
BPEL Processes Matchmaking for Service Discovery

Juan Carlos Corrales, Daniela Grigori, and Mokrane Bouzeghoub

Prism, Universite de Versailles Saint-Quentin en Yvelines
45 avenue des Etats-Unis, 78035 Versailles Cedex, France
Juan-Carlos.Corrales-Munoz@prism.uvsq.fr,

Daniela.Grigori@prism.uvsq.fr,
Mokrane.Bouzeghoub@prism.uvsq.fr

Abstract. The capability to easily find useful services (software applications,
software components, scientific computations) becomes increasingly critical in
several fields. Current approaches for services retrieval are mostly limited to the
matching of their inputs/outputs. Recent works have demonstrated that this ap-
proach is not sufficient to discover relevant components. In this paper we argue
that, in many situations, the service discovery should be based on the specifica-
tion of service behavior. The idea behind is to develop matching techniques that
operate on behavior models and allow delivery of partial matches and evaluation
of semantic distance between these matches and the user requirements. Conse-
quently, even if a service satisfying exactly the user requirements does not exist,
the most similar ones will be retrieved and proposed for reuse by extension or
modification. To do so, we reduce the problem of behavioral matching to a graph
matching problem and we adapt existing algorithms for this purpose. A prototype
is presented which takes as input two BPEL models and evaluates the semantic
distance between them; the prototype provides also the script of edit operations
that can be used to alter the first model to render it identical with the second one.

Keywords: web services, services retrieval, behavioral matching.

1 Introduction

The capability to easily find useful services (software applications, software compo-
nents, scientific computations) becomes increasingly critical in several fields. Examples
of such services are numerous:

– Software applications as web services which can be invoked remotely by users or
programs. One of the problems arising from the model of web services is the need
to put in correspondence service requesters with service suppliers, especially for
services which are not yet discovered or which are new, taking into account the
dynamic nature of the Web where services are frequently published, removed or
released.

– Programs and scientific computations which are important resources in the context
of the Grid, sometimes even more important than data [1]. In such a system, data
and procedures are first rank classes which can be published, searched and han-
dled. Thus, the scientists need to retrieve procedures with desired characteristics, to
determine if a required calculation was already carried out and whether it is more
advantageous to carry it out again or to retrieve data generated previously.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 237–254, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

238 J.C. Corrales, D. Grigori, and M. Bouzeghoub

– Software components which can be downloaded to create a new application. To
reduce the development, test and maintenance costs, a fast solution is to re-use
existing components.

In all these cases, users are interested in finding suitable components in a library or
collection of models. User formulates a requirement as a process model; his goal is to
use this model as a query to retrieve all components whose process models match with
a whole or part of this query. If models that match exactly do not exist, those which
are most similar must be retrieved. For a given task, the models that require minimal
modifications are the most suitable ones. Even if the retrieved models have to be tailored
to the specific needs of the task, the effort for the tailoring will be minimal.

In this paper we argue that, in many situations, the service discovery process requires
a matchmaking phase based on the specification of the component behavior. The idea
behind is to develop matching techniques that operate on behavior models and allow
delivery of partial matches and evaluation of semantic distance between these matches
and the user requirements. Consequently, even if a service satisfying exactly the user
requirements does not exist, the most similar ones will be retrieved and proposed for
reuse by extension or modification. To do so, we reduce the problem of service behav-
ioral matching to a graph matching problem and we adapt existing algorithms for this
purpose.

In the next section we present several motivating scenarios. Section 3 presents exist-
ing approaches for service retrieval and shows their drawbacks for the presented scenar-
ios. In section 4 we show how the behavioral matching is reduced to a graph matching
problem; a similarity measure is defined based on graph edit distance for which two
new graph edit operations are introduced. We show also how to combine two graph
models in order to satisfy user requirements. Section 5 shows how the graph match-
ing algorithm can be used for BPEL process matchmaking. In section 6 we present an
experimental study of the matchmaking algorithm. Finally section 7 present ongoing
work and conclusions.

2 Motivating Scenarios

In this section we present two scenarios requiring behavioral matchmaking. The first
example situates in the context of web services integration and consists in retrieving
services having compatible behavior. The second example is delta analysis which con-
sists of finding differences between two models.

Web services integration. Consider a company that uses service S to order office sup-
pliers. Suppose that the company wants to find retailers (say WalMart or Target) having
compatible web services (a new retailer or replacing the current partner). The allowed
message exchange sequences are called business protocols and can be expressed for
example using BPEL abstract processes, WSCL, or other protocol languages (see, e.g.,
[2]). The specification of the business protocol is important, as it rarely happens that
service operations can be invoked independently from one another. Thus the company
will search for a service having a compatible business protocol. Among retailer ser-
vices, the most compatible one has to be found. If the service is not fully compatible,

BPEL Processes Matchmaking for Service Discovery 239

the company will adapt its service or will develop an adaptor in order to interact with
the retrieved service. In both situations, the differences between the business protocols
have to be automatically identified. In the former case, finding the most similar service
allows to minimize the development cost. In the latter case, identifying automatically
the differences between protocols is the first stage in the process of semi-automatically
developing adapters (see [3]).

Delta-analysis. Delta analysis consists in finding the differences between two models.
For example, the first one is the model specified by a standard and the second one is
the model as it is implemented in an enterprise. Business definitions can be specified by
industry specific standards groups in the same way that, for example, RosettaNet PIPs
are specified by RosettaNet and used by participating enterprises. Enterprises need to
verify if their services follow the guidelines prescribed by the standards. Thus, they
need to compare the business model of their existing service with that prescribed by
the standards. Ideally a tool should identify all the differences between the two models.
Based on these differences the cost of reengineering of the existing service could be
evaluated.

3 Related Work

Currently, the algorithms for Web services discovery in registers like UDDI or ebXML
are based on a search by key words or tables of correspondence of couples (key-value).
Within the framework of the semantic Web, description logics were proposed for a
richer and precise formal description of services. These languages allow the definition
of ontologies, such as for example OWL-S, which are used as a basis for semantic
matching between a declarative description of the required service and descriptions of
the services offered ([4,5,6]). In [4,6], a published service is matched with a required
service when the inputs and outputs of the required service match the inputs and out-
puts of the published service (i.e., they have the same type or one is a generalization of
the other). In [7], independent filters are defined for service retrieval: the name space,
textual description, the domain of ontology that is used, types of inputs/outputs and con-
straints. The approach presented in [8] takes into account the operational properties like
execution time, cost and reliability. The authors of [9] provide a lightweight seman-
tic comparison of interfaces based on similarity assement methods (lexical, attribute,
interface and QoS similarity).

In the context of the Grid [1], the search of procedures is based on a high-level
language which expresses the relationships among procedures and their input/output
data.

Service retrieval based of key words or some semantic attributes is not satisfactory
for a great number of applications. The tendency of recent work is to exploit more and
more knowledge on service components and behavior. The need to take into account
the behavior of the service described by a process model was underlined by several
researchers [10,11,5,12,13,14]. In [5], in order to improve precision of web service dis-
covery, the process model is used to capture the salient behavior of a service. A query
language for services is defined which allows to find services by specifying conditions

240 J.C. Corrales, D. Grigori, and M. Bouzeghoub

on the activities which compose them, the exceptions treated, the flow of the data be-
tween the activities.

In [11], authors argue that the matchmaking based on service input and output is
not sufficient as some output data may be produced only under certain internal condi-
tions. Thus, they propose an algorithm that matches output data taking into account the
process structure, for instance conditional branching.

In [10], authors underline the importance of including behavior aspects in match-
making process in the B2B environment and mention it as a future work. The authors
of [13], which propose a model for dynamic service aggregation, stress also the ca-
pability to automatically verify the behavioral compatibility of various processes as a
requirement in electronic marketplaces.

In [12], authors deal with the equivalence of two processes modelled using Petri nets.
It is supposed that partners discover each other by searching in business registry, and
then agree on a common protocol. Their work verifies the compatibility between the
agreed protocol and the process existing in the enterprise. We take a different approach,
by allowing to find a partner that is fully or partially compatible to an existing enterprise
process.

Very recently, authors in the academic world have published papers that discuss sim-
ilarity and compatibility at different levels of abstractions of a service description (e.g.,
[15,16,17,14]). In terms of protocols specification and analysis, existing approaches
provide models (e.g., based on pi-calculus or state machines) and mechanisms to com-
pare specifications (e.g., protocols compatibility checking).

In [14], authors give a formal semantics to business process matchmaking based on
finite state automata extended by logical expressions associated to states. Computing
the intersection is computationally expensive, and thus does not scale for large service
repositories. To solve this problem, the authors of [18] present an indexing approach
for querying cyclic business processes using traditional database systems; they intro-
duce an abstraction function that removes cycles and transforms a potentially infinite
set of message sequences into a finite representation, which can be handled by existing
database systems. The choice of finite state automata as a modelling formalism limits
the expressiveness of the models, for instance representing parallel execution capabili-
ties can lead to very large models.

A new behavior model for web services is presented in [19] which associates mes-
sages exchanged between participants with activities performed within the service. Ac-
tivity profiles are described using OWL-S (Web Services Ontology Language). Web
services are modelled like non-deterministic finite automatons. A new query language
is developed that expresses temporal and semantic properties on services behaviors.

To summarize, the need to take into account the service behavior in the retrieval pro-
cess was underlined by several authors and some very recent proposals exist ([19],[14]).
The few approaches that exist give a negative answer to the user if a model satisfying
exactly his requirements does not exist in the registries, even if a model that requires a
small modification exists. Our objective is to propose an approach for service retrieval
based on behavioral specification allowing an approximate match. To the best of our
knowledge, there is not another approach allowing to retrieve services having similar
behavior and defining a behavior-based similarity measure.

BPEL Processes Matchmaking for Service Discovery 241

4 A Graph-Based Approach to Behavior Matchmaking

In this section we show how the behavioral matching is reduced to a graph matching
problem. Section 4.1 recalls the principles of the graph matching method that we use,
the error correcting subgraph isomorphism, which is based on the idea of graph edit
operations. Next sections show how we adapt it to our problem: we extend the set of
graph edit operations, we define a similarity measure for behavior matchmaking and we
show how to compose two library graphs to satisfy user requirements.

A business protocol describes the observable behavior of a web service. It com-
plements the web service interface definition by imposing constraints on the order of
exchanged messages. Most of existing proposals (standards and research models) are
graph based. For this reason, we choose to use a graph representation of business pro-
tocols in order to compare two models.

Using graphs as a representation formalism for both user requirements and service
models, the service matching problem turns into a graph matching problem. We want
to compare the process graph representing user requirements with the model graphs
in library. The matching process can be formulated as a search for graph or subgraph
isomorphism. However, it is possible that there does not exist a process model such
that an exact graph or subgraph isomorphism can be defined. Thus, we are interested in
finding process models that have similar structure if models that have identical structure
do not exist. The error-correcting graph matching integrates the concept of error cor-
rection (or inexact matching) into the matching process ([20,21]). To make the paper
self-contained, in the next section we briefly recall the principle of this graph matching
method and the basic definitions as given in [22].

4.1 Background and Basic Definitions

In order to compare the model graphs to an input graph and decide which of the models
is most similar to the input, it is necessary to define a distance measure for graphs.
Similar to the string matching problem where edit operations are used to define the
string edit distance, the subraph edit distance is based on the idea of edit operations
that are applied to the model graph. Edit operations are used to alter the model graphs
until there exist subgraph isomorphism to the input graph. For each edit operation, a
certain cost is assigned. The costs are application dependent and reflect the likelihood
of graph distortions. The more likely a certain distortion is to occur the smaller is its
cost. The subgraph edit distance from a model to an input graph is then defined to be the
minimum cost taken over all sequences of edit operations that are necessary to obtain
a subgraph isomorphism. It can be concluded that the smaller the subgraph distance
between a model and an input graph, the more similar they are.

In the following we give the definitions of error correcting graph matching as given
in [22].

A directed labelled graph is defined by a quadruple G = (V, E, α, β) where V is the
set of vertices, E ⊂ V × V is the set of edges, α : V → LV is the vertex labelling
function and β : E → LE is the edge labelling function.

Definition 1. Graph isomorphism. Let g and g’ be graphs. A graph isomorphism be-
tween g and g′ is a bijective mapping f : V → V ′ such that

242 J.C. Corrales, D. Grigori, and M. Bouzeghoub

- α(v) = α′(f(v)) for all v ∈ V
- for any edge e = (u, v) ∈ E there exists an edge e′ = (f(u), f(v)) ∈ E′ such

that β(e) = β′(e′) and for any edge e′ = (u′, v′) ∈ E′ there exists an edge
e = (f−1(u′), f−1(v′)) ∈ E such that β(e) = β′(e′).

If f : V → V ′ is a graph isomorphism between graphs g and g′, and g′ is a subgraph
of another graph g”, i.e. g′ ⊂ g”, then f is called a subgraph isomorphism from g to g”.

Given a graph G, a graph edit operation δ on G is any of the following:

◦ substituting the label α(v) of vertex v by l
◦ substituting the label β(e) of edge e by l′

◦ deleting the vertex v from G (for the correction of missing vertices). Note that all
edges that are incident with the vertex v are deleted too.

◦ deleting the edge e from G (for the correction of missing edges).
◦ inserting an edge between two existing vertices (for the correction of extraneous

edges).

Definition 2. Edited graph. Given a graph and an edit operation δ , the edited graph
δ(G) is a graph in which the operation δ was applied. Given a graph G and a sequence
of edit operations Δ = (δ1, δ2, · · · δk), the edited graph Δ(G) is a graph Δ(G) =
δk(· · · δ2(δ1(G)))..).

Definition 3. Ec-subgraph isomorphism. Given two graphs G and G′, an error cor-
recting (ec) subgraph isomorphism f from G to G′ is a 2-tuple f = (Δ, fΔ) where Δ
is a sequence of edit operations and fΔ is a subgraph isomorphism from Δ(G) to G′.

For each edit operation δ, a certain cost is assigned C(δ). The cost of an ec-subgraph iso-
morphism f = (Δ, fΔ) is the cost of the edit operations Δ, i.e., C(Δ) =

∑k
i=1 C(δi).

Usually, there is more than one sequence of edit operations such that a subgraph isomor-
phism from Δ(G) to G′ exists and, consequently, there is more than one ec-subgraph
isomorphism from G to G′. We are interested in the ec-subgraph isomorphism with
minimum cost.

Definition 4. Subgraph edit distance. Let G and G′ be two graphs. The subgraph
distance from G to G′, ed(G, G′) is given by the minimum cost taken over all error-
correcting subgraph isomorphism f from G to G′.

4.2 Extension of the Sub-graph Edit Distance

The models to be compared can have different granularity levels for achieving the same
functionality. For example, the first service has a single operation (activity) to achieve
certain functionality, while in the second service the same behavior is achieved by com-
posing several operations. Thus, new edit operations are required. Given a graph G, we
extend the definition of edit operation δ on G by adding two operations:

◦ decomposing a vertex v into two vertices v1, v2
◦ joining two vertices v1, v2 into a vertex v.

We limit ourselves to a simple case of decomposition, when a vertex is decomposed
into a sequence of two vertices. This simple type of decomposition is sufficient for

BPEL Processes Matchmaking for Service Discovery 243

applications that we analyzed. A more general decomposition operation would be to
decompose a vertex into a connected subgraph, this is subject of future work.

The operation of decomposing a vertex v into two vertices v1, v2 is executed in the
following way :

- all the edges having as destination the vertex v will have as destination the vertex
v1;

- all edges having as source the vertex v, will have as source the vertex v2;
- an edge between the vertex v1 and v2 will be added.

The joining operation is executed in a similar way. These two new edit operations
allow to model one-to-many dependencies among vertices of two graphs (i.e., a vertex
in one graph corresponds to two vertices in the second graph). The classical edit oper-
ations take into account only one-to-one mappings between vertices of the two graphs.
For example, if a vertex v in the first graph corresponds to the composition of two
vertices in the second graph (v1 followed by v2), a matching algorithm based on the
classical edit distance would map v to v1 and suppress v2. It would not be possible to
discover that v is mapped to a composition of v1 and v2.

4.3 Similarity Measure for Behavioral Matching

The subgraph edit distance defined previously expresses the cost of transformation
needed to adapt the model graph in order to cover a subgraph in the input model. This
distance is asymmetric, it represents the distance from the model graph to the input
graph. In order to rank the model graphs, the similarity measure has to take into ac-
count the number of vertices in the input graph that were covered by the model graph.
If two model graphs have the same subgraph distance to the input graph but are matched
to subgraphs with different number of nodes, the one that matches a subgraph with more
nodes will be preferred.

Depending on the application, the similarity measure can be defined in different
ways. The total distance between the two graphs can be defined as the sum of the sub-
graph edit distance and the cost of adding the nodes of the input graph not covered by
the ec-subgraph isomorphism. The second possibility is to define it as the subgraph edit
distance (ed) divided by the number of nodes of model graph (NM): D = ed/NM .
The similarity measure is the inverse of this distance (S = 1/D).

4.4 Composing Fragments to Match the Input Graph

If two models are matched into 2 subgraphs of the input model that are disjoint (the set
of nodes are disjoint), then it is possible to combine them to form a graph that will be
matched to a larger subgraph of the input graph.

Suppose two model graphs G1 and G2 that are disjoint. Let f1 = (Δ1, fΔ1) and
f2 = (Δ2, fΔ2) be two ec-subgraph isomorphism from G1 and G2 to GI , respectively.
The problem is to find an ec-subgraph isomorphism from G = G1 ∪ G2 to GI that is
based on f1 and f2. f1 and f2 can be combined if no two vertices in Δ(G1) and Δ(G2)
are mapped into the same input vertex. More precisely, the intersection of the images
of fΔ1 and fΔ2 must be empty, i.e., fΔ1(V1) ∩ fΔ2(V2) = ∅.

244 J.C. Corrales, D. Grigori, and M. Bouzeghoub

The construction of an ec-subgraph isomorphism f = (Δ, fΔ) from f1 and f2
requires that a set of edit operations Δ and a subgraph isomorphism fΔ are gener-
ated on the basis of Δ1, Δ2, and fΔ1 , fΔ2 respectively such that Δ is a subgraph
isomorphism from (G1 ∪ G2) to GI . Let f1 = (Δ1, fΔ1) and f2 = (Δ2, fΔ2),
Δ1(G1) = (VΔ1 , EΔ1 , αΔ1 , βΔ1). Then :

fΔ(v) =
{

fΔ1(v) if v ∈ VΔ1

fΔ2(v) if v ∈ VΔ2

and Δ = Δ1 + Δ2 + ΔE . ΔE is constructed as follows. For each pair (vi, wj), vi ∈
V1, wj ∈ V2, if there is an edge eI = (fΔ1(vi), fΔ2(wj)) ∈ GI , then an edge (vi, wj)
must be inserted in ΔE .

If C1 and C2 are the cost of the ec-subgraph isomorphism f1 and f2 respectively,
then the cost of the ec-subgraph isomorphism f is : C(f) = C1 + C2 + C(ΔE).

To summarize, if two models G1 and G2 cover disjoint subgraphs in the input graph,
it is possible to construct a model that is their composition in order to find a better match
for the input graph.

5 BPEL Processes Matchmaking

In this section we illustrate the use of the error-correcting graph matching algorithm for
BPEL processes matchmaking. We first give an overview of the matchmaking process
and then we discuss each step in detail; finally, we illustrate it using an example.

We choose to exemplify our approach for business protocol matchmaking by using
the BPEL model. The same approach can be applied for other models, as long as the
business protocol can be transformed to a graph in a unique way (equivalent represen-
tations of a business protocol are reduced to the same process graph).

BPEL [23] has emerged as a standard for specifying and executing web services-based
processes. It supports the modelling of two types of processes: executable and ab-
stract processes . An abstract process is a business protocol, specifying the message
exchanges between different parties from the perspective of a single organization (or
composite service), whitout revealing the internal behavior. An executable process, in
contrast, specifies the actual behavior of a participant. A BPEL process is composed of
a set of activities, that can be either primitive or structured. Primitive activities include
operations involving web services like the invoke, the receive and the reply activity.
There are further activities for assigning data values for variables (assign) or wait to
halt the process for a certain time interval. Structured activities are used for defining the
control flow, e.g. to specify concurrency of activities using flow, alternative branches
(switch) or sequential execution (sequence). These structured activities can be nested.
Beyond that, links can be used to specify order constraints between activities composing
a flow, similar to control flow arcs.

BPEL builds on IBM’s WSFL and Microsoft’s XLANG and combines thus the fea-
tures of a block structured language (XLANG) with those for directed graphs (WSFL).
As a result there are sometimes two equivalent ways to implement a desired behavior.
For exemple, a sequence can be realised using a sequence or a flow with a link between

BPEL Processes Matchmaking for Service Discovery 245

activities, a choice based on certain data values can be realised using the switch or flow
elements, etc.

For this reason, we transform a BPEL process to a process graph and thus equivalent
constructs that are syntactically different will be transformed to the same graph frag-
ment. In the following we concentrate on the matchmaking of BPEL abstract processes,
but the approach can be adapted to matching executable processes.

The BPEL matchmaking process is composed of the following steps. First, the BPEL
processes to be compared are transformed to graphs. Next, the graph matching algo-
rithm is applied taking into account the comparison rules and possibly the nodes de-
composition. Finally the similarity result is shown.

Fig. 1. Architecture

The architecture of the behavior matchmaking system is presented in Figure 1. The
system is composed of a parser that transforms a BPEL document into a graph and a
similarity analyzer module that evaluates the similarity between the graphs. The simi-
larity analyzer is composed of the following elements (Figure 1):

– Graph matchmaking, that takes as inputs the graphs produced by the BPEL parser
and finds out the error correcting sub-graph isomorphism with minimal cost.

– Comparison rules module, that groups the cost functions for the graph edit opera-
tions.

– Decomposition module, that applies the decomposition operation if it is necessary
in order to have the same level of granularity in both models.

– Linguistic comparison, that implements different algorithms useful to find the sim-
ilarity between two strings.

In the next sections we present in detail the functionalities of each module.

246 J.C. Corrales, D. Grigori, and M. Bouzeghoub

5.1 Transforming BPEL to Graph

The parser function transforms a behavior model into a process graph. A process graph
has at least one start nodes and can have multiple end nodes. The graph has two kind
of nodes : regular nodes representing the activities and connectors representing split
and join rules of type XOR or AND. Nodes are connected via arcs which may have an
optional guard. Guards are conditions that can evaluate to true or false.

We implemented the flettening strategy presented in [24] to transform a BPEL to
a process graph. The general idea is to map structured activities to respective process
graph fragments. The algorithm traverses the nested structure of BPEL control flow in
a top-down manner and applies recursively a transformation procedure specific to each
type of structured activity.

Fig. 2. Correspondences between BPEL elements and graph elements

A BPEL basic activity is transformed to a node. The sequence is transformed by
connecting all nested activities with graph arcs; each sub-activity is then transformed
recursively. For the while activity a loop is created between an XOR join and an XOR
split, the condition is added to the edge. The graph representation of switch consists of
a block of alternative branches between an XOR split and an XOR join. The branch-
ing conditions are associated to edges. The flow is transformed to a block of parallel
branches starting with an AND split and synchronized with an AND join.

The nodes that represent the activities have the following attributes: Operation and
PortType. The connector nodes have two attributes: ConnectorType (AND-split,

BPEL Processes Matchmaking for Service Discovery 247

AND-join, XOR-split, XOR-join) and ActivityType (the BPEL structured activity from
which it was transformed). Figure 2 shows the correspondence between BPEL con-
structs and graph elements.

5.2 Graph Matchmaking

This module implements the algorithm for error-correcting sub-graph isomorphism de-
tection ([22]). The sub-graph isomorphism detection is based on a state-space searching
using an algorithm similar to A* [20]. The basic idea of a state-space search is to have
states representing partial solutions of the given problem and to define transitions from
one state to another, thus, the latter state represents a more complete solution than the
previous state. For each state s there is an evaluation function f(s) which describes the
quality of the represented solution. The states are expanding themselves according to
the value of f . In the case of each sub-graph isomorphism detection, given a model
graph G and an input graph GI , a state s in the search space represents a partial match-
ing from G to GI . Each partial matching implies a number of edit operations and their
cost can be used to define the evaluation function f(s). In other words, the algorithm
starts by mapping the first node of G with all the nodes of GI and chooses the best
mapping (with minimal cost)(Algorithm1, line 1). This represents a partial mapping
that will be extended by adding one node at a time (line 7). The process terminates
when either a state representing an optimal ec-subgraph isomorphism from G to GI

has been reached or all states in the search space have edit costs that exceed a given
acceptance threshold.

Algorithm 1. Error-correcting sub-graph isomorphism detection (G(V), GI(VI))
1: Initialize OPEN: map the activity node in V onto each activity node in VI (call Activity-

Match), i.e. create a mapping p. Calculate the cost of this mapping C(p) and add p to OPEN.
2: IF OPEN is empty THEN Exit.
3: Select p of OPEN such that C(p) is minimal and remove p from OPEN
4: IF C(p)> Accept threshold THEN Exit.
5: IF p represents a complete mapping from G to GI THEN output p. Set accept threshold =

C(p). Goto 2.
6: Let p be the current mapping that maps k nodes from G.
7: FOR each activity node w in VI that has not yet mapped to a corresponding node

in V
7.1: extends the current mapping p to p’ by mapping the k+1 node of V to w and calculate

the cost of this mapping C(p’)
7.2: add p’ to OPEN

8: Goto 2

The cost of the mapping C(p′) (line 7.1) represents the cost of extending the current
mapping p with the next node in the model graph. Extending the mapping by mapping
a vertex v (in the input graph that has not yet mapped) to a vertex w in the model graph
(that does not belong to the current mapping) implies node edit operation and edge edit
operations. First, the label and attributes of v must be substituted by label attributes of

248 J.C. Corrales, D. Grigori, and M. Bouzeghoub

w, and secondly, for each mapping (v′, w′) ∈ p it must be ensured that any edge (v′, v)
in the model graph can be mapped to an edge (w′, w) in the input graph by means of
edge edit operations.

A process graph has two kind of nodes: activities and connectors. In contrast with
activities, connectors do not represent business functions, they express control flow
constraints. For this reason, in the matching process, we compare them in a manner
similar to edges. That is, when mapping edges between two activity nodes, we map also
the possible connectors binding directly to the nodes and calculate the corresponding
edit cost.

5.3 Comparison Rules

The Comparison rules module contains all the application-dependent functions allow-
ing to calculate the cost of graph edit operations. These functions are used by the graph
matching module for calculating the distance between the graphs. In order to support
applications with specialized cost function, user-defined cost function can be registered
in this module. In the following we explain the cost functions used for BPEL proto-
col matchmaking. The cost for inserting, suppressing edges and vertices can be set to
a constant. The cost for editing vertices (basic activities and connectors) are presented
below.

Algorithm 2. Function BasicActivityMatch
INPUTS: (Nodei,Nodej)
Nodei: Struct (Opi, PTi), Nodej: Struct (Opj,PTj)
OUTPUT: DistanceNode

Calculate Operation Similarity SimOperation = LS(Opi, Opj)
if SimOperation = 0 (different Operations) then

Return DistanceNode = 1
else

Calculate PortType Similarity SimPortType = LS(PT i, PT j)
Calculate DistanceNode

DistanceNode = 1 − wop ∗ SimOperation + wpt ∗ SimPortType

wop + wpt

end if

Matching basic activites. The cost for editing a basic activity vertex (receive, invoke,
reply) is calculated by function BasicActivityMatch (see Algorithm 2). This cost ex-
presses the distance between two BPEL basic activities. Each activity has two attributes:
the Operation name (Op) and the PortType (PT). The matchmaking gives priority to
operation comparison, and if two operations are similar (SimOperation > 0), it com-
pares the similarity of the PortT ype and calculates the distance between activities
(DistanceNode).

Weights wop and wpt indicate the contribution of Op (similarity of Operations) and
PT (similarity of PortTypes) respectively in the total DistanceNode score (0 ≤ wop ≤
1 and 0 ≤ wpt ≤ 1).

BPEL Processes Matchmaking for Service Discovery 249

Matching connectors. The connectors represent the control flow of process. The cost
for editing a connector vertex is calculated by function ConnectorMatch (see Algorithm
3). This cost verifies if two nodes depict the same connectors. Each connector has two
attributes: the Connector Type (CT) and the Activity Type (AT) that the connector
represents.

Algorithm 3. Function ConnectorMatch
INPUTS: (Nodei,Nodej)
Nodei: Struct (CTi, ATi), Nodej: Struct (CTj, ATj)
OUTPUT: DistanceNode

if CTi �= CTj (different Connector Type) AND ATi �= ATj (different Activity Type) then
Return DistanceNode = 1

else
DistanceNode = 0

end if

Matching wait activities. This function (see Algorithm 4) calculates the cost for edit-
ing a vertex which represents a wait activity. Each wait vertex has two attributes: a delay
for a certain period of time (F) or until a certain deadline is reached (U). The function
checks if two ForExpressions or two UntilExpressions are similar, and gives a re-
sult for DistanceNode respectively. The time similarity function (TS) calculates the
resemblance between the time expressions.

Algorithm 4. Function WaitMatch
INPUTS: (Nodei,Nodej)
Nodei: Struct (Fi, Ui), Nodej: Struct (Fj, Uj)
OUTPUT: DistanceNode

if ForExpression there exist then
Calculate ForExpression Similarity SimFor = TS(Fi, F j)
Calculate DistanceNode = 1 − SimFor

else
Calculate UntilExpression Similarity SimUntil = TS(Ui, Uj)
Calculate DistanceNode = 1 − SimUntil

end if

5.4 Linguistic Comparison

The Linguistic comparison module calculates the linguistic similarity between two la-
bels based on their names [25]. The labels are often formed by a combination of words
and can contain abbreviations. To obtain a linguistic distance between two strings, we
use existing algorithms: NGram, Check synonym, Check abbreviation, tokenization,
etc. The NGram algorithm estimates the similarity according to a number of common
qgrams between labels names [26]. The Check synonym algorithm uses a linguistic
dictionary (e.g. Wordnet [27] in our implementation) to find synonyms while Check
abbreviation uses a custom abbreviation dictionary.

250 J.C. Corrales, D. Grigori, and M. Bouzeghoub

If all algorithms return 1, there is an exact matching. On the other hand, if all the
algorithms return 0, it means that there is no matching between labels. If the NGram
value and the Check abbreviation value are equal to 0, and Check Synonym is between
0 and 1, the total linguistic similarity value will be equal to the Check Synonym one.
Finally, if the three algorithms values are between 0 and 1, the similarity LS ([25]) is
the average of them:

LS =

⎧
⎪⎪⎨

⎪⎪⎩

1 if (m1 = 1 ∨ m2 = 1 ∨ m3 = 1)
m2 if (0 < m2 < 1 ∧ m1 = m3 = 0)
0 if (m1 = m2 = m3 = 0)
m1+m2+m3

3 if m1, m2, m3 ∈ (0, 1)

where, m1 = Sim(NGram), m2=Sim(Synonim Matching) and m3= Sim(Abbreviation
Expansion).

5.5 Decomposing Vertices

The decomposition operations are applied in order to have the same granularity level in
both models. The decomposition operation depends on the metamodel of the behavior
models to be matched. For instance, for BPEL metamodel, it is possible that in one
process a message exchange is modelled as an synchronous interaction, while in the
second process is modelled as an asynchronous interaction. Figure 3 shows how a mes-
sage exchange can be modelled as an asynchronous or synchronous interaction for an
operation invoked by the process.

Synchronous interaction Asynchronous interaction
Invoke (request/response) Invoke (one way) + Receive

Fig. 3. Synchronous vs. asynchronous interactions

Therefore, an invoke operation of type request/response (having min as input mes-
sage and mout as output message) can be decomposed in an invoke operation (one way,
having message min) and a receive operation (having mout as message).

Another example of decomposition operation is related to the granularity of the ex-
changed message. For example, the first process requires messages submitOrder and
sendShippingPrefereces separately, but the second process needs all of this information
included in the submitOrder message. In this case, an invoke operation (having a mes-
sage composed of two parts m1 and m2) will be decomposed in two invoke operations
(having as messages m1 and m2, respetively).

These decomposition functions are specific to BPEL model. For other applications,
user can specify a different decomposition function. The decomposition function has
always the same signature: it takes as argument a vertex and returns two vertices re-
sulting from decomposition (that are supposed to be sequential). The function behavior
is specific to the application (metamodel of the protocols to be matched) specifying
how the labels and attributes of the two vertices are obtained from the decomposed
vertex.

BPEL Processes Matchmaking for Service Discovery 251

5.6 Example

Suppose that we would like to find the similarity between two hotel reservation services
whose models have been described using BPEL.

Fig. 4. Example

The first service has the following activities: First, the customer should place his
Reservation Request (Activity type: Receive). Then the reservation service requires the
Hotels information (Activity type: Pick), either Catalog (RequestCatalog, Activity type:
Invoke) or Availability information (RequestAvailability, Activity type: Invoke). Next,
a confirmation (UserConfirmation Type: Reply) is sent to user. Finally, the reservation
service finishes the process by receiving the reservation Payment (Type: Receive). The
second service model has the following activities sequence: first, the customer should
place his Reservation (Activity type: Receive). Then, the hotel reservation service re-
ceives the customer reservation dates (ShowAvailability Type: Receive) and verifies
the hotels availability (CheckAvailability Type: Invoke), until finding availabile rooms.
Next, a confirmation (Confirmation Type: Reply) is sent to user. Finally, the hotel reser-
vation service requires the customer to pay (Payment Type: Switch), either with credit
card (are PaymentCC Type: Receive) or out of his checking account (PaymentCA Type:

252 J.C. Corrales, D. Grigori, and M. Bouzeghoub

Receive). Our system converts each BPEL document into a graph (input graph and
model graph, Figure 4). Next, the graphs are compared by the similarity analyzer mod-
ule. The dotted lines in Figure 4 represent the mappings found by the system between
the two graphs using the comparison rules. In conclusion, the edit script will show that
the two graphs are similar, but the activities ShowAvailability, CheckAvailability and
PaymentCC of the model graph are parts of different structured activities in the input
graph. However, the matchmaking algorithm will find similar activities for the right
branch of the input graph (Start, ReservationRequest, ShowAvailability, RequestAvail-
ability, UserConfirmation, Payment and End).

6 Implementation and Experiments

We implemented the first version of a desktop system having the architecture presented
in the previous section. In this section, we present an experimental study of the match-
making algorithm. The theoretical complexity of the graph matchmaking algorithm [22]
is (O(m2n2) in the best case (when the distance between the model and the input graph
is minimal) and O(mnn) in the worst case (m = the total number of vertices in the input
graph; n = the total number of vertices in the graph to be compared). The goal of the ex-
periments is to find how well the algorithm performs for BPEL process matchmaking.
Since most of the existing BPEL process have less than 50 activities, we considered a
maximum of 50 activities.

Fig. 5. Matchmaking two BPEL documents

Figure 5 shows the system behavior for two graphs with different structures and dif-
ferent names for activities operations and portTypes. For the comparison of operations
and portTypes, the linguistic comparison is used. Despite the exponential theoretical
cost, the graph shows that the matchmaking algorithm can be used for BPEL documents
having less than 50 activities. The current implementation does not include the two new
graph edit operations. We are currently investigating how to efficiently implement them
and evaluating the supplementary cost.

BPEL Processes Matchmaking for Service Discovery 253

7 Conclusion

In this paper we proposed a solution for service retrieval based on behavioral specifica-
tion. First we motivated the need to retrieve services based on their behavior model. By
using a graph representation formalism for services, we proposed to use a graph error
correcting matching algorithm in order to allow an approximate matching. Starting from
the classical graph edit distance, we proposed two new graph edit operations to take into
account the difference of granularity levels that could appear in two models. We defined
a similarity measure for behavior matchmaking and we showed how to combine frag-
ments in order to satisfy user requirements. We exemplified our approach for behavior
matching using the BPEL model. The behavioral matchmaking was implemented as a
web service that takes as input the graph representations of two BPEL processes and
calculates the degree of similarity between them and outputs also the transformations
needed to transform one process into the other.

We are working on generalizing the decomposition and joining graph edit operations
to tackle the situation when one node in the first graph corresponds to a subgraph of
the second graph. This situation appears when the first service has a single operation
(activity) to achieve certain functionality, while in the second service the same behavior
is achieved by receiving several messages.

The next step of this work will be to address the problem of comparing a process
with a set of processes in a library. Due to the complexity of the matchmaking al-
gorithm, some optimization techniques have to be developped (indexes, clustering to
regroup similar services in the library, etc.). We will also experimentally evaluate the
performance of the behavior based retrieval method in terms of precision and recall.

Acknowledgements

The researcher Juan Carlos Corrales is Alban Program Fellowship recipient (High-level
scholarship program for Latin America, http://www.programalban.org).

References

1. Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for representing,
querying and automating data derivation. In: Proc. of 14th Conf. on Scientific and Statistical
Database Management. (2002)

2. Benatallah, B., Casati, F., Toumani, F.: Web services conversation modeling: A cornerstone
for e-business automation. IEEE Internet Computing (2004)

3. Benatallah, B., Casati, F., Grigori, D., Motahari Nezhad, H.R., Toumani, F.: Developing
adapters for web services integration. In: Proc. of CAISE. (2005)

4. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web services
capabilities. In: Proc. of First International Semantic Web Conference (ISWC). (2002)

5. Bernstein, A., Klein, M.: Towards high-precision service retrieval. In: Proc. of Int. Semantic
Web Conference (ISWC). (2002)

6. Benatallah, B., Hacid, M., Rey, C., Toumani, F.: Semantic reasoning for web services dis-
covery. In: Proc. of WWW Workshop on E-Services and the Semantic Web. (2003)

254 J.C. Corrales, D. Grigori, and M. Bouzeghoub

7. Kawamura, T., De Blasio, J., Hasegawa, T., Paolucci, M., Sycara, K.: A preliminary report
of a public experiment of a semantic service matchmaker combined with a uddi business
registry. In: Proc. of 1st International Conference on Service Oriented Computing (ICSOC).
(2003)

8. Cardoso, J., Sheth, A.: Semantic e-workflow composition. Journal of Intelligent Information
Systems 21 (2003) 191–225

9. Wu, J., Wu, Z.: Similarity-based web service matching. In: Proc. of IEEE International
Conference on Services Computing. (2005)

10. Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A semantic web approach to service de-
scription for matchmaking of services. In: Proc. of Int. Semantic Web Working Symposium
(SWWS). (2001)

11. S. Bansal, S., Vidal, J.M.: Matchmaking of web services based on the DAML-S service
model. In: Proc. of Int. Joint Conference on Autonomous Agents and Multiagent Systems.
(2003) 926–927

12. Zdravkovic, J., P. Johanesson, P.: Cooperation of processes through message level agreement.
In: Proc. of Int. Conf. On Advanced Information Systems Engineering (CAISE). (2004)

13. Piccinelli, G., Di Vitantonio, G., Mokrushin, L.: Dynamic service aggregation in electronic
marketplaces. Computer Networks 2(37) (2001)

14. Wombacher, A., Mahleko, B., Fankhauser, P., Neuhold, E.: Matchmaking for business
processes based on choreographies. In: Proc. of IEEE International Conference on e-
Technology, e-Commerce and e-Service. (2004)

15. Benatallah, B., Casati, F., Toumani, F.: Analysis and management of web services protocols.
In: Proc. of ER. (2004)

16. Bordeaux, L., et al.: When are two web services compatible? In: Proc. of TES. (2004)
17. Dong, L., Halevy, A., Madhavan, J., Nemes, E., , Zhang, J.: Similarity search for web ser-

vices. In: Proc. of VLDB. (2004)
18. Wombacher, A., Mahleko, B., Fankhauser, P.: A grammar-based index for matching business

processes. In: Proc. of IEEE International Conference on Web Services. (2005) 21–30
19. Shen, Z., Su, J.: Web services discovery based on behavior signatures. In: Proc. of IEEE

International Conference on Services Computing. (2005)
20. Shapiro, L.G., Haralick, R.M.: Structural descriptions and inexact matching. IEEE Trans.

Pattern Anal. Mach. Intell. 3 (1981)
21. Bunke, H.: Recent developments in graph matching. In: Proc. of 15th Int. Conf. on Pattern

Recognition. (2000) 117 – 124
22. Messmer, B.: Graph Matching Algorithms and Applications. PhD thesis, University of Bern

(1995)
23. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,

Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language
for web services, version 1.1. In: Standards proposal by BEA Systems, International Business
Machines Corporation, and Microsoft Corporation. (2003)

24. Mendling, J., Ziemann, J.: Transformation of bpel processes to epcs. In: Proc. of the 4th GI
Workshop on Event-Driven Process Chains (EPK2005). (2005)

25. Patil, A., Oundhakar, S., Sheth, A., Verna, K.: Meteor-s web service annotation framework.
In: Proc. of WWW Conference. (2004)

26. Angell, R.C., Freund, G.E., Willett, P.: Automatic spelling correction using a trigram simi-
larity measure. Information Processing and Management 19(4) (1983) 255–261

27. Miller, G.: Wordnet: A lexical database for english. Communications of the ACM 38(11)
(1995) 39–41

	Introduction
	Motivating Scenarios
	Related Work
	A Graph-Based Approach to Behavior Matchmaking
	Background and Basic Definitions
	Extension of the Sub-graph Edit Distance
	Similarity Measure for Behavioral Matching
	Composing Fragments to Match the Input Graph

	BPEL Processes Matchmaking
	Transforming BPEL to Graph
	Graph Matchmaking
	Comparison Rules
	Linguistic Comparison
	Decomposing Vertices
	Example

	Implementation and Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

