ(x, y)) is source-based if: (i) the left-
hand side φ(x) is not empty; (ii) the vector of universally
quantified variables x is not empty; (iii) at least one of the
variables in x appears in the right hand side ψ(x, y).

This definition, while restricting the variety of tgds han-
dled by the algorithm, captures the notion of a“useful”tgd in
a schema mapping scenario. In fact, note that tgds in which
the left-hand side is empty or it contains no universally quan-
tified variables – like, for example → ∃X,Y : T (X,Y), or
∀a : S(a) → ∃X,Y : R(X,Y)∧S(Y,X) – would generate tar-
get tuples made exclusively of nulls, which are hardly useful
in practical cases.

Besides requiring that tgds are source-based, without loss
of generality we also require that the input tgds are in in nor-
mal form, i.e., each tgd uses distinct variables, and no tgd
can be decomposed in two different tgds having the same
left-hand side. To formalize this second notion, let us in-
troduce the Gaifman graph of a formula as the undirected
graph in which each variable in the formula is a node, and
there is an edge between v1 and v2 if v1 and v2 occur in
the same atom. The dual Gaifman graph of a formula is
an undirected graph in which nodes are atoms, and there is
an edge between atoms Ri(xi, yi) and Rj(xj , yj) if there is
some existential variable yk occurring in both atoms.

Definition: A set of tgds Σ is in normal form if: (i) for each
mi, mj ∈ Σ, (xi∪yi)∩(xj∪yj) = ∅, i.e, the tgds use disjoint
sets of variables; (ii) for each tgd, the dual Gaifman graph
of atoms is connected.

If the input set of tgds is not in normal form, it is always
possible to preliminarily rewrite them to obtain an input in
normal form.6

5.1 Formula Homomorphisms
An important intuition behind the algorithm is that by

looking at homomorphisms between tgd conclusions, we may
identify when firing one tgd may lead to the generation of
“redundant” tuples in the target. To formalize this idea,
we introduce the notion of formula homomorphism, which
is reminiscent of the notion of containment mapping used
in [16]. We find it useful to define homomorphisms among
variable occurrences, and not among variables.

Definition: Given an atom R(A1 : v1, . . . , Ak : vk) in a
formula ψ(x, y), a variable occurrence is a pair R.Ai : vi.
We denote by occ(ψ(x, y)) the set of variable occurrences in
ψ(x, y). A variable occurrence R.Ai : vi ∈ occ(ψ(x, y)) is a
universal occurrence if vi is a universally quantified variable;
it is a Skolem occurrence if vi is an existentially quantified
variable that occurs more than once in ψ(x, y); it is a pure
null occurrence if vi is an existentially quantified variable
that occurs only once in ψ(x, y).

Intuitively, the term “pure null” is used to denote those
variables that generate labeled nulls that can be safely re-

6In case the dual Gaifman graph of a tgd is not connected, we
generate a set of tgds with the same premise, one for each con-
nected component in the dual Gaifman graph.

placed with ordinary null values in the final instance. There
is a precise hierarchy in terms of information content asso-
ciated with each variable occurrence. More specifically, we
say that a variable occurrence o2 is more informative than
variable occurrence o1 if one of the following holds: (i) o2 is
universal, and o1 is not; (ii) o2 is a Skolem occurrence and
o1 is a pure null.

Definition: Given two formulas, ψ1(x1, y1), ψ2(x2, y2), a
variable substitution, h, is an injective mapping from the set
occ(ψ1(x1, y1)) to occ(ψ2(x2, y2)) that maps universal occur-
rences into universal occurrences. In the following we shall
refer to the variable occurrence h(R.Ai : xi) by the syntax
Ai : hR.Ai

(xi).

Definition: Given two sets of atoms R1, R2, a formula ho-
momorphism is a variable substitution h such that, for each
atom R(A1 : v1, . . . , Ak : vk) ∈ R1, it is the case that: (i)
R(A1 : hR.A1

(v1), . . . , Ak : hR.Ak
(vk)) ∈ R2; (ii) for each

pair of existential occurrences Ri.Aj : v, R′

i.A
′

j : v in R1

it is the case that either hRi.Aj
(v) and hR′

i
.A′

j
(v) are both

universal or hRi.Aj
(v) = hR′

i
.A′

j
(v).

Given a set of tgds ΣST = {φi(xi) → ∃yi(ψi(xi, yi)), i =
1, . . . , n}, a simple formula endomorphism is a formula ho-
momorphism from ψi(xi, yi) to ψj(xj , yj), for some i, j ∈
{1, . . . , n}. A formula endomorphism is a formula homomor-
phism from

⋃n
i=1 ψi(xi, yi) to

⋃n
i=1 ψi(xi, yi) − {ψj(xj , yj)}

for some j ∈ {1, . . . , n}.

Definition: A formula homomorphism is said to be proper if
either the size of R2 is greater than the size of R1 or there
exists at least one occurrence R.Ai : vi in R1 such that
hR.Ai

(vi) is more informative than R.Ai : vi.

To give an example, consider the following tgds. Suppose
relation W has three attributes, A,B,C:

m1. A(x1) → ∃Y0, Y1 : W(x1, Y0, Y1)
m2. B(x2, x3) → ∃Y2 : W(x2, x3, Y2)
m3. C(x4) → ∃Y3, Y4 : W(x4, Y3, Y4),V(Y4)

There are two different formula homomorphisms: (i) the
first maps the right-hand side of m1 into the rhs of m2:
W.A : x1 → W.A : x2,W.B : Y0 → W.B : x3,W.C : Y1 →
W.C : Y2; (ii) the second maps the rhs of m1 into the rhs
of m3: W.A : x1 → W.A : x4,W.B : Y0 → W.B : Y3,W.C :
Y1 →W.C : Y4. Both homomorphisms are proper.

Note that every standard homomorphism h on the vari-
ables of a formula induces a formula homomorphism h that
associates with each occurrence of a variable v the same
value h(v). The study of formula endomorphisms provides
nice necessary conditions for the presence of endomorphisms
in the solutions of an exchange problem.

Theorem 5.1 (Necessary Condition). Given a data
exchange setting (S,T,ΣST), suppose ΣST is a set of source-
based tgds in normal form. Given an instance I of S, call
J a universal solution for I. If J contains a proper endo-
morphism, then

⋃
i ψi(xi, yi) contains a proper formula en-

domorphism.

Typically, the canonical solution contains a proper endo-
morphism into its core. It is useful, for application pur-
poses, to classify data exchange scenarios in various cate-
gories, based on the complexity of core identification. To
do this, as discussed in Section 2, special care needs to be
devoted to those tgds m in which the same relation symbol

appears more than once in the conclusion. In this case we
say that m contains self-joins in tgd conclusions.

(i) a subsumption scenario is a data exchange scenario in
which ΣST may only contain simple endomorphisms, and no
tgd contains self-joins in tgd conclusions.

(ii) a coverage scenario is a scenario in which ΣST may
contain arbitrary endomorphisms, but no tgd contains self-
joins in tgd conclusions.

(iii) a general scenario is a scenario in which ΣST may
contain tgds with arbitrary self-joins.

In the following sections, we introduce the rewriting for
each of these categories.

5.2 Subsumption Scenarios

Definition: Given two tgds m1, m2, whenever there is a
simple homomorphism h from ψ1(x1, y1) to ψ2(x2, y2), we
say that m2 subsumes m1, in symbols m1 � m2. If h is
proper, we say that m2 properly subsumes m1, in symbols
m1 ≺ m2.

Subsumptions are very frequent and can be handled effi-
ciently. One example is the references scenario in Section 2.
There, as discussed, the only endomorphisms in the right-
hand sides of tgds are simple endomorphisms that map an
entire tgd conclusion into another conclusion. Then, it may
be the case that the two tgds are instantiated with value
assignments a, a′ and produce two sets of facts ψ(a, b) and
ψ′(a′ , b′) such there is an endomorphism that maps ψ(a, b)
into ψ′(a′ , b′). In these cases, whenever m2 subsumes m1,
we rewrite m1 by adding to the its left-hand side the nega-
tion of the left-hand side of m2; this prevents the generation
of redundant tuples.

Note that a set of tgds may contain both proper and
non-proper subsumptions. However, only proper ones in-
troduce actual redundancy in the final instance; non-proper
subsumptions generate tuples that are identical up to the
renaming of nulls and therefore are filtered-out by the se-
mantics of the chase. As a consequence, for performance
purposes it is convenient to concentrate on proper subsump-
tions.

We can now introduce the rewriting of the original set of
source-to-target tgds Σ into a new set of tgds, Σ′, as follows.

Definition: For each m = φ(x) → ∃y(ψ(x, y)) in Σ, add to
Σ′ a new tgd msubs = φ′(x′) → ∃y′(ψ′(x′ , y′)), obtained by
rewriting m as follows:
(i) initialize msubs = m;
(ii) for each tgd ms = φs(xs) → ∃ys(ψs(xs, ys)) in Σ such
that m ≺ ms, call h the homomorphism of m into ms; add
to φ′(x′) a negated sub-formula ∧¬(γs), where γs is obtained
as follows:
(ii.a) initialize γs = φs(xs);
(ii.b) for each pair of existential occurrences Ri.Aj : v,
R′

i.A
′

j : v in ψ(x, y) such that hRi.Aj
(v) and hR′

i
.A′

j
(v) are

both universal, add to γs an equation of the form hRi.Aj
(v)

= hR′

i
.A′

j
(v);

(ii.c) for each universal position Ai : xi in ψ(x, y), add to
γs an equation of the form xi = hR.Ai

(xi). Intuitively, the
latter equations correspond to computing differences among
instances of the two formulas.

Consider again the W example in the previous paragraph.
The tgds in normal form are reported below. Based on the

proper subsumptions, we can rewrite mappingm1 as follows:

m′

1. A(x1) ∧ ¬(B(x2, x3) ∧ x1 = x2)
∧¬(C(x4) ∧ x1 = x4) → ∃Y0, Y1 W(x1, Y0, Y1)

By looking at the logical expressions for the rewritten tgds it
can be seen how we have introduced negation. Results that
have been proven for data exchange with positive tgds ex-
tend to tgds with safe negation [14]. To make negation safe,
we assume that during the chase universally quantified vari-
ables range over the active domain of the source database.
This is reasonable since – as it was discussed in Section 2 –
the rewritten tgds will be translated into a relational algebra
expression.

5.3 Coverage Scenarios
Consider now the case in which the tgds contain endomor-

phisms that are not simple subsumptions; recall that we are
still assuming the tgds contain no self-joins in their conclu-
sions. Consider the genes example in Section 2. Tgd m3 in
that example states that the target must contain two tuples,
one in the Gene table and one in the Protein table that join
on the protein attribute. However, this constraint do not
necessarily must be satisfied by inventing a new value. In
fact, there might be tuples generated by m1 and m2 that
satisfy the constraint imposed by m3. Informally speaking,
a coverage for the conclusion of a tgd is a set of atoms from
other tgds that might represent alternative ways of satisfy-
ing the same constraint.

Definition: Assume that, for tgd m = φ(x) → ∃y(ψ(x, y)),
there is an endomorphism h :

⋃
i ψi(xi, yi) →

⋃
i ψi(xi, yi)−

{ψ(x, y)}. Call
⋃

i ψi(xi, yi) a minimal set of formulas such
that h maps each atom Ri(. . .) in ψ(x, y) into some atom
Ri(. . .) of

⋃
i ψi(xi, yi) a coverage of m; note that if i equals

1 the coverage becomes a subsumption.

The rewriting algorithm for coverages is made slightly
more complicated by the fact that proper join conditions
must in general be added among coverage premises.

Definition: For each m = φ(x) → ∃y(ψ(x, y)) in Σ, add to
Σ′ a new tgd mcov = φ′(x′) → ∃y′(ψ′(x′ , y′)), obtained as
follows:
(i) initialize mcov = msubs, as defined above;
(ii) for each coverage

⋃
i ψi(xi, yi) ofm, call h the homomor-

phism of ψ(x, y) into
⋃

i ψi(xi, yi); add to φ′(x′) a negated
sub-formula ∧¬(γc), where γc is obtained as follows:
(iia) initialize γc =

∧
i φi(xi);

(iib) for each universal position Ai : xi in ψ(x, y), add to γc

an equation of the form xi = hR.Ai
(xi)

(iic) for each existentially quantified variable y in ψ(x, y),
and any pair of positions Ai : y, Aj : y such that hR.Ai

(y)
and hR.Aj

(y) are universal variables, add to γc an equation
of the form hR.Ai

(y) = hR.Aj
(y).

To see how the rewriting works, consider the following
example (existentially quantified variables are omitted since
they should be clear from the context):

m1. A(a1, b1, c1) → R(a1, N10) ∧ S(N10, N11) ∧ T(N11, b1, c1)
m2. B(a2, b2) → R(a2, b2)
m3. F 1(a3, b3) ∧ F 2(b3, c3) → S(a3, c3)
m4. D(a4, b4) → T(a4, b4, N4)
m5. E(a5, b5) → R(a5, N50) ∧ S(N50, N51) ∧ T(N51, b5, N52)

Consider tgd m5. It is subsumed by m1. It is also covered
by {R(a2, b2), S(a3, c3), T(a4, b4, N4)}, by homomorphism:

{R.1 : a5 → R.1 : a2, R.2 : N50 → R.2 : b2, S.1 : N50 →
S.1 : a3, S.2 : N51 → S.2 : c3, T.1 : N51 → T.1 : a4,
T.2 : b5 → T.2 : b4 T.3 : N52 → T.3 : N4}. Based on this,
we rewrite tgd m5 as follows:

m′

5. E(a5, b5) ∧ ¬(A(a1, b1, c1) ∧ a5 = a1 ∧ b5 = b1)
∧¬(B(a2, b2) ∧ F 1(a3, b3) ∧ F 2(b3, c3) ∧ D(a4, b4)

∧ b2 = a3 ∧ c3 = a4 ∧ a5 = a2 ∧ b5 = b4)
→ R(a5, N50) ∧ S(N50, N51) ∧ T(N51, b5, N52)

It is possible to prove the following result:

Theorem 5.2 (Core Computation). Given a data ex-
change setting (S,T,ΣST), suppose ΣST is a set of source-
based tgds in normal form that do not contain self-joins in
tgd conclusions. Call Σ′

ST the set of coverage rewritings of
ΣST . Given an instance I of S, call J, J’ the canonical solu-
tions of ΣST and Σ′

ST for I. Then J’ is the core of J.

The proof is based on the fact that, whenever two tgds
m1,m2 in ΣST are fired to generate an endomorphism, sev-
eral homomorphisms must be in place. Call a1, a2 the vari-
able assignments used to fire m1,m2; suppose there is an
homomorphism h from ψ1(a1, b1) to ψ2(a2, b2). Then, by
Theorem 5.1, we know that there must be a formula homo-
morphism h′ from ψ1(x1, y1) to ψ2(x2, y2), and therefore a
rewriting of m1 in which the premise of m2 is negated. By
composing the various homomorphism it is possible to show
that the rewriting of m1 will not be fired on assignment a1.
Therefore, the endomorphism will not be present in J’.

6. REWRITING TGDS WITH SELF-JOINS
The most general scenario is the one in which one rela-

tion symbol may appear more than once in the right-hand
side of a tgd. This introduces a significant difference in the
way redundant tuples may be generated in the target, and
therefore increases the complexity of core identification.

There are two reasons for which the rewriting algorithm
introduced above does not generate the core. Note that the
algorithm removes redundant tuples by preventing a tgd to
be fired for some value assignment. Therefore, it prevents
redundancy that comes from instantiations of different tgds,
but it does not control redundant tuples generated within
an instantiation of a single tgd. In fact, if a tgd writes two
or more tuples at a time into a relation R, solutions may still
contain unnecessary tuples. As a consequence, we need to
rework the algorithm in a way that, for a given instantiation
of a tgd, we can intercept every single tuple added to the
target by firing the tgd, and remove the unnecessary ones.
In light of this, our solution to this problem is to adopt a
two-step process, i.e., to perform a double exchange.

6.1 The Double Exchange
Given a set of source-to-target tgds, ΣST over S and T, as

a first step we normalize the input tgds; we also introduce
suitable duplications of the target sets in order to remove
self-joins. A duplicate of a set R is an exact copy named
Ri of R. By doing this, we introduce a new, intermediate
schema, T’, obtained from T. Then, we produce a new set
of tgds ΣST ′ over S and T’ that do not contain self-joins.

Definition: Given a mapping scenario (S,T,ΣST) where
ΣST contains self-joins in tgd conclusions, the intermediate
scenario (S,T’,ΣST ′) is obtained as follows: for each tgd
m in ΣST add a tgd m′ to ΣST ′ such that m′ has the same

premise as m and for each target atom R(x, y) in m, m′ con-
tains a target atom Ri(x, y), where Ri is a fresh duplicate
of R.

To give an example, consider the RS example in [11]. The
original tgds are reported below:

m1. R(a, b, c, d) → ∃x1, x2, x3, x4, x5 : S(x5, b, x1, x2, a)∧
S(x5, c, x3, x4, a) ∧ S(d, c, x3, x4, b)

m2. R(a, b, c, d) → ∃x1, x2, x3, x4, x5 : S(d, a, a, x1, b)∧
S(x5, a, a, x1, a) ∧ S(x5, c, x2, x3, x4)

In that case, ΣST ′ will be as follows (variables have been
renamed to normalize the tgds):

m′

1. R(a, b, c, d) → ∃x1, x2, x3, x4, x5 : S 1(x5, b, x1, x2, a)∧
S 2(x5, c, x3, x4, a) ∧ S 3(d, c, x3, x4, b)

m′

2. R(e, f, g, h) → ∃y1, y2, y3, y4, y5 : S 4(h, e, e, y1, f)∧
S 5(y5, e, e, y1, e) ∧ S 6(y5, g, y2, y3, y4)

We execute this ST ′ exchange by applying the rewritings
discussed in the previous sections. This yields an instance
of T’ that needs to be further processed in order to gener-
ate the final target instance. To do this, we need to execute
a second exchange from T’ to T. This second exchange is
constructed in such a way to generate the core. The overall
process is shown in Figure 6. Note that, while we describe

Figure 6: Double Exchange

our algorithm as a double exchange, in our SQL scripts we
do not actually implement two exchanges, but only one ex-
change with a number of additional intermediate views to
simplify the rewriting.

Remark The problem of core generation via executable
scripts has been independently addressed in [21]. There the
authors show that it is possible to handle tgds with self-joins
using one exchange only.

6.2 Expansions
Although inspired by the same intuitions, the algorithm

used to generate the second exchange is considerably more
complex than the ones discussed before. The common intu-
ition is that each of the original source-to-target tgds repre-
sents a constraint that must be satisfied by the final instance.
However, due to the presence of duplicate symbols, there
are in general many different ways of satisfying these con-
straints. To give an example, consider mapping m′

1 above:
it states that the target must contain a number of tuples in
S that satisfy the two joins in the tgd conclusion. It is im-
portant to note, however, that: (i) it is not necessarily true
that these tuples must belong to the extent of S 1, S 2, S 3 –
since these are pure artifacts introduced for the purpose of
our algorithm – but they may also come from S 4 or S 5 or
S 6; (ii) moreover, these tuples are not necessarily distinct,
since there may be tuples that perform a self-join.

In light of these ideas, as a first step of our rewriting
algorithm, we compute all expansions of the conclusions of
the ST’ tgds. Each expansion represents one of the possible
ways to satisfy the constraint stated by a tgd. For each tgd
mi ∈ ΣST ′ , we call ψi(xi, yi) a base view. Consider again
tgd m′

1 above; the constraint stated by its base view may

obviously be satisfied by copying to the target one atom in
S 1, one in S 2 and one in S 3. This corresponds to the base
expansion of the view, i.e., the expansion that corresponds
with the base view itself:

e11.S
1(x5, b, x1, x2, a) ∧ S 2(x5, c, x3, x4, a) ∧ S 3(d, c, x3, x4, b)

However, there are also other ways to satisfy the constraint.
One way is to use only one tuple from S 2 and one from S 3,
the first one in join with itself on the first attribute – i.e., S 2

is used to “cover” the S 1 atom; this may work as long as it
does not conflict with the constants generated in the target
by the base view; in our example, the values generated by
the S 2 atom must be consistent with those that would be
generated by the S 1 atom we are eliminating. We write this
second expansion as follows:

e12. S 2(x5, c, x3, x4, a) ∧ S 3(d, c, x3, x4, b)
∧ (S 1(x5, b, x1, x2, a) ∧ b = c)

It is possible to see that – from the algebraic viewpoint – the
formula requires to compute a join between S 2 and S 3, and
then an intersection with the content of S 1. This is even
more apparent if we look at another possible extension, the
one that replaces the three atoms with a single covering atom
from S 4 in join with itself:

e13. S 4(h, e, e, y1, f) ∧ S 4(h′, e′, e′, y1, f
′) ∧ h = h′ ∧

(S 1(x5, b, x1, x2, a) ∧ S 2(x5, c, x3, x4, a) ∧ S 3(d, c, x3, x4, b)∧
e = b ∧ f = a ∧ e′ = c ∧ f ′ = a ∧ h′ = d ∧ e′ = c ∧ f ′ = b)

In algebraic terms, expansion e13 corresponds to computing
the join S 4

1 S 4 and then taking the intersection on the
appropriate attributes with the base view, i.e., S 1

1 S 2
1

S 3.
A similar approach can be used for tgd m′

2 above. In this
case, besides the base expansion, it is possible to see that
also the following expansion is derived – S 4 covers S 5 and
S 3 covers S 6, the join is on the universal variables d and h:

e21. S 4(h, e, e, y1, f) ∧ S 3(d, c, x3, x4, b) ∧ h = d ∧
(S 5(y5, e, e, y1, e) ∧ S 6(y5, g, y2, y3, y4) ∧ f = e ∧ g = c)

As a first step of the rewriting, for each ST’ tgd, we take the
conclusion, and compute all possible expansions, including
the base expansion. The algorithm to generate expansions
is very similar to the one to compute coverages described
in the first section, with several important differences. In
particular, we need to extend the notion of homomorphism
in such a way that atoms corresponding to duplicates of the
same set can be matched.

Definition: We say that two sets R and R′ are equal up to
duplications if they are equal, or one is a duplicate of the
other, or both are duplicates of the same set. Given two sets
of atoms R1, R2, an extended formula homomorphism, h, is
defined as a formula homomorphism, with the variant that
h is required to map each atom R(A1 : v1, . . . , Ak : vk) ∈ R1

into an atom R′(A1 : hR.A1
(v1), . . . , Ak : hR.Ak

(vk)) ∈ R2

such that R and R′ are not necessarily the same symbol but
are equal up to duplications.

Note that, in terms of complexity, another important dif-
ference is that in order to generate expansions we do not
need to exclusively use atoms in other tgds, but may reuse
atoms from the tgd itself. Also, the same atom may be used
multiple times in an expansion. Call

⋃
i ψi(xi, yi) the union

of all atoms in the conclusions of ΣST ′ . To compute its ex-
pansions, if the base view has size k, we consider all multisets
of size k or less of atoms in

⋃
i ψi(xi, yi). If one atom occurs

more than once in a multiset, we assume that variables are
properly renamed to distinguish the various occurrences.

Definition: Given a base view ψ(x, y) of size k, a multiset
R of atoms in

⋃
i ψi(xi, yi) of size k or less, and an extended

formula homomorphism h from ψ(x, y) to R, an expansion
eR,h is a logical formula of the form c ∧ i, where:
(i) c – the coverage formula – is constructed as follows:
(ia) initialize c = R;
(ib) for each existentially quantified variable y in ψ(x, y),
and any pair of positions Ai : y, Aj : y such that hR.Ai

(y)
and hR.Aj

(y) are universal variables, add to c an equation
of the form hR.Ai

(y) = hR.Aj
(y).

(ii) i – the intersection formula – is constructed as follows:
(iia) initialize i = ψ(x, y);
(iib) for each universal position Ai : xi in ψ(x, y), add to i
an equation of the form xi = hR.Ai

(xi).

Note that for base expansions the intersection part can
be removed. It can be seen that the number of coverages
may significantly increase when the number of self-joins in-
crease.7 In the RS example our algorithm finds 10 expan-
sions of the two base views, 6 for the conclusion of tgd m′

1

and 4 for the conclusion of tgd m′

2.

6.3 T’T Tgds
Expansions represent all possible ways in which the orig-

inal constraints may be satisfied. Our idea is to use expan-
sions as premises for the T’T tgds that actually write to the
target. The intuition is pretty simple: for each expansion e
we generate a tgd. The tgd premise is the expansion itself,
e. The tgd conclusion is the formula eT , obtained from e

by replacing all duplicate symbols by the original one. To
give an example, consider expansion e12 above. It generates
a tgd like the following:

S 2(x5, c, x3, x4, a) ∧ S 3(d, c, x3, x4, b)
∧(S 1(x5, b, x1, x2, a) ∧ b = c) → ∃N3, N4, N5 :

→ S(N5, c,N3, N4, a) ∧ S(d, c,N3, N4, b)

Before actually executing these tgds, two preliminary steps
are needed. As a first step, we need to normalize the tgds,
since conclusions are not necessarily normalized. Second,
as we already did in the first exchange, we need to suit-
ably rewrite the tgds in order to prevent the generation of
redundant tuples.

6.4 T’T Rewriting
To generate the core, we now need to identify which ex-

pansions may generate redundancy in the target. In essence,
we look for subsumptions among expansions, in two possible
ways.

First, among all expansions of the same base view, we
try to favor the ‘most compact’ ones, i.e., those that gen-
erate less tuples in the target. To see an example, con-
sider the source tuple R(n, n, n, k); chasing the tuple using
the base expansion e11 generates in the target three tuples:
S(N5, n,N1, N2, n),S(N5, n,N3, N4, n),S(k, n,N3, N4, n); if,
however, we chase expansion e12, we generate in the tar-
get only two tuples: S(N5, n,N3, N4, n),S(k, n,N3, N4, n);

7Note that, as an optimization step, many expansions can be
pruned out by reasoning on existential variables.

chasing e13 generates one single tuple that subsumes all of
the tuples above: S(k, n, n,N1, n). We can easily identify
this fact by finding an homomorphism from e11 to e12 and
e13, and an homomorphism from e12 into e13. We rewrite
expansions accordingly by adding negations as in the first
exchange.

Definition: Given expansions e = c ∧ i and e′ = c′ ∧ i′ of
the same base view, we say that e′ is more compact than e

if there is a formula homomorphism h from the set of atoms
Rc in c to the set of atoms Rc′ in c′ and either the size of
Rc′ is smaller than the size of Rc or there exists at least
one occurrence R.Ai : vi in Rc such that hR.Ai

(vi) is more
informative than R.Ai : vi.

This definition is a generalization of the definition of a
subsumption among tgds. Given expansion e, we generate a
first rewriting of e, called erew, by adding to e the negation
¬(e′) of each expansion e′ of the same base view that is
more compact than e, with the appropriate equalities, as
for any other subsumption. This means, for example, that
expansion e12 above is rewritten into a new formula erew

12 as
follows:

erew
12 . S 2(x5, c, x3, x4, a) ∧ S 3(d, c, x3, x4, b)

∧(S 1(x5, b, x1, x2, a) ∧ b = c)
∧¬(S 4(h, e, e, y1, f) ∧ h = h′ ∧ S 4(h′, e′, e′, y′1, f

′)∧
(S 1(x′5, b

′, x′1, x
′

2, a
′) ∧ S 2(x′5, c

′, x′3, x
′

4, a
′)

∧ S 3(d′, c′, x′3, x
′

4, b
′)

∧ e = b′ ∧ f = a′ ∧ e′ = c′ ∧ f ′ = a′ ∧ h′ = d′ ∧ f ′ = b′)
∧ c = e ∧ a = f ∧ d = h′ ∧ c = e′ ∧ b = f ′)

After we have rewritten the original expansion in order to
remove unnecessary tuples, we look among other expansions
to favor those that generate ‘more informative’ tuples in the
target. To see an example, consider expansion e12 above: it
is easy to see that – once we have removed tuples for which
there are more compact expansions – we have to ensure that
expansion e21 of the other tgd does not generate more infor-
mative tuples in the target.

Definition: Given expansions e = c ∧ i and e′ = c′ ∧ i′, we
say that e′ is more informative than e if there is a proper
homomorphism from the set of atoms Rc in c to the set of
atoms Rc′ in c′.

To summarize, to generate the final rewriting, we consider
the premise, e, of each T’T tgd; then: (i) we first rewrite e
into a new formula erew by adding the negation of all expan-
sions ei of the same base view such that ei is more compact

than e; (ii) we further rewrite erew into a new formula erew′

by adding the negation of erew
j , for all expansions ej such

that ej is more informative than e. In the RS example our
algorithm finds 21 subsumptions due to more compact ex-
pansions of the same base view, and 16 further subsumptions
due to more informative expansions.

As a final step, we have to look for proper subsumptions
among the normalized tgds to avoid that useless tuples are
copied more than once to the target. For example, tuple
S(N1, h, k, l,m) – where N1 is not in join with other tuples,
and therefore is a “pure” null – is redundant in presence of
a tuple S(N2, h, k, l,m) or in the presence of S(i, h, k, l,m).
This yields our set of rewritten T’T tgds.

Also in this case it is possible to prove that chasing these
rewritten tgds generates core solutions for the original ST
tgds.

6.5 Skolem Functions
Our final goal is to implement the computation of cores

via an executable script, for example in SQL. In this respect,
great care is needed in order to properly invent labeled nulls.
A common technique to do this is to use Skolem functions.
A Skolem function is usually an uninterpreted term of the
form fsk(v1, v2, . . . , vk), where each vi is either a constant
or a term itself.

An appropriate choice of Skolem functions is crucial in
order to correctly reproduce in the final script the semantics
of the chase. Recall that, given a tgd φ(x) → ∃y(ψ(x, y))
and a value assignment a, that is, an homomorphism from
φ(x) into I, before firing the tgd the chase procedure checks
that there is no extension of a that maps φ(x) ∪ ψ(x, y)
into the current solution. In essence, the chase prevents the
generation of different instantiations of a tgd conclusion that
are identical up to the renaming of nulls.

We treat Skolem functions as interpreted functions that
encode their arguments as strings. We call a string gen-
erated by a Skolem function a Skolem string. Whenever a
tgd is fired, existential variables in tgd conclusion are asso-
ciated with a Skolem string; the Skolem string is then used
to generate a unique (integer) value for the variable.

We may see the block of facts obtained by firing a tgd
as a hypergraph in which facts are nodes and null values
are labeled edges that connect the facts. Each null value
that corresponds to an edge of this hypergraph requires an
appropriate Skolem function. To correctly reproduce the
desired semantics, the Skolem functions for a tgd m should
be built is such a way that, if the same tgd or another tgd is
fired and generates a block of facts that is identical to that
generated by m up to nulls, the Skolem strings are identical.
To implement this behavior in our scripts, we embed in the
function a full description of the tgd instantiation, i.e., of
the corresponding hypergraph. Consider for example the
following tgd:

R(a, b, c) → ∃N0, N1 : S(a,N0),T(b,N0, N1),W(N1)

The Skolem functions for N0 and N1 will have three argu-
ments: (a) the sequence of facts generated by firing the tgd
(existential variables omitted), i.e., an encoding of the graph
nodes; (ii) the sequence of joins imposed by existential vari-
ables, i.e., an encoding of the graph edges; (iii) a reference
to the specific variable for which the function is used. The
actual functions would be as follows:

fsk({S(A:a),T(A:b),W()},{S.B=T.B, T.C=W.A}, S.B=T.B)
fsk({S(A:a),T(A:b),W()},{S.B=T.B, T.C=W.A}, T.C=W.A)

An important point here is that set elements must be en-
coded in lexicographic order, so that the functions generate
appropriate values regardless of the order in which atoms
appear in the tgd. This last requirement introduces fur-
ther subtleties in the way exchanges with self-joins are han-
dled. In fact, note that in tgds like the one above – in
which all relation symbols in the conclusion are distinct
– the order of set elements can be established at script
generation time (they depend on relation names). If, on
the contrary, the same atom may appear more than once
in the conclusion, then functions of this form are allowed:
fsk({S(A:a),S(A:b)},{S.B=S.B}). It can be seen how facts
must be reordered at execution time, based on the actual
assignment of values to variables.

7. COMPLEXITY AND APPROXIMATIONS
A few comments are worth making here on the complex-

ity of core computations. In fact, the three categories of
scenarios discussed in the previous sections have consider-
ably different complexity bounds. Recall that our goal is to
execute the rewritten tgds under the form of SQL scrips; in
the scripts, negated atoms give rise to difference operators.
Generally speaking, differences are executed very efficiently
by the DBMS under the form of sort-scans. However, the
number of differences needed to filter out redundant tuples
depends on the nature of the scenario.

As a first remark, let us note that subsumptions are noth-
ing but particular forms of coverages; nevertheless, they
deserve special attention since they are handled more effi-
ciently than coverages. In a subsumption scenario the num-
ber of differences corresponds to the number of subsump-
tions. Consider the graph of the subsumption relation ob-
tained by removing transitive edges. In the worst case – the
graph is a path – there are O(n2) subsumptions. However,
this is rather unlikely in real scenarios. Typically, the graph
is broken into several smaller connected components, and
the number of differences is linear in the number of tgds.

The worst-case complexity of the rewriting is higher for
coverage scenarios, for two reasons. First, coverages always
require to perform additional joins before computing the ac-
tual difference. Second, and more important, if we call k
the number of atoms in a tgd, assume each atom can be
mapped into n other atoms via homomorphisms; then we
need to generate nk different coverages, and therefore nk

differences.
This exponential bound on the number of coverages is

not surprising. In fact, Gottlob and Nash have shown that
the problem of computing core solutions is fixed-parameter
intractable[13] wrt the size of the tgds (in fact, wrt the size of
blocks), and therefore it is very unlikely that the exponential
bound can be removed. We want to emphasize however that
we are talking about expression complexity and not data
complexity (the data complexity remains polynomial).

Despite this important difference in complexity between
subsumptions and coverages, coverages can usually be han-
dled quite efficiently. In brief, the exponential bound is
reached only under rather unlikely conditions; to see why,
recall that coverages tend to follow this pattern:

m1 : A(a, b) → R(a, b)
m2 : B(a, b) → S(a, b)
m3 : C(a, b) → ∃N : R(a,N),S(b,N)

Note that m1 and m2 write into the key–foreign key pair,
while m3 invents a value. Complexity may become an is-
sue, here, only if the set of tgds contains a significant num-
ber of other tgds like m1 and m2 which write into R and
S separately. This may happen only in those scenarios in
which a very large number of different data sources with a
poor design of foreign key relationships must be merged into
the same target, which can hardly be considered a frequent
case. In fact, in our experiments with both real-life scenar-
ios and large randomly generated schemas, coverages have
never been an issue.

Computing times are usually higher for scenarios with self-
joins in tgd conclusions. In fact, the exponential bound is
more severe in these cases. If we call n the number of atoms
in tgd conclusions, since the construction of expansions re-
quires to analyze all possible subsets of atoms in tgd con-

clusions,8 a bound of 2n is easily reached. Therefore, the
number of joins, intersections and differences in the final
SQL script may be very high. In fact, it is not difficult to
design synthetic scenarios like the RS one discussed above
that actually trigger the exponential explosion of rewritings.

However, in more realistic scenarios containing self-joins,
the overhead is usually much lower. To understand why,
let us note that expansions tend to increase when tgds are
designed in such a way that it is possible for a tuple to
perform a join with itself. In practice, this happens very
seldom. Consider for example a Person(name, father) re-
lation, in which children reference their father. It can be
seen that no tuple in the Person table actually joins with
itself. Similarly, in a Gene(name, type, protein) table, in
which “synonym” genes refer to their “primary” gene via the
protein attribute, since no gene is at the same time a syn-
onym and a primary gene. In light of these ideas, we may

Figure 7: Containment of Solutions

say that, while it is true that the rewriting algorithm may
generate expensive queries, this happens only in rather spe-
cific cases that hardly reflect practical scenarios. In practice,
scalability is very good. In fact, we may say that the 90%
of the complexity of the algorithm is needed to address a
small minority of the cases. Our experiments confirm this
intuition.

It is also worth noting that, when the complexity of the
rewriting becomes high, our algorithms allows to produce
several acceptable approximations of the core. In fact, the
algorithm is modular in nature; when the core computation
requires very high computing times and does not scale to
large databases, the mapping designer may decide to discard
the “full” rewriting, and select a “reduced” rewriting (i.e., a
rewriting wrt to a subset of homomorphisms) to generate an
approximation of the core more efficiently. This can be done
by rewriting tgds with respect to subsumptions only or to
subsumptions and coverages, as shown in Figure 7.

8. EXPERIMENTAL RESULTS
The algorithms introduced in the paper have been im-

plemented in a working prototype written in Java. In this
section we study the performance of our rewriting algorithm
on mapping scenarios of various kinds and sizes. We show
that the rewriting algorithm efficiently computes the core
even for large databases and complex scenarios. All exper-
iments have been executed on a Intel Core 2 Duo machine
with 2.4Ghz processor and 4 GB of RAM under Linux. The
DBMS was PostgreSQL 8.3.

Computing Times. We start by comparing our algorithm
with an implementation [20] of the core computation algo-
rithm developed in [13], made available to us by the authors.
In the following we will refer to this implementation as the
“post-processing approach”.

8In fact, all multisets.

We selected a set of seven experiments to compare execu-
tion times of the two approaches. The seven experiments in-
clude two scenarios with subsumptions, two with coverages,
and three with self-joins in the target schema. The scenar-
ios have been taken from the literature (two from [11], one
from [22]), and from the STMark benchmark. Each test has
been run with 10k, 100k, 250k, 500k, and 1M tuples in the
source instance. On average we had 7 tables, with a mini-
mum of 2 (for the RS example discussed in Section 6) and
a maximum of 10.

A first evidence is that the post processing approach does
not scale. We have been able to run experiments with 1k and
5k tuples, but starting at around 10k tuples the experiments
took on average several hours. This result is not surprising,
since these algorithms exhaustively look for endomorphisms
in the canonical solution in order to remove variables (i.e,
invented nulls). For instance, our first subsumption scenario
with 5k tuples in the source generated 13500 variables in the
target; the post-processing algorithm took on our machine
running PostgreSQL around 7 hours to compute the final so-
lution. It is interesting to note that in some cases the post
processing algorithm finds the core after only one iteration
(in the previous case, it took 3 hours), but the algorithm
is not able to recognize this fact and stop the search. For
all experiments, we fixed a timeout of 1 hour. If the ex-
periment was not completed by that time, it was stopped.
Since none of the scenarios we selected was executed in less
than 1 hour we do not report computing times for the post-
processing algorithm in our graphs. Execution times for the

Figure 8: SQL Experiments

SQL scripts generated by our rewriting algorithms are re-
ported in Figure 8. Figure 8.a shows executing times for the
four scenarios that do not contain self-joins in the target; as
it can be seen, execution times for all scenarios were below
2 minutes.

Figure 8.b reports times for the three self-join scenarios.

It can be seen that the RS example did not scale up to 1M
tuples (computing the core for 500K tuples required 1 hour
and 9 minutes). This is not surprising, given the exponential
behavior discussed in the previous Section. However, the
other two experiments with self-join – one from STMark
and another from [22] – did scale nicely to 1M tuples.

Scalability on Large Scenarios. To test the scalability of
our algorithm on schemas of large size we generated a set of
synthetic scenarios using the scenario generator developed
for the STMark benchmark. We generated four relational
scenarios containing 20/50/75/100 tables, with an average
join path length of 3, variance 1. Note that, to simulate real-
application scenarios, we did not include self-joins. To gen-
erate complex schemas we used a composition of basic cases
with an increasing number between 1 and 15, in particular
we used: Vertical Partitioning (3/6/11/15 repetitions), De-
normalization (3/6/12/15), and Copy (1 repetition). With
such settings we got schemas varying between 11 relations
with 3 joins and 52 relations with 29 joins.

Figure 8.c summarizes the results. In the graph, we report
several values. One is the number of tgds processed by the
algorithm, with the number of subsumptions and coverages.
Then, since we wanted to study how the tgd rewriting phase
scales on large schemas, we measured the time needed to
generate the SQL script. In all cases the algorithm was able
to generate the SQL script in a few seconds. Finally, we
report execution times in seconds for source databases of
100K tuples.

Nested Scenarios. All algorithms discussed in the previous
sections are applicable to both flat and nested data. As it is
common [18], the system adopts a nested relational model
that can handle both relational and nested data sources (i.e,
XML).

Note that data exchange research has so far concentrated
on relational data. There is still no formal definition of a
data exchange setting for nested data. Still, we compare the
solutions produced by the system for nested scenarios with
the ones generated by the basic [18] and the nested [12] map-
ping generation algorithms, which we have reimplemented in
our prototype. We show that the rewriting algorithm invari-
ably produces smaller solutions, without losing informative
content.

For the first set of experiments we used two real data sets
and a synthetic one. The first scenario maps a fragment of
DBLP9 to one of the Amalgam publication schemas10. The
second scenario maps the Mondial database11 to the CIA
Factbook schema12. As a final scenario we used the StatDB
scenario from [18] with synthetic random data. For each
experiment we used three different input files with increasing
size (n, 2n, 4n).

Figure 9.a shows the percent reduction in the output size
for our mappings compared to basic mappings (dashed line)
and nested mappings. As output size, we measured the
number of tuples, i.e., the number of sequence elements in
the XML. Larger output files for the same scenario indicate
more redundancy in the result. As expected, our approach

9http://dblp.uni-trier.de/xml
10http://www.cs.toronto.edu/ m̃iller/amalgam
11http://www.dbis.informatik.uni-goettingen.de/Mondial
12https://www.cia.gov/library/publications/the-world-factbook

outperformed basic mappings in all the examples. Nested
mappings had mixed performance. In the first scenario they
were able to compute a non-redundant solution. In the sec-
ond scenario, they brought no benefits wrt basic mappings.

Figure 9: XML Experiments

Figure 9.b shows how the percent reduction changes with
respect to the level of redundancy in the source data. We
considered the statDB experiment, and generated several
source instances of 1k tuples based on a pool of values of
decreasing size. This generates different levels of redundancy
(0/20/40/60%) in the source database. The reduction in the
output size produced by the rewriting algorithm with respect
to nested mappings increases almost linearly.

9. RELATED WORK
In this section we review some related works in the fields

of schema mappings and data exchange.
The original schema mapping algorithm was introduced

in [18] in the framework of the Clio project. The algo-
rithm relies on a nested relational model to handle relational
and XML data. The primary inputs are value correspon-
dences and foreign key constraints on the two sources that
are chased to build tableaux called logical relations; a tgd
is produced for each source and target logical relations that
cover at least one correspondence. Our tgd generation al-
gorithm is a generalization of the basic mapping algorithm
that captures a larger class of mappings, like self-joins [1] or
those in [2]. Note that the need for explicit joins was first
advocated in [19]; the duplication of symbols in the schemas
has been first introduced in the MapForce commercial sys-
tem (www.altova.com/MapForce).

The amount of redundancy generated by basic mappings
has motivated a revision of the algorithm known as nested
mappings [12]. Intuitively, whenever a tgd m1 writes into an
external target set R and a tgd m2 writes into a set nested
into R, it is possible to “merge” the two mappings by nesting
m2 into m1. This reduces the amount of redundant tuples
in the target. Unfortunately, nested mappings are applica-
ble only in specific scenarios – essentially schema evolution
problems in which the source and the target database have
similar structures – and are not applicable in many of the
examples discussed in this paper.

The notion of a core solution was first introduced in [11];
it represents a nice formalization of the notion of a “mini-
mal” solution, since cores of finite structures arise in many
areas of computer science (see, for example, [15]). Note that
computing the core of an arbitrary instance is an intractable
problem [11, 13]. However, we are not interested in comput-
ing cores for arbitrary instances, but rather for solutions of a
data exchange problem; these show a number of regularities,
so that polynomial-time algorithms exist.

In [11] the authors first introduce a polynomial greedy
algorithm for core computation, and then a blocks algorithm.
A block is a connected component in the Gaifman graph
of nulls. The block algorithm looks at the nulls in J and
computes the core of J by successively finding and applying a
sequence of small useful endomorphisms; here, useful means
that at least one null disappears. Only egds are allowed as
target constraints.

The bounds are improved in [13]. The authors introduce
various polynomial algorithms to compute cores in the pres-
ence of weakly-acyclic target tgds and arbitrary egds, that
is, a more general framework than the one discussed in this
paper. The authors prove two complexity bounds. Using an
exhaustive enumeration algorithm they get an upper bound
of O(vm|dom(J)|b), where v is the number of variables in J ,
m is the size of J , and b is the block size of J . There exist
cases where a better bound can be achieved by relying on
hypertree decomposition techniques. In such cases, the up-
per bound is O(vm[b/2]+2), with special benefits if the target
constraints of the data exchange scenario are LAV tgds. One
of the algorithms introduced [13] has been revised and im-
plemented in a working prototype [20]. The prototype uses
a relational DBMS to chase tgds and egds, and a specialized
engine to find endomorphisms and minimize the solution.
Unfortunately, as discussed in Section 8, the technique does
not scale to real size databases.

+Spicy is an evolution of the original Spicy mapping
system [5], which was conceived as a platform to integrate
schema matching and schema mappings, and represented
one of the first attempt at the definition of a notion of qual-
ity for schema mappings.

10. CONCLUSIONS
We have introduced new algorithms for schema mappings

that rely on the theoretical foundations of data exchange to
generate optimal solutions.

From the theoretical viewpoint, it represents a step for-
ward towards answering the following question: “is it possi-
ble to compute core solutions by using the chase ?” However,
we believe that the main contribution of the paper is to show
that, despite their intrinsic complexity, core solutions can be
computed very efficiently in practical, real-life scenarios by
using relational database engines.

+Spicy is the first mapping generation system that inte-
grates a feasible implementation of a core computation algo-
rithm into the mapping generation process. We believe that
this represents a concrete advancement towards an explicit
notion of quality for schema mapping systems.

Acknowledgments We would like to thank the anony-
mous reviewers for their comments that helped us to im-
prove the presentation. Our gratitude goes also to Vadim
Savenkov and Reinhard Pichler who made available to us an
implementation of their post-processing core-computation

algorithm, which proved very useful during the tests of the
system. Finally, we are very grateful to Paolo Atzeni for all
his comments and his advice.

11. REFERENCES
[1] B. Alexe, W. Tan, and Y. Velegrakis. Comparing and

Evaluating Mapping Systems with STBenchmark. Proc. of
the VLDB Endowment, 1(2):1468–1471, 2008.

[2] Y. An, A. Borgida, R. Miller, and J. Mylopoulos. A
Semantic Approach to Discovering Schema Mapping
Expressions. In Proc. of ICDE, pages 206–215, 2007.

[3] C. Beeri and M. Vardi. A Proof Procedure for Data
Dependencies. J. of the ACM, 31(4):718–741, 1984.

[4] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster.
Putting Context into Schema Matching. In Proc. of VLDB,
pages 307–318. VLDB Endowment, 2006.

[5] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and
G. Summa. Schema Mapping Verification: The Spicy Way.
In Proc. of EDBT, pages 85 – 96, 2008.

[6] L. Bravo, W. Fan, and S. Ma. Extending Dependencies
with Conditions. In Proc. of VLDB, pages 243–254, 2007.

[7] L. Cabibbo. On Keys, Foreign Keys and Nullable
Attributes in Relational Mapping Systems. In Proc. of
EDBT, pages 263–274, 2009.

[8] L. Chiticariu. Computing the Core in Data Exchange:
Algorithmic Issues. MS Project Report, 2005. Unpublished
manuscript.

[9] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data
exchange: Semantics and query answering. Theor. Comput.
Sci., 336(1):89–124, 2005.

[10] R. Fagin, P. Kolaitis, A. Nash, and L. Popa. Towards a
Theory of Schema-Mapping Optimization. In Proc. of ACM
PODS, pages 33–42, 2008.

[11] R. Fagin, P. Kolaitis, and L. Popa. Data Exchange: Getting
to the Core. ACM TODS, 30(1):174–210, 2005.

[12] A. Fuxman, M. A. Hernández, C. T. Howard, R. J. Miller,
P. Papotti, and L. Popa. Nested Mappings: Schema
Mapping Reloaded. In Proc. of VLDB, pages 67–78, 2006.

[13] G. Gottlob and A. Nash. Efficient Core Computation in
Data Exchange. J. of the ACM, 55(2):1–49, 2008.

[14] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen.
Update Exchange with Mappings and Provenance. In Proc.
of VLDB, pages 675–686, 2007.

[15] P. Hell and J. Nešetřil. The Core of a Graph. Discrete
Mathematics, 109(1-3):117–126, 1992.

[16] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering queries using views. In PODS, pages 95–104,
1995.

[17] R. J. Miller, L. M. Haas, and M. A. Hernandez. Schema
Mapping as Query Discovery. In Proc. of VLDB, pages
77–99, 2000.

[18] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and
R. Fagin. Translating Web Data. In Proc. of VLDB, pages
598–609, 2002.

[19] A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. A.
Hernández. Clip: a Visual Language for Explicit Schema
Mappings. In Proc. of ICDE, pages 30–39, 2008.

[20] V. Savenkov and R. Pichler. Towards practical feasibility of
core computation in data exchange. In Proc. of LPAR,
pages 62–78, 2008.

[21] B. ten Cate, L. Chiticariu, P. Kolaitis, and W. C. Tan.
Laconic Schema Mappings: Computing Core Universal
Solutions by Means of SQL Queries. Unpublished
manuscript – http://arxiv.org/abs/0903.1953, March 2009.

[22] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data
Driven Understanding and Refinement of Schema
Mappings. In Proc. of ACM SIGMOD, pages 485–496,
2001.

